
Tighter Value Function Bounds for Bayesian Reinforcement Learning

Kanghoon Lee and Kee-Eung Kim
Department of Computer Science

Korea Advanced Institute of Science and Technology
Daejeon 305-701, Korea

khlee@ai.kaist.ac.kr and kekim@cs.kaist.ac.kr

Abstract

Bayesian reinforcement learning (BRL) provides a prin-
cipled framework for optimal exploration-exploitation
tradeoff in reinforcement learning. We focus on model-
based BRL, which involves a compact formulation of
the optimal tradeoff from the Bayesian perspective.
However, it still remains a computational challenge to
compute the Bayes-optimal policy. In this paper, we
propose a novel approach to compute tighter value
function bounds of the Bayes-optimal value function,
which is crucial for improving the performance of many
model-based BRL algorithms. We then present how our
bounds can be integrated into real-time AO* heuristic
search, and provide a theoretical analysis on the impact
of improved bounds on the search efficiency. We also
provide empirical results on standard BRL domains that
demonstrate the effectiveness of our approach.

Introduction
Reinforcement learning (RL) is the problem where an agent
tries to maximize long-term rewards while acting in an un-
known environment. A fundamental problem in RL is the
exploration-exploitation tradeoff since the agent has to ex-
plore the environment to gather information on how to im-
prove long-term rewards, but always doing so leads to very
poor rewards. Model-based Bayesian RL (BRL) seeks an
optimal solution to the tradeoff from the Bayesian perspec-
tive by maintaining the posterior distribution over the mod-
els of the environment. However, obtaining the solution,
which is the Bayes-optimal policy, is known to be compu-
tationally intractable (Poupart et al. 2006).

One of the main approaches in model-based BRL is to
construct an optimistic model of the environment that is
tractable to solve while yielding an approximate Bayes-
optimal policy with a probably approximately correct (PAC)
guarantee. Such an optimistic model can be obtained by
either adding bonus to rewards (Kolter and Ng 2009) or
augmenting the action space (Asmuth et al. 2009; Cas-
tro and Precup 2010; Araya-López, Thomas, and Buf-
fet 2012). Another class of approaches is to employ a
search algorithm, such as sample-based Monte-Carlo tree
search (MCTS) (Guez, Silver, and Dayan 2012; Asmuth and

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Littman 2011) or real-time heuristic search (Fonteneau, Bu-
soniu, and Munos 2013).

In this paper, we present a model-based BRL algorithm
that combines these two approaches. Our main contribution
is in improving the approximate model construction so that
the value function from the model is a tighter upper bound
of the Bayes-optimal value function. The same idea is used
to compute a tighter lower bound. We then integrate these
bounds into the AO* heuristic search (Nilsson 1982), where
the challenge is in computing these bounds quickly enough
inside the heuristic function so that we can benefit from our
proposed bounds. The resulting algorithm essentially per-
forms multi-step lookahead search using the approximate
model. We provide a theoretical guarantee on the improve-
ment in search performance achieved by improved bounds,
as well as empirical results on the improvement in standard
BRL domains.

Background and Related Work
A Markov decision process (MDP) is defined as a tuple
〈S,A, T,R, γ〉, where S is a set of states, A is a set of ac-
tions, T : S × A × S → [0, 1] is the transition function
T (s, a, s′) = Pr(s′|s, a),R : S×A×S → [Rmin, Rmax] is
the non-negative reward function (i.e.,Rmin ≥ 0), and γ is a
discount factor. A policy π : S → A specifies which action
to execute in each state. For a policy π, its value function
is defined as V π(s) = E[

∑∞
t=0 γ

tR(st, π(st), st+1)|s0 =
s], where st is the state at time t. By solving an MDP,
we obtain an optimal policy π∗, with its value function
V ∗ satisfying the Bellman optimality equation V ∗(s) =
maxa

∑
s′ T (s, a, s′)[R(s, a, s′) + γV ∗(s′)].

In this paper, we consider the reinforcement learning
problem where the agent acts in the environment modeled
as an MDP with unknown transition function. Representing
each unknown transition probability T (s, a, s′) as the pa-
rameter θs,a(s′), a model-based BRL method would main-
tain the posterior distribution over θ = {θs,a(s′)|s, s′ ∈
S, a ∈ A} to represent the uncertainty.

We can then formulate model-based BRL as a partially
observable MDP (POMDP) planning problem (Duff 2002;
Poupart et al. 2006), where the POMDP model is defined
as a tuple 〈SP , AP , ZP , TP , OP , RP , γ〉 with the following
components: the state space is defined by SP = S ×Θ with
the “hybrid” state 〈s, θ〉 ∈ S×Θ being made up of the envi-

ronment state s and the parameter value θ. The action space
remains the same with the environment action space, i.e.
AP = A. The observation space is made up of the environ-
ment state space, i.e.ZP = S. The transition function is then
TP(〈s, θ〉, a, 〈s′, θ′〉) = Pr(s′|〈s, θ〉, a) Pr(θ′|〈s, θ〉, a) =
θs,a(s′)δθ(θ′) where δθ(θ′) is the Kronecker delta with
value 1 when θ = θ′. The observation function is
OP(〈s′, θ′〉, a, z) = δs′(z) since the environment state is
observed at each time step. Finally, the reward function is
RP(〈s, θ〉, a, 〈s′, θ′〉) = R(s, a, s′).

