
Reward Shaping for Model-Based Bayesian Reinforcement Learning

Hyeoneun Kim, Woosang Lim, Kanghoon Lee, Yung-Kyun Noh and Kee-Eung Kim
Department of Computer Science

Korea Advanced Institute of Science and Technology
Daejeon 305-701, Korea

hekim@ai.kaist.ac.kr, quasar17@kaist.ac.kr, khlee@ai.kaist.ac.kr,
nohyung@kaist.ac.kr and kekim@cs.kaist.ac.kr

Abstract

Bayesian reinforcement learning (BRL) provides a for-
mal framework for optimal exploration-exploitation
tradeoff in reinforcement learning. Unfortunately, it is
generally intractable to find the Bayes-optimal behav-
ior except for restricted cases. As a consequence, many
BRL algorithms, model-based approaches in particular,
rely on approximated models or real-time search meth-
ods. In this paper, we present potential-based shaping
for improving the learning performance in model-based
BRL. We propose a number of potential functions that
are particularly well suited for BRL, and are domain-
independent in the sense that they do not require any
prior knowledge about the actual environment. By in-
corporating the potential function into real-time heuris-
tic search, we show that we can significantly improve
the learning performance in standard benchmark do-
mains.

Introduction
A reinforcement learning (RL) agent interacts with an un-
known environment to maximize the total reward. One
of the unique challenges for the agent is the well-known
exploration-exploitation tradeoff: without complete knowl-
edge about the environment, the agent has to explore un-
tried actions that may lead to better long-term rewards, but
at the same time, it also needs to execute actions that are
known to yield the largest rewards given the current knowl-
edge about the environment. Bayesian reinforcement learn-
ing (BRL) provides a principled mathematical framework
for computing Bayes-optimal actions that achieve an ideal
balance between exploration and exploitation.

Although the Bayes-optimal action has a succinct for-
mulation in model-based BRL, where the agent attempts
to build an explicit model of the environment for learning,
it is computationally intractable except for restricted cases.
As a consequence, most model-based BRL algorithms rely
on constructing approximated models that are tractable to
solve, or real-time heuristic search methods that build search
trees on-the-fly.

The main focus of this paper is on shaping rewards for
improving the learning performance of BRL algorithms. In

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

shaping, we can transform rewards by a shaping function in
order to mitigate the sparsity and delay in rewards. A pop-
ular approach to shaping is potential-based shaping, where
the domain knowledge is leveraged to encode the desirabil-
ity of states into the potential function while the optimal pol-
icy remains unchanged. We address two main challenges in
using shaping for model-based BRL. First, instead of using a
static or fixed shaping function defined from a-priori domain
knowledge, can we make the shaping function adapt to ex-
periences (i.e. observed transitions)? Second, when shaping
is used with heuristic search, can we preserve the soundness
and completeness of the search heuristic?

We present a set of domain-independent shaping func-
tions that (1) does not use a-priori knowledge of the true
underlying environment, (2) adapts to experiences, and (3)
preserves the soundness and completeness of the heuris-
tic used for real-time search. We experimentally show that
these shaping functions significantly improve learning per-
formance in standard benchmark domains.

Background
BAMDP: A model-based BRL framework
We start with the model of the underlying environment,
which is assumed to be a discrete-state Markov decision pro-
cess (MDP) defined as a 5-tupleM = 〈S,A, T,R, γ〉, where
S is the set of environment states, A is the set of agent ac-
tions, T (s, a, s′) is the transition probability Pr(s′|s, a) of
making transition to state s′ from state s by executing ac-
tion a,R(s, a, s′) ∈ [Rmin, Rmax] is the nonnegative reward
(i.e., Rmin ≥ 0) earned from the transition 〈s, a, s′〉, and
γ ∈ [0, 1) is the discount factor. The agent that interacts
with the environment executes actions by following a policy
π : S → A, which prescribes the action to be executed in
each state.

The performance criterion for π we use in this paper is the
expected discounted return V π for state st at timestep t,

V π(st) = E[
∑∞
τ=t γ

τR(sτ , π(sτ), sτ+1)],

defined as the state value function. The Bellman optimality
equation states that the state value function for the optimal
policy π∗ satisfies

V ∗(s) = maxa
∑
s′ T (s, a, s′)[R(s, a, s′) + γV ∗(s′)] (1)

which can be computed by classical dynamic programming
algorithms such as value iteration or policy iteration when
the MDP modelM is completely known. The optimal policy
can also be recovered from the optimal action value function

Q∗(s, a) =
∑
s′ T (s, a, s′)[R(s, a, s′) + γV ∗(s′)] (2)

since π∗(s) = argmaxaQ∗(s, a). On the other hand, when
the model M is not known, computing an optimal policy
becomes an RL problem.

