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Abstract

This paper presents a novel user interface for handheld
mobile devices by recognizing hand grip patterns. Par-
ticularly, we consider the scenario where the device is
provided with an array of capacitive touch sensors un-
derneath the exterior cover. In order to provide the users
with intuitive and natural manipulation experience, we
use pattern recognition techniques for identifying the
users’ hand grips from the touch sensors. Preliminary
user studies suggest that filtering out unintended user
hand grip is one of the most important issues to be re-
solved. We discuss the details of the prototype imple-
mentation, as well as engineering challenges for practi-
cal deployment.

Introduction
Recent advances in mobile user interface research typically
involve various types of sensors in order to facilitate natural
interaction between the user and the mobile device.

Hinckleyet al.(2000) used an infrared sensor, a 2-axis ac-
celerometer and multiple capacitive touch sensors on a PDA
to detect user gestures such as initiating voice memo, chang-
ing the display orientation (portrait or landscape), scrolling
through the displayed content, and switching the power on
or off. Poupyrevet al. (2002) explored the idea of using a
2-axis accelerometer and piezoceramic actuator in scrolling
through the text and selecting a displayed item.

Although not in the domain of mobile devices, Reki-
moto (2002) and Shenet al. (2004) presented instrumented
tables with a mesh-shaped array of capacitive touch sensors
in order to detect the users’ hand positions and shape. These
tables allow users to manipulate displayed objects on the ta-
ble with various intuitive hand gestures.

This paper presents a novel mobile device interface using
an array of capacitive touch sensors to identify the hand grip
pattern and launch appropriate applications. Specifically, we
build upon the idea that there are natural grip patterns —
affordances (Norman 1988) — when using handheld tools.
Most of the tools invented so far are designed in appropriate
shapes to induce particular grip patterns (Figure 1). Hence,
humans have learned to interact with tools in the most con-
venient way over the life-long experiences. We observed the

Copyright c© 2006, American Association for Artificial Intelli-
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Figure 1: Tools, mobile devices, and grip patterns

same behavior when using handheld mobile devices. Some
mobile devices are designed in their exterior shapes and but-
ton layouts to induce specific grip patterns when using spe-
cialized mobile applications such as taking pictures, gam-
ing, etc. Other mobile devices are designed in more generic
shapes, but users typically adapt themselves while learning
to use specific applications. Examplar behaviors include us-
ing two hands when composing a text message. We conjec-
ture that the later type of mobile devices and user adaptations
will be more ubiquitous as the mobile devices available in
the market get more complex and multi-functional. Hence,
it is crucial to provide intuitive and easy-to-use interfaces,
and we decided to focus on recognizing the grip patterns to
understand the user intentions.

Specifically, We are interested in finding the most natural
grip patterns for the pre-defined set of mobile applications,
and execute the applications when the touch sensor signals
match the pre-defined set of hand grip patterns. We use pat-
tern recognition algorithms (Duda, Hart, & Stork 2001) for
classifying the touch sensor signals.

One of the important discoveries from our approach is that
we have identified some critical engineering issues to be re-
solved in order to make the system practical. Besides obtain-
ing the well-defined and easy-to-classify hand grip pattern
set, designing the reliable classifier that can pass on uninten-
tional skin touch is very important as well for the successful
commercialization. We present the details of our prototype
implementation including the hardware design, the software
development, and the classification experiments.
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Figure 3: Hand grip images from painted gloves

Overview of the System
Figure 2 depicts the conceptual interaction flow when using
the proposed system. As the user grips the mobile device,
touch region information is gathered from the touch sensors.
This raw data is then preprocessed to enhance and stabilize
the data, and classified into one of the pre-defined grip pat-
tern classes for launching appropriate mobile device appli-
cations.

In order to verify our hypothesis that the hand grip pat-
terns are discernible for a carefully defined set of mobile de-
vice applications, we prepared a mock-up by carving out a
piece of hard styrofoam and collected the hand grip data by
letting 9 subjects hold the mock-up with painted gloves for 4
different hypothetical applications (Figure 3). A total of36
grip images were scanned and then a decision tree was built
upon the image data. We obtained the recognition accuracy
of 56% even though the image was very noisy.