The belief for the hybrid-state POMDP model is a pos-
terior distribution on 〈s, θ〉, denoted as b(〈s, θ〉). Since the
state component is observed at each time step, the uncer-
tainty is confined to θ, and hence we use the notation 〈s, b〉
for the belief. A commonly used probability distribution
for the belief on θ is the flat Dirichlet multinomial (FDM),
whose density function is b(θ) = Πs,aD(θs,a(·);ns,a(·))
with independent Dirichlet distributions D(·; ·) and the ob-
served transition (s, a, s′) counts ns,a(s′). Since the Dirich-
let distribution is a conjugate prior for the multinomial distri-
bution, the updated belief from observing transition (s, a, s′)
is given by

bs,s
′

a = θs,a(s′)
∏
ŝ,â

Dir(θŝ,â(·);nŝ,â(·))

=
∏
ŝ,â

Dir(θŝ,â(·);nŝ,â(·) + δŝ,â,ŝ′(s, a, s
′))

which is equivalent to incrementing the corresponding sin-
gle parameter ns,a(s′)← ns,a(s′) + 1.

The optimal policy π∗(〈s, b〉) of the hybrid-state POMDP
is the Bayes-optimal policy since it chooses the best action
under model uncertainty. Its value function satisfies the Bell-
man optimality equation

V ∗(〈s, b〉) = max
a

∑
s′

Tb(s, a, s′)[R(s, a, s′) + γV ∗(〈s′, bs,s
′

a 〉)]

where Tb(s, a, s′) = ns,ab (s′)

ns,ab
and ns,ab =

∑
s′ n

s,a
b (s′) with

the Dirichlet parameter ns,ab (·) of b.
Although the hybrid-state POMDP model offers an ele-

gant formulation, obtaining the optimal policy of the model
is a computationally challenging task. One way is to con-
struct an approximate and tractable MDP model of the
hybrid-state POMDP. Many model-based BRL algorithms
with PAC guarantees take this approach, following the prin-
ciple of optimism in the face of uncertainty to construct
an optimistic MDP model: Bayesian exploration bonus
(BEB) (Kolter and Ng 2009) introduces additional reward
bonuses proportional to 1/(1 + ns,a) encouraging execu-
tion of relatively inexperienced state-action pairs. Best of
sampled set (BOSS) (Asmuth et al. 2009) and its variant,
SBOSS (Castro and Precup 2010) take a number of sam-
ples from the belief and assume the most favorable one
as the transition function. Bayesian optimistic local transi-
tions (BOLT) (Araya-López, Thomas, and Buffet 2012) uses
the concept of virtual transition experiences to assume opti-
mistic transition to the state with the highest value.

An alternative approach is to focus on solving the hybrid-
state POMDP without relying on an approximate model.

This approach often employs efficient search algorithms:
Bayes-adaptive Monte-Carlo Planning (BAMCP) (Guez,
Silver, and Dayan 2012) is an MCTS algorithm, improv-
ing UCT (Kocsis and Szepesvári 2006) in a number of as-
pects. Bayesian forward search sparse sampling (BFS3) (As-
muth and Littman 2011) uses also an MCTS algorithm,
forward search sparse sampling (FSSS) (Walsh, Goschin,
and Littman 2010), to act like near Bayes-optimal behavior.
Bayesian optimistic planning (BOP) (Fonteneau, Busoniu,
and Munos 2013) is an instance of AO* search that uses the
simple bounds of the value function for the heuristic.

Tighter Upper and Lower Bounds
Bounds on the Bayes-optimal value function are very im-
portant for BRL. Ideally, we want tight bounds that can
be computed very fast. In fact, BRL algorithms with PAC
guarantees generally rely on efficient upper bounds on the
value function. In this section, we present a novel upper
(and lower) bound that improves on BOLT (Araya-López,
Thomas, and Buffet 2012).

Let us start the discussion with the simplest bounds

U0(〈s, b〉) = Rmax
1−γ and L0(〈s, b〉) = Rmin

1−γ (1)

which are trivial and very loose. We can slightly improve the
bounds by leveraging the fact that the hybrid-state POMDP
is basically an MDP with uncertain transition function,
and use the optimistic and pessimistic value iterations for
bounded parameter MDPs (Givan, Leach, and Dean 2000):

U0(〈s, b〉) = maxa
∑
s′ (R(s, a, s′) + γmaxs′ U0(〈s′, b′〉))

(2)

L0(〈s, b〉) = maxa
∑
s′ (R(s, a, s′) + γmins′ L0(〈s′, b′〉))

(3)

This is equivalent to maximizing/minimizing over all possi-
ble transition functions, but it does not take into account that
the belief b may be highly concentrated at a specific transi-
tion function.