The uncertainty in the model can be represented using
a probability distribution b, also known as the belief over
the models. Throughout the paper, we shall assume that the
reward function is known to the agent, while the transi-
tion probability is unknown. Since the transition for each
state-action pair is essentially a multinomial distribution, a
straightforward way to represent the belief b is to define
the parameter θs,s

′

a for each unknown transition probabil-
ity T (s, a, s′) and use the product of independent Dirich-
let distributions as the conjugate prior. When the transition
〈s, a, s′〉 is observed, the belief b is updated by the Bayes
rule

bs,s
′

a (θ) ∝ θs,s
′

a b(θ)

= θs,s
′

a

∏
ŝ,â Dir(θŝâ(·);nŝâ(·))

=
∏
ŝ,â Dir(θŝâ(·);nŝâ(·) + δŝ,â,ŝ′(s, a, s

′)),

which is equivalent to incrementing the single parameter
that corresponds to the observed transition, i.e., nsa(s′) ←
nsa(s′) + 1.

Bayes-Adaptive MDP (BAMDP) provides a succinct
planning formulation of the Bayes-optimal action under un-
certainty in the model (Duff 2002). By augmenting the state
with the belief b, the Bayes-optimal policy of the BAMDP
should satisfy the optimality equation

V ∗(s, b) = max
a

∑
s′
Tb(s, a, s′)(R(s, a, s′) + γV ∗(s′, bs,s

′

a)),

where Tb(s, a, s′)=E[Pr(s′|s, a, b)]= nsa(s′)/
∑
s′′n

s
a(s′′).

Unfortunately, computing an optimal policy of the BAMDP
is known to be computationally intractable in general cases.

One of the popular approaches to mitigate the intractabil-
ity result is the real-time search, such as Bayes-Adaptive
Monte-Carlo Planning (BAMCP) (Guez, Silver, and Dayan
2012), Bayesian Optimistic Planning (BOP) (Fonteneau,
Busoniu, and Munos 2013), and Bayesian Forward Search
Sparse Sampling (BFS3) (Asmuth and Littman 2011). These
approaches leverage the computation time allowed between
consecutive action executions to construct a lookahead
search tree to find the best action.

On the other hand, there are other approaches that do
not involve lookahead search. They often use an approx-
imation of BAMDP that is tractable to solve, while guar-
anteeing sufficient approximation to the Bayes-optimal pol-
icy with high probability. PAC-BAMDP algorithms such as
Best of Sampled Set (BOSS) (Asmuth et al. 2009), Smart
BOSS (Castro and Precup 2010), Bayesian Exploration
Bonus (BEB) (Kolter and Ng 2009), and Bayesian Opti-
mistic Local Transitions (BOLT) (Araya-López, Thomas,
and Buffet 2012) belong to these approaches.

Finally, we should remark that BAMDP is essentially a
hybrid-state Partially Observable MDP (POMDP) where the
(hidden) state is the pair 〈s, θ〉, the observation is the envi-
ronment state, while the action and the reward remain the
same as in the environment MDP (Poupart et al. 2006).
In this formulation, the transition probability is defined as
T (〈s, θ〉, a, 〈s′, θ′〉) = θs,s

′

a δθ(θ′) and the observation prob-
ability is defined as Z(〈s′, θ′〉, a, o) = Pr(o|s′, a) = δs′(o).
In fact, real-time search algorithms in the above can be
viewed as extensions of POMDP planning algorithms to the
hybrid-state POMDP.

Real-Time Heuristic Search
Anytime Error Minimizing Search (AEMS2) (Ross et al.
2008) is one of the successful online POMDP solvers. The
algorithm performs the best-first search using the heuristic
based on the error bound of the value function for a given
amount of time. Upon timeout, the algorithm selects and ex-
ecutes the best action at the root node of the search tree. The
search process is essentially a real-time version of the AO*
search algorithm (Nilsson 1982). Specifically, the search tree
is represented as an AND-OR tree, in which AND-nodes
correspond to belief transitions and OR-nodes correspond
to action selections. AEMS2 maintains the upper and lower
bounds on the optimal value at each node and use them
for the search heuristic. In each iteration, a fringe node of
the tree is chosen by navigating down the search tree us-
ing the following heuristic: the action with the maximum
upper bound value at the OR-node and the belief with the
maximum error contribution to the root node at the AND-
node. One of the strengths of AEMS2 is its completeness
and ε-optimality of the search (Ross, Pineau, and Chaib-draa
2007): the gap between the upper and lower bounds asymp-
totically converges to 0 as the size of the search tree grows
larger.

Given that BRL can be seen as a BAMDP (i.e. a hybrid-
state POMDP) planning problem, AEMS2 can be readily ex-
tended to BRL. In fact, various online search-based POMDP
solvers (Ross et al. 2008) can be readily extended to BRL.
As an example, it is interesting to note that BOP (Fonteneau,
Busoniu, and Munos 2013) is coincidentally a special case
of real-time AO* on the hybrid-state POMDP with naive ini-
tial bounds, i.e. constant upper and lower bounds Rmax

1−γ and
Rmin
1−γ .

Potential-based Shaping
One of the most challenging aspects in RL is the sparsity
and delay in reward signals. Suppose that the agent has to
navigate in a large environment to reach the goal location.
If the reward is zero everywhere except at the goal, the ini-
tial exploration of the agent would be nothing better than a
random walk with a very small chance of reaching the goal.
On the other hand, if we change the reward function so that
we give a small positive reward whenever the agent makes
a progress towards the goal, the initial exploration can be
made very efficient.