After confirming the feasibility with the preliminary re-
sult, we prepared a number of different working prototype
systems, experimenting with different kinds of touch sen-
sors. The prototype system we report in this paper is based
on capacitative touch sensors from ESSD1. The ESSD SS01
8-channel sensor chip produces independent touch signals
that ranges from 0 to 255. Note that the signals are not ab-
solute values — they are relative in the sense that the val-
ues vary depending on the operating conditions such as the
humidity of the environment, the design of the sensor elec-
trodes, and the material between the skin and the electrodes.
We used 8 sensor chips to handle 64 touch sensor electrodes.

1www.essd.com
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Figure 4: The sensor board with 8 ESSD SS01 touch sensor
chips and the flexible PCB with 64 touch electrodes

Figure 5: The exterior photos of the prototype device

The sensor electrodes were etched on a flexible PCB and
glued beneath the plastic cover of the prototype system (Fig-
ure 4). By trial and error, we figured out that electrodes with
sizes 8mm× 8mm were adequate for sensing the contact of
the hand with enough resolution and, at the same time, mak-
ing reliable measurements through the 1.8 mm-thick plastic
body. Figure 5 shows the photos of the prototype system.

Since we have to filter out unintentional user grips, such
as picking up the device from the table, we also embedded
a 3-axis accelerometer KXM52 from Kionix2 to detect sta-
bility of the device. The idea here is that we let the user hold
the device still for a short period of time in order to activate
the grip pattern classifier. We later made this duration 0.4
second through usability evaluations.

We also included Samsung S3C2410X01 ARM CPU in
the prototype system as the main processor. All the prepro-
cessing, recognition, and user interface mock-up software
modules were executed on the ARM CPU. The 2MB mem-
ory limit for storing and the 16MB memory limit for exe-
cuting the code prevents us from deploying complex pattern
recognition algorithms. We will get back to this issue in Sec-
tion . The overall hardware schematic diagram of the system
is shown in Figure 6.

2www.kionix.com
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Figure 6: The hardware schematic diagram of the prototype
device
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Figure 7: Defining 8 grip patterns for 5 mobile device appli-
cations

Building the Hand Grip Classifier
Besides overcoming the hardware limitations and con-
straints by choosing the most appropriate touch sensor and
designing the ideal sensor electrodes, building the hand grip
classifier is important as well. In this section, we describe
how we defined grip pattern classes for recognition, collect
the grip pattern data for training, and implement the classi-
fier.

Through careful studies including brainstorming sessions
and user interviews, we selected the set of mobile device ap-
plications and the set of associated hand grip pattern classes.
The 5 selected mobile device applications were

• CALL: receiving an incoming call,

• SMS: composing a text message,

• CAMERA: taking a picture,

• VIDEO: playing a video, and

• GAME: playing a game.

We assigned 2 grip patterns forSMS (one-handed and
two-handed), and 3 forCAMERA (horizontally one-handed,
vertically one-handed, and vertically two-handed), resulting
in a total of 8 grip patterns (Figure 7). The mobile device

Figure 8: Collecting grip training data from subjects

applications were selected through the field study on fre-
quency of usage for a typical multimedia capable mobile
phone, and the associated grip pattern classes were defined
by interviewing subjects to suggest the most natural hand
grip when using the application.

After the grip pattern classes were defined, we collected
the hand grip training data from 50 subjects. Each subject
was asked to hold the prototype system 5 times for each grip
pattern (Figure 8). The touch sensor chip continuously gen-
erated the data at 30Hz, and we averaged the 15 touch data
(over 0.5 second) collected during the device was held still.
Hence the training data from each grip trial was composed
of 64 numeric fields for touch sensor readings. The final
training data was composed of 250 instances for each of the
8 grip patterns.

We used the Weka (Witten & Frank 2005) machine learn-
ing library for the grip pattern classifiers. Specifically, we
trained naive Bayes and support vector machine classifiers
on the training data gathered through the process described
above. All the training was done off-line — the classifier
was trained on a desktop computer and then the parameters
were extracted to implement the embedded versions of the
classifiers (classification only) to be deployed into the pro-
totype device.