The optimistic model construction in BOLT (Araya-
López, Thomas, and Buffet 2012) uses an augmented ac-
tion space A × S so that executing an action (a, σ) with
target state σ results in η identical transition experiences
ληs,a,σ = [(s, a, σ), ..., (s, a, σ)] in one step. By ignoring the
belief update, the model becomes an MDP that is tractable
to solve. Although BOLT gives an idea for an upper bound
of the value function, in reality, η should be set to infinite for
the infinite-horizon value function. This essentially reduces
the BOLT upper bound to Eq. (2).

We address this problem by performing a finite number
(no more than η) of value iterations starting from a trivial
upper bound (Eq. (1) or (2)). In addition, we decrease the
number of virtual transition experiences in each iteration for
further tightening the bound. These changes provide a valid
yet tighter upper bound for any intermediate horizon 1 ≤
T ≤ η. We also take advantage of the fact that augmenting
the action space is not necessary, as the optimal target state
σ is straightforward to be determined for each action. This
reduces the time complexity from O(|S|3|A|) to O(|S|2|A|)
for each iteration.

More formally, we start from the trivial upper bound
U0
b,η(s, a) = Rmax/(1 − γ). We then refine it via η itera-

tions of value update, using the artificial transition function
at the i-th iteration given as

T̃ ib,σ(s, a, s′) = ns,ab (s′)+(η−i+1)·δσ(s′)

ns,ab +(η−i+1)

and update equation given as

U ib,η(s, a) = max
σ∈S

∑
s′ T̃

i
b,σ(s, a, s′)[R(s, a, s′) + γU i−1

b,η (s′)]

U ib,η(s) = max
a

U ib,η(s, a)

for i = 1, . . . , η. We then obtain the following result:

Theorem 1. Given any state s, belief b, and integer η > 0,

U ib,η(s) ≥ V ∗(〈s, bη−i〉)

for any belief bη−i that is reachable from b by any sequence
of (η − i) actions.

Proof. (By mathematical induction) First, U0
b,η(s) ≥

V ∗(〈s, bη〉) is trivially true since U0
b,η(s) = Rmax/(1 −

γ). Next, using the induction hypothesis U ib,η(s) ≥
V ∗(〈s, bη−i〉), we have

U i+1
b,η (s)− V ∗(〈s, bη−(i+1)〉)

≥ U i+1
b,η (s, a∗)− V ∗(〈s, bη−(i+1)〉)

(where a∗ = argmaxaQ∗(〈s, bη−(i+1)〉, a))

= max
σ∈S

∑
s′ T̃

i+1
b,σ (s, a, s′)[R(s, a∗, s′) + γU ib,η(s′)]

−
∑
s′ Tbη−(i+1)(s, a, s′)[R(s, a∗, s′) + γV ∗(〈s′, bη−i〉)]

≥ max
σ∈S

∑
s′ T̃

i+1
b,σ (s, a, s′)[R(s, a∗, s′) + γV ∗(〈s′, bη−i〉)]

−
∑
s′ Tbη−(i+1)(s, a, s′)[R(s, a∗, s′) + γV ∗(〈s′, bη−i〉)]

= max
σ∈S

∑
s′

ns,ab (s′)+(η−i)δσ(s′)

ns,ab +(η−i) [R(s, a∗, s′)+γV ∗(〈s′, bη−i〉)]

−
∑
s′

ns,ab (s′)+φs,a
b,bη−i

(s′)

ns,ab +φs,a
b,bη−i

[R(s, a∗, s′) + γV ∗(〈s′, bη−i〉)]

where φs,ab,bη−i(s
′) is the observation count of (s, a, s′) in the

path from b to bη−i, i.e., φs,ab,bη−i(s
′) = ns,abη−i(s

′)− ns,ab (s′),
and φs,ab,bη−i =

∑
s′ φ

s,a
b,bη−i(s

′). Note that η − i ≥ φs,ab,bη−i .
Thus,

= max
σ∈S

∑
s′

(η−i)·δσ(s′)
ns,ab +(η−i) [R(s, a∗, s′) + γV ∗(〈s′, bη−i〉)]

−
∑
s′

(
ns,ab (s′)+φs,a

b,bη−i
(s′)

ns,ab +φs,a
b,bη−i

− ns,ab (s′)

ns,ab +(η−i)

)
·

[R(s, a∗, s′) + γV ∗(〈s′, bη−i〉)]

= max
σ∈S

(η−i)
ns,ab +(η−i) [R(s, a∗, σ) + γV ∗(〈σ, bη−i〉)]

−
∑
s′

(
ns,ab (s′)+φs,a

b,bη−i
(s′)

ns,ab +φs,a
b,bη−i

− ns,ab (s′)

ns,ab +(η−i)

)
·

[R(s, a∗, s′) + γV ∗(〈s′, bη−i〉)]

≥ max
σ∈S

[(η−i)
ns,ab +(η−i) −

P
s′
ns,ab (s′)+φs,a

b,bη−i
(s′)

ns,ab +φs,a
b,bη−i

−
P
s′
ns,ab (s′)

ns,ab +(η−i)
]
·

[R(s, a∗, σ) + γV ∗(〈σ, bη−i〉)]
= 0

where the last step is due to

(η−i)
ns,ab +(η−i) −

P
s′ n

s,a
b (s′)+φs,a

b,bη−i
(s′)

ns,ab +φs,a
b,bη−i

+
P
s′ n

s,a
b (s′)

ns,ab +(η−i) = 0

by the definitions of ns,ab (s′) and φs,ab,bη−i(s
′).