Potential-based shaping (Ng, Harada, and Russell 1999)
introduces additive bonus (or penalty) to rewards to make

the learning potentially more efficient, while guaranteeing
invariance in the optimal behavior. This is achieved by defin-
ing a potential function on states Φ(s) and transforming re-
wards to

RΦ(s, a, s′) = R(s, a, s′) + FΦ(s, s′),

where FΦ(s, s′) = γΦ(s′) − Φ(s) is the shaping function.
If the rewards are set to RΦ instead of R, the optimal value
functions satisfy

V ∗Φ(s) = V ∗(s)− Φ(s)
Q∗Φ(s, a) = Q∗(s, a)− Φ(s)

(3)

which can be shown using Eq. (1) and Eq. (2). The second
equation above gives invariance in the optimal policy.

In the ideal case where we set Φ(s) = V ∗(s), the agent
that myopically acts solely based on the immediate shaped
reward follows an optimal policy, since

argmaxa
∑
s′ T (s, a, s′)RΦ(s, a, s′)

= argmaxa
∑
s′ T (s, a, s′)[R(s, a, s′) + γV ∗(s′)− V ∗(s)]

= argmaxa
∑
s′ T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

= argmaxaQ∗(s, a) = π∗(s).

In a recent work by (Eck et al. 2013), shaping was shown to
produce more efficient solutions for POMDP planning us-
ing potential functions that encode domain-specific knowl-
edge. It was also used with classical RL algorithms such as
SARSA and RMAX, showing promising results (Asmuth,
Littman, and Zinkov 2008; Grześ and Kudenko 2010).

Heuristic Search with Shaping for BRL
Shaping for BAMDP
Although AEMS2 and other online POMDP solvers natu-
rally extend to BAMDP, one of the main factors that crit-
ically impact the performance is the sparsity and delay in
rewards. Combined with the uncertainty in the transition
model, we end up with a very loose initial bound of the value
function. Ideally, we would like to have a fast yet tight bound
of the Bayes-optimal value function, but they are hard to ob-
tain, just as in POMDPs. We address this issue by shaping
rewards to focus the search effort on more promising out-
comes using inferred knowledge about the true underlying
environment.

We can naturally extend shaping in MDPs to BAMDPs by
noticing that BAMDPs are essentially MDPs with beliefs as
states. Specifically, define a nonnegative potential function
for reward shaping to be of the form Φ : S ×B → [0,+∞)
where S is the set of environment states and B is the set of
all possible beliefs. Hence, rewards are shaped by

RΦ(〈s, b〉,a, 〈s′, bs,s
′

a 〉)

= R(〈s, b〉, a, 〈s′, bs,s
′

a 〉) + FΦ(〈s, b〉, 〈s′, bs,s
′

a 〉)

= R(s, a, s′) + FΦ(〈s, b〉, 〈s′, bs,s
′

a 〉),

where FΦ(〈s, b〉, 〈s′, bs,s′a 〉) = γΦ(s′, bs,s
′

a) − Φ(s, b), and
we shall use RΦ as the reward function.

The resulting real-time heuristic search algorithm mostly
follows the structure of an online POMDP solver. For the

Algorithm 1 The real-time heuristic search BRL algorithm
Input: 〈s0, b0〉 : initial state s0 and model prior b0
Static: 〈s, b〉 : the current state of the agent

T : the current AND-OR search tree

1: 〈s, b〉 ← 〈s0, b0〉
2: Initialize T to single root node 〈s, b〉
3: while not ExecutionTerminated() do
4: while not SearchTimedOut() do
5: 〈s∗, b∗〉 ← ChooseNextNodeToExpand()
6: Expand(〈s∗, b∗〉)
7: UpdateAncestor(〈s∗, b∗〉)
8: end while
9: Execute best action a∗ for 〈s, b〉

10: Observe new state s′
11: Update tree T so that 〈s′, bs,s

′

a∗ 〉 is the new root
12: end while

sake of comprehensiveness, we provide the pseudo-code of
AEMS2 extended to BAMDPs. Algorithm 1 is the main loop
that controls the search in each timestep. In each iteration of
the search, one of the fringe nodes is chosen and expanded
in the best-first manner. The objective of the expansion is to
close the gap in the bounds, and hence we select the fringe
node that is likely to maximally reduce the gap at the root
node if expanded.

Specifically, we consider fringe nodes that are reachable
by actions with the maximum upper bound value at each
intermediate node

Pr(a|〈s, b〉) =
{

1 if a = argmaxa′∈A UT (〈s, b〉, a′)
0 otherwise

and compute the probability of reaching a fringe node
〈sd, bd〉 at depth d by taking the path h from the root
node 〈s0, b0〉 to the fringe node, i.e. h(〈sd, bd〉) =
〈s0, b0〉, a0, 〈s1, b1〉, a1, . . . , ad−1, 〈sd, bd〉,

Pr(h(〈sd, bd〉)) =
d−1∏
i=0

Pr(si+1|〈si, bi〉, ai) Pr(ai|〈si, bi〉)

=
d−1∏
i=0

Tbi
(si, ai, si+1) Pr(ai|〈si, bi〉).

