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Abstract—Defense modeling and simulation (DM&S) offers
insights into the efficient operations of combat entities, e.g.,
soldiers and weapon systems. Most DM&S aim at exact de-
scription of military doctrines, but often the doctrines fails to
provide detail action procedures about how the combat entities
conduct military operations. Such unspecified descriptions are
filled with the rational behaviors of the combat entities in a
battlefield, and thereby the combat effectiveness from these
combat entities would differ. Also, by incorporating such
rational factors, this could provide the insights that cannot
be captured from the traditional works. To examine this
postulation, this paper developed a computer generated force
where the tactical maneuver of combat entities are realized
by the combination of descriptive and prescriptive modeling.
Specifically, the descriptive models describe the explicit action
rules in military doctrines, and they are modeled using discrete
event system specification (DEVS) formalism; the predictive
models denoted the rational behavior of the combat entities
under the military doctrines, and they are modeled using
partially observable Markov decision process (POMDP). The
provided results illustrated that the proposed approach helps
to maintain a team formation effectively, and this formation
maintenance lead to the better combat efficiency.

1. Introduction

Social phenomena with rare occurrences but high im-
pact, such as disaster response situations and war scenarios,
are frequent the important subjects of simulation-based anal-
ysis that cope with the dynamism and complexity including
rare observations. Furthermore, Modeling and simulating
social phenomena inevitably involves social entities, i.e.,
human beings and organizations, so modeling the behavior
of the social entities is a challenge compared to modeling
system-oriented systems, e.g., a manufacturing process with
simple state transitions.

Some researchers claimed that these social entities are
modeled with domain knowledge, and an explicit description
would be the best way to complete the modeling task.
Descriptive modeling emphasizes such detail descriptions
of system and individual behavior (e.g., unified model-

ing language (UML), discrete event system specification
(DEVS) formalism, etc.). On the other hand, other re-
searchers thought that the individual behavior should be
modeled to decide the future action through the human rea-
soning process. Prescriptive modeling asserts that a frame-
work can be a generalized framework to induce the behavior
of an individual with optimized parameters (e.g., Partially
Observable Markov decision process).

Even if these two lines of social entity modeling have
made effects to the modeling and simulation of social phe-
nomena, their usages have been different as they have differ-
ent characteristics. Descriptive modeling shows an efficiency
to macroscopic modes such as crowd simulation that creates
social phenomena with simple agents (e.g., rule-based); Pre-
scriptive modeling is more applicable to microscopic models
consisting of smaller number of individuals who have high
reasoning ability in their actions.

When we narrow the modeled social phenomena to
the military domain, the above two modeling methods are
applicable to defense modeling and simulation (DM&S).
Descriptive modeling specifies the details of the behavioral
rules described in military doctrines (e.g., irreducible semi-
autonomous adaptive combat (ISAAC) [1] and map aware
nonuniform automata (MANA) [2]). Even these descriptive
models, which are limited in their reasoning capability,
showed collective actions that cannot simply be modeled
as the sum of individual behaviors. Meanwhile, Prescriptive
modeling generates the complex and uncertain behavior
from multiple individuals with a further reasoning process
considering their neighbors, situated environment, and util-
ities.

The rational behavior from prescriptive model is quite
different from the guided behavior from the descriptive
model, such as unexpected behavior that we did not ex-
plicitly model. To identify modeling parts proper to the
prescriptive modeling, we focused on the ambiguous parts
in DM&S works. Specifically, while behaviors of military
units are restricted by military doctrines, there would be a
room between the military doctrines: the military doctrines
macroscopically describe the behavior of combat entities,
but they delegate the specific behaviors to the combat enti-
ties situated at the battlefield. For example, when a soldier
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approaching to the enemy, field manuals dictate utilizing
covers during the approaching maneuver, so it is the soldier
who choose a cover to hide himself behind. In this sense,
we consider that the rational behavior could offer a clue for
understanding and optimizing the detailed behavior that are
not exist in the military doctrines.