This theorem yields the following result as a special case:
Corollary 1. Given any state s, belief b, and integer η > 0,

Uηb,η(s) ≥ V ∗(〈s, b〉)

Corollary 1 states that our optimistic value iteration for
horizon η yields a valid upper bound of the infinite horizon
value function. Note that, in contrast, BOLT yields the upper
bound of the η-horizon value function.

Another advantage of our bound is that, once we compute
the bound for horizon η, we can reuse intermediate bounds
U ib,η , i = η, . . . , 0 as the upper bound for any belief b′ that
we encounter in subsequent time steps (Theorem 1). This
property will be leveraged in the real-time search algorithm
we present in the next section.

In a similar manner, we can compute the lower bound.
Starting from the trivial lower bound L0

b,η(s, a) =
Rmin/(1− γ), we refine it via η iterations i = 1, . . . , η

Lib,η(s, a) = min
σ∈S

∑
s′ T̃

i
b,σ(s, a, s′)[R(s, a, s′) + γLi−1

b,η (s′)]

Lib,η(s) = max
a

Lib,η(s, a).

We have the following statements on the lower bound, the
proofs of which are almost identical.
Theorem 2. Given any state s, belief b, and integer η > 0,

Lib,η(s) ≤ V ∗(〈s, bη−i〉)

for any bη−i that is reachable from b by any sequence of
(η − i) actions.
Corollary 2. Given any state s, belief b, and integer η > 0,

Lηb,η(s) ≤ V ∗(〈s, b〉)

Real-Time Heuristic Search for BRL
AEMS (Ross et al. 2008) is a well-known real-time AO*
heuristic search algorithm for POMDPs. The execution is di-
vided into the offline and online phases. In the offline phase,
which is before the first execution of an action, AEMS com-
putes the estimates of the upper and lower bounds of the op-
timal value function. In the online phase, which is between
the consecutive executions of actions, it performs AO* to
construct an AND-OR search tree, and selects the best ac-
tion for execution upon timeout. The AND-OR search tree
represents reachable beliefs from the current belief, where
OR-nodes represent beliefs and AND-nodes represent action
choices. The search tree is iteratively grown by selecting and

Algorithm 1 AEMS-BRL Algorithm
Input: 〈sinit, binit〉 : initial state sinit and prior on transition
function binit
Static: 〈s, b〉 : current belief state of the agent

T : current AND-OR search tree
1: 〈s, b〉 ← 〈sinit, binit〉
2: Initialize T to single root node 〈s, b〉
3: while not ExecutionTerminated() do
4: while not SearchTerminated() do
5: 〈s∗, b∗〉 ← ChooseNextNodeToExpand()
6: Expand(〈s∗, b∗〉)
7: UpdateAncestor(〈s∗, b∗〉)
8: end while
9: Execute best action a∗ for 〈s, b〉

10: Observe new state s′
11: 〈s, b〉 ← 〈s′, (b)s,s

′

a∗ 〉
12: Update tree T so that 〈s, b〉 is the new root
13: end while

expanding the most promising fringe node, using a heuristic
based on the upper and lower bounds of the optimal value.

AEMS can be straightforwardly adapted as a model-
based BRL algorithm since BRL can be formulated as a
hybrid-state POMDP planning problem. Algorithm 1 shows
the main procedure of the approach, which we refer to as
AEMS-BRL. A fringe node in the search tree T is chosen for
expansion based on its error contribution to the root node:

e(〈s, b〉) = γdT (〈s,b〉) Pr(h(〈s, b〉))[U0(〈s, b〉)−L0(〈s, b〉)]

where h(〈s, b〉) is the path from the root node 〈s0, b0〉 to
the fringe node 〈s, b〉, dT (·) is the depth of the fringe node,
U0(·) is the upper bound value, and L0(·) is the lower bound
value at the fringe node. The path probability in the above
equation is defined as

Pr(h(〈s, b〉)) =
∏dT (〈s,b〉)−1
i=0 Tbi(si, ai, si+1) Pr(ai|〈si, bi〉)

for the path

h(〈s, b〉) = [〈s0, b0〉, a0, 〈s1, b1〉, a1, . . . , ad−1, 〈s, b〉]

with the action probability defined as

Pr(ai|〈si, bi〉) =
{

1 if ai = argmaxa∈A UT (〈si, bi〉, a)
0 otherwise

where UT (〈si, bi〉, a) is the upper bound action value at an
internal node 〈si, bi〉 in the search tree T . The fringe node
with the maximum error contribution is expanded (Algo-
rithm 2) and the bounds UT and LT are updated (Algo-
rithm 3). Since AEMS-BRL is essentially AEMS, it inher-
its desirable properties of AEMS such as completeness and
ε-optimality of the search (Ross, Pineau, and Chaib-Draa
2007).