Using the probability of path h, we compute the error con-
tribution of each fringe node 〈sd, bd〉 on the root node

e(〈sd, bd〉) = γd Pr(h(〈sd, bd〉))[UT (sd, bd)− LT (sd, bd)]

and choose the fringe node with the maximum error con-
tribution. The best fringe node can be identified efficiently
without exhaustive enumeration in each iteration.

We then expand the chosen fringe node and update its
lower and upper bounds using Algorithm 2. These updated
bounds are then propagated up to the root node using Algo-
rithm 3. Note that we use shaped reward RΦ throughout the
algorithm, instead of the actual reward R.

We remark that the bound initialization is a subtle but a
crucial step for search. Given the initial upper and lower

Algorithm 2 Expand(〈s, b〉)
Input: 〈s, b〉 : an OR-Node chosen to expand
Static: U : an upper bound on V ∗

L : a lower bound on V ∗
T : the current AND-OR search tree

1: for a ∈ A do
2: for s′ ∈ S do
3: Create child node 〈s′, bs,s′a 〉
4: UT (s′, bs,s

′

a)← U0
Φ(s′, bs,s

′

a)
5: LT (s′, bs,s

′

a)← L0
Φ(s′, bs,s

′

a)
6: end for
7: UT (〈s, b〉, a)←

∑
s′∈S Tb(s, a, s

′)
[RΦ(〈s, b〉, a, 〈s′, bs,s′a 〉) + γUT (s′, bs,s

′

a)]
8: LT (〈s, b〉, a)←

∑
s′∈S Tb(s, a, s

′)
[RΦ(〈s, b〉, a, 〈s′, bs,s′a 〉) + γLT (s′, bs,s

′

a)]
9: end for

10: UT (s, b)← min (UT (s, b),maxa UT (〈s, b〉, a))
11: LT (s, b)← max (LT (s, b),maxa LT (〈s, b〉, a))

Algorithm 3 UpdateAncestor(〈s′, b′〉)
Input: 〈s′, b′〉 : an OR-Node chosen to update its ancestors
Static: U : an upper bound

L : a lower bound
T : the current AND-OR search tree

1: while 〈s′, b′〉 is not root of T do
2: Set 〈s, b〉 to be the parent of 〈s′, b′〉 and a to be the

corresponding action
3: UT (〈s, b〉, a)←

∑
s′∈S Tb(s, a, s

′)
[RΦ(〈s, b〉, a, 〈s′, bs,s′a 〉) + γUT (s′, bs,s

′

a)]
4: LT (〈s, b〉, a)←

∑
s′∈S Tb(s, a, s

′)
[RΦ(〈s, b〉, a, 〈s′, bs,s′a 〉) + γLT (s′, bs,s

′

a)]
5: UT (s, b)← min (UT (s, b),maxa UT (〈s, b〉, a))
6: LT (s, b)← max (LT (s, b),maxa LT (〈s, b〉, a))
7: 〈s′, b′〉 ← 〈s, b〉
8: end while

bounds U0(s, b) and L0(s, b) using the original reward func-
tion, it may seem natural to use initial bounds U0

Φ(s, b) =
U0(s, b)−Φ(s, b) and L0

Φ(s, b) = L0(s, b)−Φ(s, b), based
on the relationship in Eq. (3). However, we can show that
this is not a good idea:

Theorem 1. If the bounds using the shaped reward are
initialized U0

Φ(s, b) = U0(s, b) − Φ(s, b) and L0
Φ(s, b) =

L0(s, b)−Φ(s, b), the algorithm will expand the same fringe
node as using the original reward.

Proof. Given the path h from the root node to the fringe
node 〈s, b〉 at depth d, the error contribution of the fringe
node under the shaped rewards is

eΦ(〈s, b〉) = γd Pr(h(〈s, b〉))[U0
Φ(s, b)− L0

Φ(s, b)]

= γd Pr(h(〈s, b〉))[U0(s, b)− L0(s, b)],

since Φ(s, b) cancels out. In addition, the upper bound value
at its parent node 〈s′′, b′′〉 under the shaped rewards is up-
dated by

UT (〈s′′, b′′〉, a) =
∑
s′ Tb′′(s

′′, a, s′)UΦ(s′′, b′′, a, s′),

where

UΦ(s′′, b′′, a, s′)

= [RΦ(〈s′′, b′′〉, a, 〈s′, (b′′)s
′′,s′

a 〉) + γUT (s′, (b′′)s
′′,s′

a)]

= [R(s′′, a, s′) + γU0(s′, (b′′)s
′′,s′

a)− Φ(s′′, b′′)],

which makes the maximum upper bound action
argmaxa UT (〈s′′, b′′〉, a) at the parent node unchanged
compared to the one using the original rewards, since
Φ(s′′, b′′) is invariant over actions. By induction, the
maximum upper bound actions at all intermediate nodes
on the path h do not change, which makes Pr(h(〈s, b〉))
unchanged. Thus, we have eΦ(〈s, b〉) = e(〈s, b〉), which
implies that the algorithm will expand the same fringe node
as with the original rewards.