Experiments
In this section, we report the classification accuracy of naive
Bayes (NB) and support vector machine (SVM) classifiers
on the training data. In the case of SVM, the Weka li-
brary uses sequential minimal optimization algorithm by
Platt (1998). The multiple-ness of the classes is handled by
combining pairwise two-class SVMs with the one-versus-
one method, rather than the one-versus-all method. We
trained the SVM with a variety of kernels, preprocessing fil-
ters, and complexity parameters. Figure 9 summarizes the
results.

As we can see in the cross validation results, the overfit-
ting is prevalent throughout the experiments. Apparently,we
need more training data to obtain a reliable classification re-
sults. However, the cost (both time and effort) of acquiring
the hand grip training data from subjects was prohibitive,
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Classifier Accuracy CV
NB 79 % 76 %

SVM

L, N, C=1.0 93.6 % 91 %
L, N, C=10.0 95.5 % 90.7 %
L, S, C=1.0 96.1 % 90.5 %
L, S, C=10.0 96.2 % 90.3 %

SVM

Q, N, C=1.0 97.3 % 90.8 %
Q, N, C=10.0 99.6 % 90.2 %
Q, S, C=1.0 100 % 91.8 %
Q, S, C=10.0 100 % 91.8 %

SVM

R, N,γ=1.0, C=1.0 97.1 % 90.8 %
R, N,γ=1.0, C=10.0 99.9 % 91.8 %
R, S,γ=0.05, C=1.0 98.5 % 90.2 %
R, S,γ=0.05, C=10.0 100 % 91.6 %

Figure 9: Classification accuracy results from naive Bayes
(NB) and support vector machine (SVM). For SVMs, the
kernels are linear polynomial (L), quadratic polynomial (Q),
and radial basis function (R). The preprocessors used for at-
tributes are normalization (N) by scaling the maximum value
1 and the minimum value 0, and standardization (S) by mak-
ing the mean 0 and the standard deviation 1. We tried two
different values 1.0 and 10.0 for the complexity parameter
(C) in training SVMs. γ represents the width in the radial
basis function kernels. We also show the results from the
10-fold cross validation (CV) with re-sampling.

so we decided to go ahead with the original data without
employing more subjects to collect additional training data,
since we were in the early stage of the prototype develop-
ment.

Even though the accuracies are not at 100%, the classi-
fiers mostly made correct answers on the training data. Fig-
ure 10 and Figure 11 show the typical confusion matrices of
NB and SVM classifiers. Note that, in the case of SVM, if
we take into account the fact that we only need differentiate
amongCALL,SMS,CAMERA,VIDEO, andGAME, the classi-
fier yields only 1 error among 2000 training instances. Also,
as expected, the most confusing pair of classes for the clas-
sifiers was the two one-handed grip patterns forCAMERA.
This is because there is hardly a difference in touch areas
except for the orientation of the prototype device.

We were also interested in the subject independence-ness
of the grip pattern classifiers. Figure 12 shows the classifica-
tion results from the subject-independence cross validation.
We can also observe the classifiers being overfit. The leave-
one-subject-out cross validation reduces the gap between the
accuracy and the cross validation typically by 2∼3 %, hence
we expect that the cross validation results will improve as
we employ more subjects for additional training data.

Porting the trained classifier to the prototype device was
another issue. Since we have limited amount of memory for
storing the parameters of classifiers, we could only consider
simple classifiers. The NB classifier was no problem at all.
However, as for the SVM classifiers, the prototype device
could only store the classifiers with linear kernels — we do
not have enough memory to store the large number of sup-