One of the main factors that affect the performance is the
initial upper and lower bounds used for newly expanded
nodes (Algorithm 2, line 4-5). We can use the follow-
ing three bounds as the initial bounds: [A] trivial bounds
in Eq. (1), [B] optimistic/pessimistic value iteration bounds

Algorithm 2 Expand(〈s, b〉)
Input: 〈s, b〉 : OR-Node to be expanded
Static: U : upper bound on V ∗, L : lower bound on V ∗

T : current AND-OR search tree
1: for a ∈ A do
2: for s′ ∈ S do
3: Create child node 〈s′, bs,s′a 〉
4: UT (s′, bs,s

′

a)← U0(s′, bs,s
′

a)
5: LT (s′, bs,s

′

a)← L0(s′, bs,s
′

a)
6: end for
7: UT (〈s, b〉, a)

←
∑
s′∈S Tb(s, a, s

′) [R(s, a, s′)+γUT (〈s′, bs,s′a)〉]
8: LT (〈s, b〉, a)

←
∑
s′∈S Tb(s, a, s

′) [R(s, a, s′)+γLT (〈s′, bs,s′a 〉)]
9: end for

10: UT (〈s, b〉)← min (UT (〈s, b〉),maxa UT (〈s, b〉, a))
11: LT (〈s, b〉)← max (LT (〈s, b〉),maxa LT (〈s, b〉, a))

Algorithm 3 UpdateAncestor(〈s′, b′〉)
Input: 〈s′, b′〉 : OR-Node chosen to update its bounds
Static: U : upper bound on V ∗, L : lower bound on V ∗

T : current AND-OR search tree
1: while 〈s′, b′〉 is not root of T do
2: Set 〈s, b〉 to be the parent of 〈s′, b′〉 and a to be the

corresponding action
3: UT (〈s, b〉, a)

←
∑
s′∈S Tb(s, a, s

′) [R(s, a, s′)+γUT (〈s′, bs,s′a)〉]
4: LT (〈s, b〉, a)

←
∑
s′∈S Tb(s, a, s

′) [R(s, a, s′)+γLT (〈s′, bs,s′a 〉)]
5: UT (〈s, b〉)← min (UT (〈s, b〉),maxa UT (〈s, b〉, a))
6: LT (〈s, b〉)← max (LT (〈s, b〉),maxa LT (〈s, b〉, a))
7: 〈s′, b′〉 ← 〈s, b〉
8: end while

in Eq. (2) and (3), and [C] our proposed bound in the pre-
vious section. Note that [A] and [B] are offline bounds that
need to be computed only once before the search, whereas
[C] is an online bound that, when used naively, requires
value iteration for every evaluation.

In Algorithm 4, we leverage the property mentioned in
the previous section, that the intermediate results from the
bound calculation can be reused. This is achieved by in-
troducing parameter ηmin that controls the degree of reuse.
Specifically, if the intermediate bound we are attempting to
reuse is computed for less than ηmin horizon (η−i < ηmin),
we recompute the upper bound for η horizon since the bound
is determined to be too loose. By reducing ηmin, we increase
the degree of reuse (i.e. reduce overall running time) by sac-
rificing the accuracy of the bound, and vice versa.

Analysis on Tighter Initial Bounds for Search
In this section, we provide a theoretical analysis on the
search efficiency achieved by our tighter bounds.

In (Bonet and Geffner 2012; Hansen and Zilberstein

Algorithm 4 Online Initial Bound Computation
Input: 〈s0, b0〉 : belief state
Static: η : value update horizon

ηmin : minimum horizon for reusing bounds
1: if the bound of the d-th ancestor 〈ŝ, b̂〉 was computed

& d ≤ η − ηmin then
2: return Uη−d

b̂,η
(s0) and Lη−d

b̂,η
(s0)

3: end if
4: Initialize U0

b,η and L0
b,η with offline bounds

5: for i = 1, ..., η do
6: for s ∈ S do
7: for a ∈ A do
8: for s′ ∈ S do
9: VU (s, a, s′) = R(s, a, s′) + γU i−1

b,η (s′)
10: VL(s, a, s′) = R(s, a, s′) + γLi−1

b,η (s′)
11: end for
12: σU = argmaxs′ VU (s, a, s′)
13: σL = argmins′ VL(s, a, s′)
14: U ib,η(s, a) =

∑
s′ T̃

i
b,σU

(s, a, s′)VU (s, a, s′)
15: Lib,η(s, a) =

∑
s′ T̃

i
b,σL

(s, a, s′)VL(s, a, s′)
16: end for
17: U ib,η(s) = maxa U ib,η(s, a)
18: Lib,η(s) = maxa Lib,η(s, a)
19: end for
20: end for
21: return Uηb,η(s0) and Lηb,η(s0) as the upper and lower

bound values

2001), it was shown that a d-horizon (PO)MDP planning
problem can be treated as a search for the optimal solution
graph (tree) from the complete (i.e. implicit) AND-OR tree
of depth d. A solution graph is a sub-graph of the complete
AND-OR tree with the following three properties: the root
OR-node belongs to the solution graph, every internal OR-
node in the solution graph has exactly one child, and every
fringe node in the solution graph is a terminal node in the
complete AND-OR tree. The solution graph corresponds to
a d-step policy, and the optimal solution graph corresponds
to the optimal policy with the maximum value.