This theorem states that translating both bounds by −Φ
essentially nullifies the effect of shaping, making the algo-
rithm build the exact same search tree as with the original
reward. In our implementation, we used

U0
Φ(s, b) = U0(s, b)− Φmin

L0
Φ(s, b) = L0(s, b)− Φ(s, b),

where Φmin = mins,b Φ(s, b). This is to make the reward
shaping affect the construction of search tree (since the
AEMS2 heuristic chooses the action with the maximum up-
per bound value), while not affecting the final choice of the
action for execution (since the algorithm chooses the action
with the maximum lower bound value). We can show the
latter by the following corollary:

Corollary 1. Given a search tree T , the best lower bound
action computed from T using the shaped rewards is identi-
cal to the one using the original rewards.

Proof. In the proof of Theorem 1, simply replace the upper
bound U by the lower bound L.

As a final remark, since we have not modified the search
heuristic, the completeness and ε-optimality guarantee of the
search in (Ross, Pineau, and Chaib-draa 2007) is preserved.

Potential Functions
It would seem that we need to define potential function a-
priori. However, due to the nature of real-time search al-
gorithms, the number of belief states at which the poten-
tial function is evaluated is bounded by the number of nodes
expanded in the search tree. Hence, we can perform evalu-
ations on-the-fly, even incorporating experiences observed
from the environment. One thing that we should keep in
mind is that if we decide to use some value for the poten-
tial function at 〈s, b〉, we should use the same value when
the search later creates a node with the same 〈s, b〉. This is
to have a consistent specification of the potential function.

Value Functions of MDP Samples An ideal potential
function would be the optimal value function of the actual
underlying environment model. However, since this is not
available, we could use a set of models sampled from the
current belief. In fact, a number of BRL algorithms took
the sampling approach albeit for different purposes: MC-
BRL (Wang et al. 2012) and BA-POMDP (Ross, Chaib-draa,
and Pineau 2007) used the set of sampled models for approx-
imate belief tracking (i.e. particle filtering), and BOSS (As-
muth et al. 2009) used the samples for computing a proba-
bilistic upper bound of the Bayes-optimal value.

In our approach, we periodically sample a set ofK MDPs
(i.e. transition probabilities) {θ̂1, θ̂2, . . . , θ̂K} from the cur-
rent belief b and solve each MDP to obtain optimal value
functions {V ∗

θ̂1
, V ∗
θ̂2
, . . . , V ∗

θ̂K
}. The potential function is de-

fined as

ΦKMDP(s, b) =
K∑
k=1

wk(b)V ∗
θ̂k

(s),

where the weight wk is set to the posterior probability
Pr(k|b) of the k-th MDP. The weights are initially set to
1/K and updated by the Bayes rule upon transition 〈s, a, s′〉

wk ← η · wk · θ̂s,a,s
′

k ∀k,
where η is the normalization constant. The MDP resampling
period controls the tradeoff between reducing the overall
running time and obtaining a more accurate value function
estimate. In addition, since solving MDPs can take a consid-
erable amount of time, we perform resampling only at the
root node and reuse them in node expansions, as in sample-
based tree search algorithms (Silver and Veness 2010).

Note that the MDP resampling and the weight update lead
to the change in the potential function. In order to make the
optimal policy invariant, we need the potential function to be
consistent by making the same 〈s, b〉 yield the same potential
value. This is achieved by a hashtable so that the updated po-
tential function is only evaluated for novel state-belief pairs
that are encountered during search.

Value Function of Optimistic MDP Inspired by PAC-
BAMDP algorithms, we can periodically build an optimistic
MDP approximation of the BAMDP based on the current
belief, and use its optimal value function as the potential
function. As an example, we can use the optimistic MDP
constructed in BEB (Kolter and Ng 2009), of which the op-
timal value function is defined by

V ∗BEB(s, b) = max
a

∑
s′

Tb(s, a, s′)·[
R(s, a, s′) + β

1+nb(s,a) + γV ∗BEB(s′, b)
]
,

where β ≥ 0 is the exploration bonus parameter, and
nb(s, a) is the number of visits to the state-action pair 〈s, a〉
in the current belief b. The value function V ∗BEB can be effi-
ciently computed by the standard value iteration. We denote
this potential function as ΦBEB. Our method can be seen as
the multi-step lookahead search extension to BEB.

As in ΦKMDP, we recompute ΦBEB only at the root node at
regular intervals, not necessarily at every timestep. We also

Figure 1: (a) CHAIN (left) and (b) DOUBLE-LOOP (right)

Figure 2: (a) GRID5 (left) and (b) MAZE (right)

use a hashtable so that the updated potential function is only
evaluated for novel state-belief pairs.

Experiments
We conducted experiments on the following five benchmark
BRL domains:

• CHAIN (Strens 2000) consists of a linear chain of 5 states
and 2 actions {a, b}, as shown in Figure 1 (a). The re-
wards are shown as edge labels for each transition. The
transitions are stochastic: the agent “slips” and perform
the other action with probability 0.2.