This paper introduces a computer generated force where
the maneuver behaviors of combat individuals are modeled
via combining descriptive (describing behavior in military
doctrines) and prescriptive (describing rational behavior)
models. Specifically, the descriptive models describe the ex-
plicit action rules in military doctrines, and they are modeled
using discrete event system specification (DEVS) formalism;
the predictive models denoted the rational behavior of the
combat entities under the military doctrines, and they are
modeled using partially observable Markov decision process
(POMDP). Note that this combined modeling has not been
explored so far besides in a few works in the natural resource
management [3]. Since the proposed model contains two
separate behavioral models, this paper also suggests an
interface supporting the interoperation of the two model.
The case study using the developed CGF illustrates that
the proposed approach helps to maintain a team formation
effectively, and this formation maintenance lead to the better
combat efficiency.

2. Previous Research in DM&S

DM&S has been utilized as a tool for the analysis of the
military systems [4] [5]. This section provides the DM&S
backgrounds from the descriptive and the prescriptive mod-
eling.

Descriptive modeling is to capture systematical behav-
iors in the military systems, which are exemplified as the
military doctrines. The state, operator, and result (SOAR)
framework is an example of the descriptive modeling from
the AI community [6]. The SOAR framework determines
autonomous behavior by the combination of production
rules and the state set of the model. Also, discrete event
system specification (DEVS) [7] is used to develop DM&S
works as a descriptive approach.

Having said that, some researchers criticizes that the
descriptive modeling is insufficient to fill the unnoticed
details in the military doctrines and the field manuals. The
field manual generally dictates not details of behavior but
abstract process, behavior objectives, and desired states after
the behavior. Thus, combat entities have to reflect their
experience and knowledge to their situation, i.e., human
reasoning procedure, for deciding the optimized action dur-
ing military missions. This limitation becomes a serious
problem in descriptive modeling since the modelers would
not be able to put every context and operation change in
the state-transition rules. Hence, the demand for prescriptive
modeling rises as we start better modeling the fine details
of our combat entities.

Prescriptive modeling allows a flexible decision mak-
ing process under uncertain circumstances. In particular, in
DM&S area, the prescriptive modeling has been used to

examine various combat strategies [8] [9] [10]. The partially
observable Markov decision process (POMDP) [11] is an
example of prescriptive modeling.

However, It is infeasible to apply the naive POMDP
method to generate the rational behavior of multiple combat
entities. Specifically, if the time horizon of such POMDP
model is infinite in consideration of a future reward, the time
complexity would become Polynomial Space (PSPACE)-
complete [12], which induces a high cost even for a small
number of actions and states. Although several literatures
applied heuristic algorithms to resolve this intractability [13]
[14], this scalability problem still hinders the POMDP model
from being applied to large-scale models.

This paper begins with an idea that the descriptive and
prescriptive methods can work in a complementary manner.
Specifically, the prescriptive modeling supports to fulfill the
vague parts from the descriptive modeling; on the other
hand, the descriptive modeling helps to reduce the compu-
tational issues in the prescriptive modeling. To realize this
notion, we focused on the characteristics of military domain:
mission operations are performed by the guidance of the
military manuals, so the behavior of combat entities should
be bounded within the manuals. Therefore, those manuals
would become references to the reduction of actions and
states of the combat entities. To this end, this paper suggests
to connect the descriptive and prescriptive modeling with a
message-based interface.

3. Computer Generated Force via DEVS and
POMDP

In DM&S, combat entities in a simulation model are
generally called computer generated forces (CGF). Figure
1 depicts the overall structure of the proposed CGF. The
rectangle and the trapezoid boxes represent the DEVS cou-
pled model and the DEVS atomic model, respectively. The
numbers next to the lines shows the multiplicity of models.