The AO* algorithm searches for the optimal solution
graph by maintaining the best partial solution graph. The
search is guided by an admissible heuristic function h that
overestimates the optimal evaluation function f∗, choosing
the best successor of OR-node using h. We can note that
AEMS-BRL is an instance of AO* algorithm since it main-
tains the best partial solution graph using the upper bound on
the optimal value. Hence, the upper bound is the admissible
heuristic function being used for the search.

Although AO* is guaranteed to find the optimal solution
graph, the search performance depends on the quality of the
heuristic, which can be measured in terms of worst-case set
of nodes W (Chakrabarti, Ghose, and DeSarkar 1987). In
essence, it is the set of nodes that are expanded in the worst
case until the optimal solution graph is found, and thus it
directly relates to the worst-case running time.

Theorem 3. (Chakrabarti, Ghose, and DeSarkar 1987)
Given two admissible heuristic functions h1 and h2, such
that h1(n) ≥ h2(n) ≥ f∗(n) for all nodes n, the worst-
case set of nodes expanded by AO* algorithm using h2 is a
subset of those using h1.

We then immediately have the following result since the
algorithm in the previous section uses the upper bound of
the optimal value as the heuristic for choosing actions:
Theorem 4. Given two upper bounds U0

1 and U0
2 , such that

U0
1 (〈s, b〉) ≥ U0

2 (〈s, b〉) ≥ V ∗(〈s, b〉) for all beliefs 〈s, b〉,
the worst-case set of nodes expanded using U0

2 is a subset of
those using U0

1 .
We can further refine this classical analysis by noting that

when a lower bound is also used in search, we can detect the
discovery of the optimal solution graph earlier.
Definition 1. OptimalityCondition(〈U0, L0〉) is true when
UT (〈s, b〉, a) ≤ LT (〈s, b〉, a∗) for all a ∈ A\a∗ and nodes
〈s, b〉 in the partial solution graph, where T is the search
tree constructed using initial bounds 〈U0, L0〉, UT and LT
are the upper and lower bounds computed in T , a∗ is the
best upper bound action for 〈s, b〉.

It is easy to see that when OptimalityCondition is true,
we have obtained the optimal solution graph and thus we
can safely terminate the search. Using the definition, we can
refine the analysis on the worst-case set of nodes:
Theorem 5. Given two initial bounds 〈U0

1 , L
0
1〉 and

〈U0
2 , L

0
2〉 such that U0

1 (〈s, b〉) ≥ U0
2 (〈s, b〉) ≥ V ∗(〈s, b〉) ≥

L0
2(〈s, b〉) ≥ L0

1(〈s, b〉) for all beliefs 〈s, b〉, the worst-case
set of nodes expanded using U0

2 and stopping with Optimal-
ityCondition (〈U0

2 , L
0
2〉) is a subset of those using U0

1 and
stopping with OptimalityCondition (〈U0

1 , L
0
1〉)

Proof. Let Ŵ1 and Ŵ2 be the worst-case sets of nodes
expanded by search using the initial bounds 〈U0

1 , L
0
1〉 and

〈U0
2 , L

0
2〉 and stopping with the corresponding Optimality-

Condition.
Suppose that there exists a node 〈s, b〉 such that 〈s, b〉 ∈

Ŵ2 but 〈s, b〉 /∈ Ŵ1. Without loss of generality, let the node
〈s, b〉 be at the smallest depth so that its parent OR-node
〈sp, bp〉 belongs to both Ŵ2 and Ŵ1.

Since the search tree only containing the nodes Ŵ2\〈s, b〉
does not satisfy OptimalityCondition(〈U0

2 , L
0
2〉), we know

that U0
2 (〈sp, bp〉, a) > L0

2(〈sp, bp〉, a∗) for some a ∈ A\a∗.
From U0

1 (〈sp, bp〉) ≥ U0
2 (〈sp, bp〉) and L0

2(〈sp, bp〉) ≥
L0

1(〈sp, bp〉), we can conclude that U0
1 (〈sp, bp〉, a) >

L0
1(〈sp, bp〉, a∗). This is a contradiction since 〈sp, bp〉 be-

longs to Ŵ1.

Theorems 4 and 5 state that tighter upper and lower
bounds lead to a more efficient AO* search. In the next
section, we show empirical results on the search efficiency
achieved by our improved bounds.

Experiments
We first present our experimental results on four standard
BRL domains: Chain (Strens 2000) consists of a 5 state lin-
ear chain with 2 actions. The transitions are stochastic with

0 2 4 6 8 10

x 10
−3

1600

1800

2000

2200

2400

2600

2800

3000

0 5 10 15

x 10
−3

150

200

250

300

350

400

BAMCP
AEMS−BRL (Off:Eqn(1))
AEMS−BRL (Off:Eqn(2,3))
AEMS−BRL (Online)

0 0.005 0.01 0.015 0.02 0.025 0.03
10

20

30

40

50

60

70

0 0.05 0.1 0.15
0

5

10

15

20

25

30

Figure 1: Average undiscounted return vs. CPU time (sec/step) in Chain (top left), Double-loop (top right), Grid5 (bottom left),
Grid10 (bottom right). We compare three variants of AEMS-BRL with different bound initializations and BAMCP. The graphs
are obtained by changing the number of node expansions during search. The error bar represents the 95% confidence interval.