Classifier Accuracy SI-CV
NB 79 % 76.6 %

SVM

L, N, C=1.0 93.6 % 88.4 %
L, N, C=10.0 95.5 % 85.3 %
L, S, C=1.0 96.1 % 85.1 %
L, S, C=10.0 96.2 % 84.0 %

SVM

Q, N, C=1.0 97.3 % 85.3 %
Q, N, C=10.0 99.6 % 84.9 %
Q, S, C=1.0 100 % 85.4 %
Q, S, C=10.0 100 % 85.4 %

SVM

R, N,γ=1.0, C=1.0 97.1 % 87.1 %
R, N,γ=1.0, C=10.0 99.9 % 86.9 %
R, S,γ=0.05, C=1.0 98.5 % 84.1 %
R, S,γ=0.05, C=10.0 100 % 83.8 %

Figure 12: Same set of experiments as in Figure 9 except 10-
fold subject-independence cross validation (SI-CV) results
are shown.
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Figure 13: Two types of rejections to be handled by rejection
classifier

port vectors, but in the case of linear kernels, we only need
to store the sum of the weights for support vectors. We re-
fer to the implementation of the SMO Java class in (Witten
& Frank 2005) for the details on compactly storing SVM
classifiers with linear kernels.

Rejection Classifier
After the preliminary experiments with NB and SVM classi-
fiers, we decided to focus on identifying unintentional hand
grips. Without any rejection, the classifiers incorrectly try
to classify every touch behavior such as fiddling inside the
hand to grasp the device for a more comfortable position,
accidental skin contact other than hands, or even the device
not being contacted at all — the touch sensor chip yield rel-
ative numeric values, rather than explicit touch or non-touch
status.

There are two types of rejections to consider, as illustrated
in Figure 13. The first type is when the input data is approx-
imately equal distance from more than one class. In this
case, the differences in posterior probabilities of the candi-
date classes are small. This can be handled by traditional
Bayesian decision theory (Chow 1970) by asserting that the
differences in posterior probabilities are above a pre-defined
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classified as→ a b c d e f g h
a =CALL 229 3 4 0 12 1 1 0

b =SMS (one-handed) 6 201 20 2 20 0 1 0
c =SMS (two-handed) 5 9 209 2 24 1 0 0

d =CAMERA (horizontal, one-handed) 0 2 9 162 70 1 0 6
e =CAMERA (vertical, one-handed) 7 2 6 76 152 3 0 4

f = CAMERA (two-handed) 0 1 1 1 28 204 4 11
g =VIDEO 1 0 0 0 8 22 203 16
h =GAME 0 0 0 2 5 20 3 220

Figure 10: Confusion matrix for the naive Bayes classifier (accuracy = 79%)

classified as→ a b c d e f g h
a =CALL 250 0 0 0 0 0 0 0

b =SMS (one-handed) 0 249 1 0 0 0 0 0
c =SMS (two-handed) 0 0 250 0 0 0 0 0

d =CAMERA (horizontal, one-handed) 0 0 0 213 37 0 0 0
e =CAMERA (vertical, one-handed) 0 1 0 39 210 0 0 0

f = CAMERA (two-handed) 0 0 0 0 0 250 0 0
g =VIDEO 0 0 0 0 0 0 250 0
h =GAME 0 0 0 0 0 0 0 250

Figure 11: Confusion matrix for the SVM classifier with linear kernel, standardization preprocessing and complexity parameter
value 1.0 (accuracy = 96.1%)

threshold. The highlighted area between two peaks in Fig-
ure 13 is the rejection region of the first type.

The second type is a little more subtle, but important in
our case, and the focus of the rest of this section. This is
when the input data is of very large distance from any of the
classes. This happens more frequently in our system since
the training data covers very small subset of the whole input
space — since the classifier is only trained on meaningful
user hand grips,i.e., we assume the data is generated only
when the user intends to initiate interaction, the classifier in-
correctly generalizes into unmeaningful user action region.
The two highlighted areas at the left and the right sides in
Figure 13 are the rejection regions of the second type.