BlueForce and RedForce consists of various combat
entity models: Company model, Platoons models, Mor-
tarTeam, Squad models, Team models, and Soldier. In par-
ticular, the behaviors of combat individuals are modeled
by the separation of descriptive and prescriptive parts. The
descriptive parts are Decision-Making, Maneuver, Fire, De-
tection, and DamageEvaluation models that describe the
associated military doctrines; the prescriptive part (Maneu-
ver POMDP) decide proper actions considering their current
situation, which is connected with the corresponded Team
model. The numbers next to a model indicate the number
of its instances

3.1. Descriptive parts in CGF

Descriptive parts (DP) in CGF guide combat entities
to behave with following the mission objectives and field
manuals. This paper adopts DEVS formalism to develop
DPs, which supports to model discrete event systems based
on set theory [7]. DEVS formalism suggests two types of
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Figure 1. Model structure of the computer generated forces. The tree diagram shows the overall hierarchy of the models for the combat experiment.

submodels: atomic model (AM) for describing system be-
havior and coupled model (CM) for building up hierarchical
model structure (see Figure 1).

Based on the modeling concept of DEVS, CGFs are
developed in a bottom-up manner. For example, A Team
model consists of one Team leader, one Team POMDP,
and four Soldiers, and the internal structure of a Soldier is
depicted in Figure 2. The five submodels in a soldier model
are developed as DEVS AMs representing the basic combat
actions of the soldier. Specifically, Maneuver, Fire, and
Detection models represent moving, firing, and detecting
behaviors of a soldier, and these models are controlled by
Decision-Making model. Lastly, Evaluation model evaluates
the soldier damage by other soldiers.

Among the solider atomic models, the model diagram of
Decision-Making model is exemplified in Figure 3, and it
is operated in the following way: Initially, the Decision-
Making model starts from {STOP} state. The Decision-
Making model receives an order from higher hierarchy level
model (i.e., a leader model of its own squad), and this
message contains course of action (COA) for the soldier.
COA illustrates what a combat entity should perform during
missions. The Decision-Making model conducts the received
COA by activating/deactivating other behavioral models,
i.e., the Maneuver, Fire, and Detection models, with sending
output events. After changing to one of the {MOVE, FIRE,
DISMANTLE} states, the Decision-Making model waits
for a message claiming the action completion ({MOVE,
FIRE}), or it cancels the action by the time advance of
{DISMANTLE} state. Subsequently, the Decision-Making
model delivers a report of the COA to the outside cou-
pled models (Report out event). If a new order comes
during the action executions, the Decision-Making model
returns to the {DECISION} state and get back to the be-
ginning. Otherwise, if the Decision-Making model receives

Figure 2. Coupling structure of Soldier model consisting of Decision-
Making, Maneuver, Fire, Detection, and Evaluation.

the {Dead in} message from Evaluation model, its state
changes to {DEAD} state and ceases all functions of the
soldier model.
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Figure 3. Decision-Making model for managing combat behaviors of a
soldier model.

3.2. Prescriptive parts in CGF

Prescriptive parts (PP) in CGF decide the proper action
of a combat individual with the current situation. To imple-
ment PPs, we applied partially observable Markov decision
process (POMDP) method. POMDP models a sequential
decision process for optimizing a policy, i.e., sequence of ac-
tions, under stochastic and partially observable environment
[15]. In the proposed model, the prescriptive parts manage
the maneuver behavior of combat entities. Specifically, the
maneuver POMDP decides the moving direction and the
step size of each combat entity in the light of the two
objectives: maintaining a team formation and faster arrival at
the mission point. The following provides detail illustration
about how the maneuver POMDP was formulated.

Environmental state (S): environmental state s is de-
fined as < α⃗, β⃗, g⃗ >. α⃗ represents x, y coordinations of team
soldiers (α⃗ =< (α1x, α1y), (α2x, α2y), ..., (α5x, α5y) >).
β⃗ =< βx, βy > is the inferred centroid of enemy force’s
position from observation, and g⃗ =< gx, gy > is a x,y
coordination of the team destination position.

Action (A): action a is defined as the step size(r) and the
moving direction (Φ) of team soldiers (< r⃗, Φ⃗ >). The step
size is a value within (0, rMAX) where rMAX means the
maximum step size in a time step, and the moving direction
is in the range of (0, 2π).

Observation (Z): observation value z is defined as
< α⃗, β⃗, g⃗ >, which is identical to the environmental state.