• DOUBLE-LOOP (Dearden, Friedman, and Russell 1998)
consists of 9 states and 2 actions, as shown in Figure 1
(b). The transitions are deterministic. optimal behavior is
to complete the traversal of the left loop with a reward of
2 by executing action b all the time, while the right loop
is easier to complete yielding a reward of 1.

• GRID5 (Guez, Silver, and Dayan 2012) consists of 5× 5
states with no reward anywhere except at the goal location
(G) which is at the opposite to the reset location (R) (Fig-
ure 2 (a)). Once the agent reaches G, it is sent back to R
with a reward of 1. There are 4 actions for moving in each
cardinal direction, of which the transitions are stochastic:
the agent moves in random directions with probability 0.2.

• GRID10 (Guez, Silver, and Dayan 2012) is a larger ver-
sion of GRID5 with 10× 10 states.

• MAZE (Dearden, Friedman, and Russell 1998) consists
of 264 states and 4 actions, where the agent has to collect
flags at certain locations (F) and arrive at the goal location
(G), as shown in Figure 2 (b). Once the agent reaches G, it
is sent back to the reset location (R) with the reward equal
to the number of flags (F) collected. The stochasticity in
transition is same as GRID5.

In Table 1, we compare the total undiscounted rewards
gathered from the following 5 algorithms: BAMCP1 (Guez,

1https://github.com/acguez/bamcp

0 5 10 15 20 25 30 35 40 45 50

30

40

50

60

70

GRID5 - FDM

Time (s)

T
ot
al

re
w
ar
d
s

Φ
BEB

Φ
KMDP

NS

BOP

BAMCP

0 40 80 120 160 200
0

5

10

15

20

25

30
GRID10 - FDM

Time (s)

T
ot
al

re
w
ar
d
s

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000
MAZE - FDM

Time (s)

T
ot
al

re
w
ar
d
s

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

GRID5 - SFDM

Time (s)

T
ot
al

re
w
ar
d
s

0 20 40 60 80 100 120
0

10

20

30

40
GRID10 - SFDM

Time (s)

T
ot
al

re
w
ar
d
s

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

MAZE - SFDM

Time (s)

T
o
ta
l
re
w
a
rd
s

Figure 3: Total rewards vs. search CPU times in larger domains (GRID5, GRID10, and MAZE)

Methods CHAIN DOUBLE-LOOP GRID5 GRID10 MAZE
ΦBEB

FDM

2556.16 (±75.66) 299.59 (±8.52) 71.88 (±0.96) 28.19 (±0.51) 936.80 (±1.53)
ΦKMDP 2583.86 (±73.62) 305.27 (±8.34) 71.29 (±0.97) 24.47 (±0.59) 786.48 (±2.54)

NS 2515.71 (±75.40) 297.47 (±8.58) 69.78 (±1.02) 21.40 (±0.50) 772.24 (±2.61)
BOP 2540.52 (±76.56) 286.47 (±8.54) 54.72 (±0.82) 9.04 (±0.28) 139.46 (±0.87)

BAMCP 1849.72 (±25.10) 387.17 (±1.17) 48.65 (±0.50) 5.14 (±0.41) 133.59 (±0.84)
ΦBEB

SFDM

2924.03 (±74.53) 248.79 (±7.53) 73.05 (±1.08) 36.33 (±0.60) 966.73 (±4.02)
ΦKMDP 2942.92 (±72.11) 250.16 (±7.58) 72.42 (±1.20) 36.11 (±0.59) 961.74 (±4.78)

NS 2961.97 (±72.23) 247.19 (±7.45) 72.27 (±1.17) 33.92 (±0.55) 951.61 (±4.12)
BOP 2985.16 (±72.45) 248.71 (±7.52) 65.15 (±1.13) 10.36 (±0.25) 151.57 (±0.86)

BAMCP 1934.57 (±27.14) 282.70 (±8.10) 70.97 (±0.79) 16.72 (±0.42) 377.09 (±3.44)

Table 1: The averages of total undiscounted rewards and their 95% confidence intervals. For all domains except GRID10 and
MAZE, the results are from 500 runs of 1000 timesteps. For GRID10 and MAZE, we used 2000 timesteps and 20000 timesteps,
respectively. We set γ = 0.95 for all domains. Top performance results are highlighted in bold face.

Silver, and Dayan 2012) is one of the most efficient algo-
rithms that uses Monte-Carlo Tree Search; BOP (Fonteneau,
Busoniu, and Munos 2013) is a real-time heuristic search al-
gorithm that uses the naive upper and lower bounds Rmax

1−γ
and Rmin

1−γ ; NS is the real-time heuristic search algorithm pre-
sented in the previous section without shaping (No Shap-
ing), but using more sophisticated bounds calculated by op-
timistic and pessimistic value iteration (Givan, Leach, and
Dean 2000); ΦKMDP and ΦBEB are the same search algo-
rithms using the corresponding potential functions for shap-
ing. In addition, we experimented with two different priors:
flat Dirichlet multinomial (FDM) with α0 = 1/|S| (Guez,
Silver, and Dayan 2012) and sparse factored Dirichlet multi-
nomial (SFDM) (Friedman and Singer 1999).