We could address the second type of rejection by calcu-
lating the data likelihood from the trained classifiers, andas-
serting that the likelihood is above some pre-defined thresh-
old. Particularly, let~x denote the sensor data, andp(~x) de-
note the likelihood of~x. As for the NB classifier, we can
calculate the likelihood by

p(~x) =
∑

c∈C

p(~x, c)

=
∑

c∈C

p(~x|c)p(c)

≈
∑

c∈C

pNB(~x|c)pNB(c),

wherepNB(~x|c) is the likelihood calculated from the trained
NB classifier,

pNB(~x|c) ∼ N(~µc, ~σc)

andpNB(c) = 1/|C| is the prior on the classes. We set
a thresholdτ so that the classifier produces classification

Data from Class AVG SD
CALL -347.44 18.59

SMS (one-handed) -348.52 20.15
SMS (two-handed) -348.81 19.77

CAMERA (horizontal, one-handed) -342.37 22.55
CAMERA (vertical, one-handed) -341.75 19.46

CAMERA (two-handed) -348.14 18.88
VIDEO -351.94 20.33
GAME -353.47 19.79

no touch -345.00 21.69

Figure 14: Averages (AVG) and standard deviations (SD) of
log likelihoodslog(pNB(~x)) of training data

results only whenp(~x) >= τ . Unfortunately, this simple
calculation schemealonedoes not yield useful results.

Figure 14 shows the averages and standard deviations of
log likelihoods for training instances of each class. The val-
ues are calculated from the trained naive Bayes classifier.
When the prototype device is put on a table and not touched
at all, the average log likelihood is -345.00 with the standard
deviation of 21.69. Our hope was that the log likelihoods
of no-touch data will be substantially smaller than those of
training data, but it was not the case. If we use the simple
rejection scheme based on the data likelihood, we will be
rejecting a lot of intentional and legitimate hand grips.

We then moved on experimenting with recent develop-
ments in the SVM research in determining whether a given
data comes from an underlying probability distribution. This
type of SVM is called the called one-class SVM (Schölkopf
et al. 2000). Specifically, the one-class SVM is designed
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ν Rejection Ratio
0.05 0.049
0.10 0.099
0.13 0.129
0.15 0.150
0.2 0.200
0.3 0.301
0.5 0.501

Figure 15: Experiments with one-class SVM (normalization
preprocessing and linear kernel)

to handle problems where only positive examples are avail-
able for the training,i.e., one-class problems. The one-class
problem setting particularly suits our situation since it is al-
most impossible to ask subjects to hold the prototype de-
vice unintentionally. The one-class SVM has been applied
to domains such as document classification (Manevitz &
Yousef 2001), machinery monitoring (Unnthorsson, Runars-
son, & Jonsson 2003), and computer security (Wang &
Stolfo 2003). We adjusted the parameterν of the one-class
SVM so that it rejects a small portion of the training set.
Figure 15 shows the value ofν and the rejection ratio of the
training data. We are currently experimenting withν = 0.3,
rejecting almost 30% of the training data. Preliminary user
evaluation indicates that this value is optimal.

Conclusions and Future Work
In this paper, we described a sensor-based mobile user in-
terface employing an array of capacitive touch sensors and
a 3-axis accelerometer in order to identify the hand grip pat-
terns of the mobile handheld device and direct the user to the
intended mobile application.

We developed a working prototype device in order to ver-
ify the feasibility of the idea, and showed that a naive appli-
cation of traditional pattern recognition technique to classify
the grip pattern is not acceptable. We identified various en-
gineering issues, such as the limited available memory of
a typical handheld device and the rejection of unintentional
skin touch for reliable operation.

Currently, we are looking into the interpretations of vari-
ous classifier parameters in terms ofperceivedclassification
accuracy and user satisfaction score. Ideally, we will be able
to define a function that maps from the classifier parameter
values to the usability scores.

We are also investigating the applicability of support
vector representation and discrimination machine (Yuan &
Casasent 2003) for unifying the rejection scheme and the
classification scheme into a single framework. Addressing
the on-line learnability of the grip pattern classifier is also
an important problem for the future work. The on-line learn-
ing algorithms would be able to make the system adaptable,
in the sense that as the user interacts with the system by
giving classification error feedback, the system will adapt
to thepersonalizedhand grip patterns of the user. We are
also experimenting with on-line reinforcement learning al-
gorithms (Kaelbling, Littman, & Moore 1996) to address the

issue of adaptability.
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