State transition function (T ): state transition function
deals with position changes of team soldiers according to
the current state s and an action a, i.e., (αix, αiy) →
(αix + ri cosΦi, αiy + ri sinΦi). Furthermore, the state
transition function considers geographical features, such as
elevation and terrain, and these features are expressed as a
geographical noise factor ρ. Thus, the position change of a
soldier is mathematically represented as follows:

(αix, αiy) →
(αix + ρri cosΦi + N(0, 1), αiy + ρri sinΦi + N(0, 1))
where ρ:geographical noise and N(0, 1): Gaussian noise

Observation function (O): observation value β⃗ depends
on the existence of the line of sight (LOS) between team
soldiers and opposing soldiers: If LOS is secured, the soldier
detects the position of an opposing solider (bix,biy); other-
wise, it does not acquire the position even if the enemy
solider is within its detection range.

Reward function (R): each soldier has two objectives
in the maneuver mission: the arrival at the goal position and
the maintenance of team formation during maneuvering. The
reward function R(s, a, s′) is defined as a combination of
these two objectives.

R(s, a, s′) =
wgoalrgoal(s, a, s

′) + wformationrformation(s, a, s
′)

rgoal(s, a, s
′) evaluates how close team soldiers ap-

proach the goal position. Hence, rgoal(s, a, s′) is defined by
the potential function Φgoal(s) that represents a Euclidean
distance between the team leader’s position and the goal
position in state s:

rgoal(s, a, s
′) = −(Φgoal(s

′)− Φgoal(s))

rformation(s, a, s
′) is evaluate how perfectly team sol-

diers keep a team formation. In particular, team soldiers in
the proposed model move in the wedge-shaped formation
shown in Figure 4.

Figure 4. The wedge-shaped maneuver formation of team soldiers.

To maintain the team formation, a soldier calibrates their
moving angle and distance with other soldiers. Therefore,
the reward function rformation(s, a, s

′) is factorized for
each formation factors: rformation,d(s, a, s

′) and
rformation,θ(s, a, s

′) as follows:
rformation,d(s, a, s

′) =

−e((d12−d)2+(d24−d)2+(d13−d)2+(d35−d)2)

rformation,θ(s, a, s
′) =

−e((θ12−θ)2+(θ24−θ)2+(θ13−θ)2+(θ35−θ)2)

wgoal and wformation are weights for the two reward
functions. The maneuver POMDP keeps the balance be-
tween fast arrival and the formation maintenance by adjust-
ing these weight factors.

3.3. Interfacing descriptive and prescriptive parts

To generate the bounded-rational behavior of combat
entities, the PP in the proposed model should be aware of
the information from the DP. Although the PP and the DP
are developed by different modeling methods, i.e., DEVS
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and POMDP, they can communicate each other through the
interface that coupling them with the semantic relevance of
their inputs and outputs.

The interface holds the surrogate models for the DP and
PP sides, which are an atomic DEVS model (called Team
POMDP) for the descriptive part and Relational Dynamic
influence Diagram Language (RDDL) composer and RDDL
parser for the prescriptive part. Team POMDP is a DEVS
model for forwarding information from DPs to PPs and
waiting its response from the PPs response. RDDL modules
deal with planning domain definition language (PDDL) to
specify a set of decision-making problems. In the interface,
RDDL Composer receives the observation information from
the connected DPs and RDDL Parser translates the received
information into a set of planning problems for POMDP
models.

The surrogate models exchange their information via
three messages: Control, Observation, and Action. Con-
trol message specifies the mission objective, so it is sent
from Team leader or high-level units. Observation message
contains observed information by combat entities. These
messages are generated from DPs and sent to PPs through
the interface. Otherwise, Action message holds rational be-
haviors generated by PPs based on the received Control and
Observation messages, and it is sent to the corresponded
DPs through the interface. Table 1 presents detail informa-
tion of the three messages.

4. Combat Experiments

We designed the combat scenario for the virtual experi-
ments, which consists of maneuver, breakthrough, charge,
and occupation phases (see Figure 5). At the maneuver
phase, blue platoons move to their mission points, and
RedForces mount guard at the occupied hill; at the break-
through phase, while BlueForce engaged with RedForces,
the 2nd platoon in BlueTeam makes a breakthrough in the
obstacle area that is set up by RedForces; after the obstacle
is dismantled, at the charge phase, and the 1st platoon in
BlueForce moves to the breakthrough point and the 2nd and
the 3rd platoons charges to RedForces. On the other hand,
RedForces attack the approaching BlueForce soldiers until
their combat ability falls below 30% of the initial status;
If the combat abilities of all red soliders go below 30%,
RedForce retreat out of the battlefield, which is the end of
the scenario.