Each algorithm was given the CPU time of 0.1s per
timestep by adjusting the number of node expansions. This
time limit was sufficient for all the algorithms to reach
their highest levels of performance, except in larger domains
GRID10 and MAZE. The parameter settings for each al-
gorithm were as follows: for BAMCP, we followed the ex-
act settings in (Guez, Silver, and Dayan 2012), which were
c = 3 and ε = 0.5 for the exploration constants in the tree

search and the rollout simulation, and the maximum depth of
the search tree was set to 15 in all domains except GRID10
and MAZE, in which the depth was increased to 50; for
ΦKMDP, we set the number of MDP samples K = 10; for
ΦBEB, β was chosen from {0.5, 1, 10, 20, 30, 50} that per-
formed the best; the recomputation of the potential function
was set to happen 10 times during a run. In addition, upon
noticing that the algorithms with shaping performed well
even without the hashtable, we decided removed the book-
keeping in the experiments for further speedup. In fact, the
hit rate of the cache was less than 10% in all experiments.

Real-time heuristic search with reward shaping yielded
the best results in all domains except DOUBLE-LOOP, and
showed significant improvement in learning performance on
larger domains such as GRID5, GRID10, and MAZE. In
CHAIN, which was the smallest domain, shaping had al-
most no effect on search since good actions could be readily
found with small search trees. Finally, Figure 3 shows the
improvement in the total reward as we increase the search
time for three larger domains. It clearly shows the effective-
ness of shaping for real-time heuristic search.

It is interesting to note the singularity in the DOUBLE-
LOOP results. BAMCP performed far better than other al-

(5, 5, 5, 5) (25, 25, 25, 25) (50, 50, 50, 50)
200

220

240

260

280

Initial prior

T
ot

al
 r

ew
ar

ds
A two−armed Bernoulli bandit

(9, 1, 1, 9) (45, 5, 5, 45) (90, 10, 10, 90)
0

50

100

150

200

250

Initial prior

T
ot

al
 r

ew
ar

ds

Bayes−optimal
Real−time heuristic search with reward shaping
BAMCP

Figure 4: Performance comparison of real-time heuristic
search with reward shaping and BAMCP against the Bayes-
optimal policy on a two-armed Bernoulli bandit µ1 = 0.1
and µ2 = 0.9 with γ = 0.99.

gorithms in this particular domain. In order to further ana-
lyze the results, we conducted another set of experiments on
a bandit problem where we can obtain Bayes-optimal poli-
cies with a high accuracy via computing Gittins indices (Git-
tins 1979). In this experiment, we consider a two-armed
Bernoulli bandit, where the two arms have 0.1 and 0.9 suc-
cess probabilities. In Figure 4, we compare the total rewards
obtained by the Bayes-optimal policy, our real-time heuris-
tic search algorithm with reward shaping, and BAMCP. The
averages were obtained from 1000 runs of 300 time steps.
Again, as for BAMCP, the exploration constant c was cho-
sen from {0.5, 1, 1.5, 2, 2.5, 3} that performed the best.

The top graph in Figure 4 shows the results with
three different initial priors, (α1, β1, α2, β2) =
(5, 5, 5, 5), (25, 25, 25, 25), and (50, 50, 50, 50). Note
that while our search algorithm performed very close to
the Bayes-optimal policy, BAMCP was quite susceptible
to the prior and was not able to overcome the strong
incorrect prior. The bottom graph shows the same com-
parison with a different set of incorrect initial priors:
(9, 1, 1, 9), (45, 5, 5, 45), and (90, 10, 10, 90). In this case,
the priors had less effect on the BAMCP performance, and
in fact BAMCP was performing better than Bayes-optimal
policy. Our search algorithm on the other hand, matched the
performance of the Bayes-optimal policy in two out of three
cases.

The reason why we obtained these result is because the
behavior of BAMCP arises from the combination of two pa-
rameters: the prior and the exploration constant. Hence, by
changing the exploration constant, the prior can be ignored
and make the algorithm be tuned to the specific problem at
hand. We believe that this is what is happening behind the

DOUBLE-LOOP experiments.

Conclusion and Future Work
In this paper, we presented shaping for significantly im-
proving the learning performance of a model-based BRL
method. Our main insight comes from the BAMDP formu-
lation of BRL, which is a hybrid-state POMDP. We showed
how shaping can be used for real-time AO* search as an ef-
ficient BRL method.

Shaping mitigates the sparsity and delay of rewards, help-
ing the search algorithm to find good actions without the ne-
cessity to build large search trees for long-horizon planning.
We proposed two approaches to defining the potential func-
tion for shaping, which do not depend on a-priori knowledge
about the true underlying environment - they only lever-
age the structural regularity in the POMDP that arises from
BAMDP. They are also adaptive in the sense that they use
past experiences from the underlying model to estimate the
Bayes-optimal value.