a slipping probability of 0.2. The agent needs to traverse to
the other end of the chain in order to obtain a higher reward.
Double-loop (Dearden, Friedman, and Russell 1998) con-
sists of two loops of length 5 with a shared starting state
(9 states total) and 2 actions. The transitions are determin-
istic, but the agent has to close the loop with a less obvious
path in order to obtain a higher reward. Grid5 (Guez, Silver,
and Dayan 2012) is a 2D grid of 25 states and 4 directional
movement actions. The agent starts from the lower left cor-
ner and goal state is at the upper right corner. The reward
is given upon reaching the goal state. Grid10 (Guez, Silver,
and Dayan 2012) is an enlarged version of Grid5 with 100
states.

Figure 1 compares AEMS-BRL with BAMCP (Guez, Sil-
ver, and Dayan 2012), a state-of-the-art MCTS algorithm.
We experimented with 3 different bound initializations: [A]
trivial offline bound in Eq. (1), [B] optimistic/pessimistic
value iteration offline bound in Eq. (2) & Eq. (3), and [C]
our online bound. The average undiscounted return was col-
lected from 500 runs of 1000 time steps, except for Grid10
in which we used 100 runs of 2000 time steps. In all ex-
periments, we set γ = 0.95 for the search and used simple
Dirichlet-Multinomial model with symmetric Dirichlet pa-
rameter α0 = 1/|S| except for Double-loop in which we
used parameter α0 = 1. For the online bound initialization,
we set η = 40 and ηmin = 30 in all experiments. We can
observe that our online bound initialization significantly im-
proves the performance of real-time heuristic search with the
computational overhead being already taken into account.

In Figure 2, we show the effect of ηmin on the actual

Algorithm Return
BAMCP 347 ± 9.6

AEMS-BRL(Off:Eqn(1)) 95 ± 1.9
AEMS-BRL(Off:Eqn(2,3)) 110 ± 1.3

AEMS-BRL(Online) 1031 ± 7.9

Table 1: Results on Maze (0.25 sec/step)

undiscounted return and the computation time. Remind that
ηmin is the parameter that controls the frequency of recom-
puting the bounds. More frequent recomputation by increas-
ing ηmin generally led to higher undiscounted returns at the
cost of more computation time.

In Figure 3, we compare the trends of the upper and lower
bounds of the starting state at each time steps. The gap be-
tween the bounds shrinks much faster for the online bound
compared to other offline bounds. It is also interesting to
note that the online upper bound tends to grow larger for
Double-loop. This situation arises particularly when the up-
per bound is very tight — as the agent gathers more obser-
vations from the environment, the belief moves towards a
corner of the simplex, hence the Bayes-optimal value will
actually increase for the same environment state.

In Table 1, we show the average returns (20 runs of
20000 time steps) of the algorithms on Maze (Dearden,
Friedman, and Russell 1998), consisting of 264 states and
4 actions where the agent has to navigate in a grid en-
vironment to capture 3 flags and reach the goal loca-
tion. We used simple Dirichlet-Multinomial model with
symmetric Dirichlet parameter α0 = 1/|S|. Our online
bound initialization achieved an average return of 1031±7.9

0 10 20 30
1600

1800

2000

2200

2400

2600

2800

3000

re
tu

rn

0 10 20 30
0

0.002

0.004

0.006

0.008

0.01

0.012

tim
e

0 10 20 30
150

200

250

300

350

400

re
tu

rn

0 10 20 30
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

tim
e

0 10 20 30
10

20

30

40

50

60

70

re
tu

rn

0 10 20 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

tim
e

0 10 20 30
0

5

10

15

20

25

30

re
tu

rn
0 10 20 30

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

tim
e

Figure 2: Average undiscounted return (left axis, black solid line) and CPU time (sec/step) (right axis, red dotted line) vs. ηmin
in Chain (top left), Double-loop (top right), Grid5 (bottom left), and Grid10 (bottom right). The results are obtained by varying
the parameter ηmin = {0, 10, 20, 30}. All other settings are the same as in Figure 1 (i.e., the returns for ηmin = 30 in the figure
are equal to those of AEMS-BRL with online bounds for the longest computation time. The error bars are the 95% confidence
intervals.

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

160

180

Off:Eqn(1)
Off:Eqn(2,3)
Online

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

0 200 400 600 800 1000
0

5

10

15

20

0 500 1000 1500 2000
0

5

10

15

20

Figure 3: Upper and lower bounds of the start state vs. time steps in Chain (top left), Double-loop (top right), Grid5 (bottom
left), and Grid10 (bottom right). The samples for computing the average at each time step were collected by keeping track of
whether the start state is actually visited in each run.

even without a sparse prior. By comparison, BAMCP with
sparse Dirichlet-Multinomial prior was reported to achieve
965.2±73 in (Guez, Silver, and Dayan 2012).

Conclusion and Future Work
In this paper, we presented a novel approach to computing
the bounds of the value function for model-based BRL. Pre-
viously proposed bounds were restricted to the finite horizon
value function, degenerating to very loose and naive bounds
for the infinite horizon. In contrast, our bounds are for the in-
finite horizon value function, and provably tighter than naive
bounds.