The combat experiments using the proposed model was
conducted with following the above scenario. The exper-
iments focus on the influence of the use of maneuver
POMDP. Hence, we evaluated the combat efficiency from
the proposed model and the no-use of maneuver POMDP,
i.e., DEVS-only model.

We defined two performance measures to evaluate the
effectiveness in the combat simulation. One measure is for-
mation violation penalty (FVP), which indicates the fitness
of the formation while a team maneuvers in the wedge
formation (see Figure 4).
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Figure 5. Combat scenario with four phases: maneuver, breakthrough,
charge, and occupation

Formation V iolation Penalty (FV P ) = E[fvp]

fvp = fvpd + C × fvpθ

fvpd = (d12 − d)2 + (d24 − d)2 + (d13 − d)2 + (d35 − d)2

fvpθ = (θ12 − θ)2 + (θ24 − θ)2 + (θ13 − θ)2 + (θ35 − θ)2

C : scaling constant

The other measure is damage ratio (DR). DR indicates
the change of the damage state of soldiers in a platoon
during simulation execution. Thus, higher DR represents
lower combat efficiency. Mathematical definition of DR of
a platoon (DRP ) is as follows:

DRP =
∑
s∈SP

InitDs−EndDs

InitDs

|SP |
,

where SP : a set of soldiers in platoon P , InitDs: initial
damage state of soldier s, and EndDs: damage state of
soldier s at the end of simulation,

Figure 6 illustrates FVP and DR values with respect
to the use and the no-use of the maneuver POMDP. The
results represents that the use case significantly reduces
the FVP, which means the decisions provided from the
maneuver POMDP is efficient to maintain the team forma-
tion. Moreover, this formation maintenance, although more
experiments and statistical analysis are required, helps to
reduce the DR of BlueForce and to increase the DR of
RedForce (i.e., more combat effectiveness of BlueForce).

5. Conclusion

Descriptive and Prescriptive modeling have been applied
to DM&S works, yet there raised concerns about the oppo-
nents’ limitations from each side: the descriptive side raised
concerns on the computational issues and the uninterpretable
results from the prescriptive models; the prescriptive side
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TABLE 1. MESSAGES EXCHANGED BETWEEN DESCRIPTIVE (DEVS) AND PRESCRIPTIVE (POMDP) MODELS

Message Type Message Contents Message Sender Message Receiver

Control

Current position Team leader Maneuver POMDP
Destination position Team leader Maneuver POMDP

Maximum speed Team leader Maneuver POMDP

Observation

Current position Soldier Maneuver POMDP
Detected enemy Soldier Maneuver POMDP

Geographic information Soldier Maneuver POMDP
Detected enemy CompanyHQ Maneuver POMDP

Action Moving step Maneuver POMDP Team leader/Soldier
Moving Direction Maneuver POMDP Team leader/Soldier

Figure 6. Formation violation penalty (FVP) and Damage ratio (DR) values
with respect to use or no-use maneuver POMDP.

worried about the vague descriptions between the descriptive
models. Having said that, this paper explained that these
concerns can be resolved by combining the two approaches.

To this end, this paper proposes a computer generated
force where the maneuver of combat entities are modeled by
the separation of the descriptive and prescriptive parts. This
separation was considered only on the maneuver operation,
and the descriptive and the prescriptive parts are developed
with DEVS and POMDP, respectively. Moreover, this paper
suggests an interface that can communicate between those
parts. The experimental results with the computer generated
force developed by the proposed approach showed that the
proposed method provides an efficiency to increase the
combat effectiveness, even if the further statistical analysis
is needed.

As further works, we considered extending the separated
modeling approach to more combat behaviors and perform-
ing more sophisticated experiments to clearly identify the
benefits and losses generated from the proposed method.
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