Extending our approach to larger or continuous state
spaces, and integrating shaping with Monte-Carlo Tree
Search algorithms are promising directions for the future
work.

Acknowledgments
This work was partly supported by the ICT R&D pro-
gram of MSIP/IITP [14-824-09-014, Basic Software Re-
search in Human-level Lifelong Machine Learning (Ma-
chine Learning Center)], National Research Foundation of
Korea (Grant# 2012-007881), and Defense Acquisition Pro-
gram Administration and Agency for Defense Development
under the contract UD140022PD, Korea

References
Araya-López, M.; Thomas, V.; and Buffet, O. 2012. Near-
optimal BRL using optimistic local transition. In Pro-
ceedings of the 29th International Conference on Machine
Learning, 97–104.
Asmuth, J., and Littman, M. 2011. Learning is planning:
Near Bayes-optimal reinforcement learning via Monte-
Carlo tree search. In Proceedings of the 27th Conference
on Uncertainty in Artificial Intelligence, 19–26.
Asmuth, J.; Li, L.; Littman, M. L.; Nouri, A.; and Wingate,
D. 2009. A Bayesian sampling approach to exploration in
reinforcement learning. In Proceedings of the 25th Confer-
ence on Uncertainty in Artificial Intelligence, 19–26.
Asmuth, J.; Littman, M. L.; and Zinkov, R. 2008. Potential-
based shaping in model-based reinforcement learning. In
Proceedings of the 23rd AAAI Conference on Artificial In-
telligence.
Castro, P. S., and Precup, D. 2010. Smarter sampling in
model-based Bayesian reinforcement learning. In Machine
Learning and Knowldege Discovery in Database. Springer.
200–214.
Dearden, R.; Friedman, N.; and Russell, S. 1998. Bayesian
Q-learning. In Proceedings of the National Conference on
Artificial Intelligence, 761–768.

Duff, M. O. 2002. Optimal Learning: Computational Proce-
dures for Bayes-Adaptive Markov Decision Processes. Ph.D.
Dissertation, University of Massachusetts Amherst.
Eck, A.; Soh, L.-K.; Devlin, S.; and Kudenko, D. 2013.
Potential-based reward shaping for POMDPs. In Proceed-
ings of the 12th International Conference on Autonomous
Agents and Multiagent Systems, 1123–1124.
Fonteneau, R.; Busoniu, L.; and Munos, R. 2013. Opti-
mistic planning for belief-augmented Markov decision pro-
cesses. In IEEE Symposium on Approximate Dynamic Pro-
gramming and Reinforcement Learning, 77–84.
Friedman, N., and Singer, Y. 1999. Efficient Bayesian pa-
rameter estimation in large discrete domains. In Advances
in Neural Information Processing Systems, 417–423.
Gittins, J. C. 1979. Bandit processes and dynamic allocation
indices. Journal of the Royal Statistical Society. Series B
(Methodological) 41(2):pp. 148–177.
Givan, R.; Leach, S.; and Dean, T. 2000. Bounded-
parameter Markov decision processes. Artificial Intelligence
122:71–109.
Grześ, M., and Kudenko, D. 2010. Online learning of shap-
ing rewards in reinforcement learning. Neural Networks.
Guez, A.; Silver, D.; and Dayan, P. 2012. Efficient Bayes-
adaptive reinforcement learning using sample-based search.
In Advances in Neural Information Processing Systems,
1034–1042.
Kolter, J. Z., and Ng, A. Y. 2009. Near-Bayesian exploration
in polynomial time. In Proceedings of the 26th International
Conference on Machine Learning, 513–520.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy in-
variance under reward transformations: Theory and applica-
tion to reward shaping. In Proceedings of 16th International
Conference on Machine Learning, 278–287.
Nilsson, N. J. 1982. Principles of Artificial Intelligence.
Symbolic Computation / Aritificial Intelligence. Springer.
Poupart, P.; Vlassis, N.; Hoey, J.; and Regan, K. 2006. An
analytic solution to discrete Bayesian reinforcement learn-
ing. In Proceedings of the 23rd International Conference on
Machine Learning, 697–704.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-draa, B. 2008.
Online planning algorithms for POMDPs. Journal of Artifi-
cial Intelligence Research 32:663–704.
Ross, S.; Chaib-draa, B.; and Pineau, J. 2007. Bayes-
adaptive POMDPs. In Advances in Neural Information Pro-
cessing Systems, 1225–1232.
Ross, S.; Pineau, J.; and Chaib-draa, B. 2007. Theoretical
analysis of heuristic search methods for online POMDPs. In
Advances in Neural Information Processing Systems, 1216–
1225.
Silver, D., and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. In Advances in Neural Information Pro-
cessing Systems, 2164–2172.
Strens, M. 2000. A Bayesian framework for reinforcement
learning. In Proceedings of the 17th International Confer-
ence on Machine Learning, 943–950.

Wang, Y.; Won, K. S.; Hsu, D.; and Lee, W. S. 2012. Monte
Carlo Bayesian reinforcement learning. In Proceedings of
the 29th International Conference on Machine Learning,
1135–1142.