We demonstrated how our new bounds can be used in a
real-time AO* algorithm for model-based BRL. Our pro-
posed method achieved a significant performance improve-
ment over a state-of-the-art Monte-Carlo tree search algo-
rithm. We also provided a theoretical analysis on an im-
proved bound for AO* search, extending the classical analy-
sis that only involves the upper bound. Our theoretical result
can be applied to AO* search for other problems, such as
search-based planning with MDPs and POMDPs.

In regards to future work, applying our bound initializa-
tion method to other approaches to model-based BRL is a
promising direction. Moreover, although we primarily fo-
cused on learning with discrete state MDPs, extending the
work to larger domains such as factored (Boutilier, Dear-
den, and Goldszmidt 1995) or continuous state spaces shall
be investigated for the challenge in scalability.

Acknowledgments
This work was partly supported by the ICT R&D pro-
gram of MSIP/IITP [14-824-09-014, Basic Software Re-
search in Human-level Lifelong Machine Learning (Ma-
chine Learning Center)], National Research Foundation of
Korea (Grant# 2012-007881), and Defense Acquisition Pro-
gram Administration and Agency for Defense Development
under the contract UD140022PD, Korea

References
Araya-López, M.; Thomas, V.; and Buffet, O. 2012. Near-
optimal BRL using optimistic local transition. In Pro-
ceedings of the 29th International Conference on Machine
Learning, 97–104.
Asmuth, J., and Littman, M. 2011. Learning is planning:
Near Bayes-optimal reinforcement learning via Monte-
Carlo tree search. In Proceedings of the 27th Conference
on Uncertainty in Artificial Intelligence, 19–26.
Asmuth, J.; Li, L.; Littman, M. L.; Nouri, A.; and Wingate,
D. 2009. A Bayesian sampling approach to exploration in
reinforcement learning. In Proceedings of the 25th Confer-
ence on Uncertainty in Artificial Intelligence, 19–26.
Bonet, B., and Geffner, H. 2012. Action selection for MDPs:
Anytime AO* versus UCT. In Proceedings of Association
for the Advancement of Artificial Intelligence, 1749–1755.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995. Ex-
ploiting structure in policy construction. In Proceedings

of International Joint Conferences on Artificial Intelligence,
1104–1111.
Castro, P. S., and Precup, D. 2010. Smarter sampling in
model-based Bayesian reinforcement learning. In Machine
Learning and Knowldege Discovery in Database. Springer.
200–214.
Chakrabarti, P. P.; Ghose, S.; and DeSarkar, S. C. 1987. Ad-
missibility of AO* when heuristics overestimate. Artificial
Intelligence 34:97–113.
Dearden, R.; Friedman, N.; and Russell, S. 1998. Bayesian
Q-learnging. In Proceedings of Association for the Advance-
ment of Artificial Intelligence, 761–768.
Duff, M. O. 2002. Optimal Learning: Computational Proce-
dures for Bayes-Adaptive Markov Decision Processes. Ph.D.
Dissertation, University of Massachusetts Amherst.
Fonteneau, R.; Busoniu, L.; and Munos, R. 2013. Opti-
mistic planning for belief-augmented Markov decision pro-
cesses. In IEEE Symposium on Approximate Dynamic Pro-
gramming and Reinforcement Learning, 77–84.
Givan, R.; Leach, S.; and Dean, T. 2000. Bounded-
parameter Markov decision processes. Artificial Intelligence
122:71–109.
Guez, A.; Silver, D.; and Dayan, P. 2012. Efficient Bayes-
adaptive reinforcement learning using sample-based search.
In Advances in Neural Information Processing Systems,
1034–1042.
Hansen, E. A., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129:35–62.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
Monte-Carlo planning. In Machine Learning: ECML 2006.
Springer. 282–293.
Kolter, J. Z., and Ng, A. Y. 2009. Near-Bayesian exploration
in polynomial time. In Proceedings of the 26th International
Conference on Machine Learning, 513–520.
Nilsson, N. J. 1982. Principles of Artificial Intelligence.
Symbolic Computation / Aritificial Intelligence. Springer.
Poupart, P.; Vlassis, N.; Hoey, J.; and Regan, K. 2006. An
analytic solution to discrete Bayesian reinforcement learn-
ing. In Proceedings of the 23rd International Conference on
Machine Learning, 697–704.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-draa, B. 2008.
Online planning algorithms for POMDPs. Journal of Artifi-
cial Intelligence Research 32:663–704.
Ross, S.; Pineau, J.; and Chaib-Draa, B. 2007. Theoretical
analysis of heuristic search methods for online POMDPs. In
Advances in Neural Information Processing Systems, 1216–
1225.
Strens, M. 2000. A Bayesian framework for reinforcement
learning. In Proceedings of the 17th International Confer-
ence on Machine Learning, 943–950.
Walsh, T. J.; Goschin, S.; and Littman, M. L. 2010. Integrat-
ing sample-based planning and model-based reinforcement
learning. In Proceedings of Association for the Advancement
of Artificial Intelligence, 612–617.

