
Inverse Reinforcement Learning in Partially Observable Environments

Jaedeug Choi and Kee-Eung Kim
Department of Computer Science

Korea Advanced Institute of Science and Technology
Daejeon 305-701, Korea

jdchoi@ai.kaist.ac.kr, kekim@cs.kaist.ac.kr

Abstract
Inverse reinforcement learning (IRL) is the prob-
lem of recovering the underlying reward function
from the behaviour of an expert. Most of the ex-
isting algorithms for IRL assume that the expert’s
environment is modeled as a Markov decision pro-
cess (MDP), although they should be able to han-
dle partially observable settings in order to widen
the applicability to more realistic scenarios. In this
paper, we present an extension of the classical IRL
algorithm by Ng and Russell to partially observ-
able environments. We discuss technical issues and
challenges, and present the experimental results on
some of the benchmark partially observable do-
mains.

1 Introduction
The goal of inverse reinforcement learning (IRL) is to deter-
mine the reward function that an agent is optimizing given the
agent’s behaviour over time [Russell, 1998]. Existing IRL al-
gorithms (e.g., Ng and Russell [2000], Ramanchandran and
Amir [2007], and Ziebart et al. [2008]) mostly assume that
the agent acts in an environment which can be modeled as a
Markov decision process (MDP).

Although the MDP assumption provides a good starting
point for developing IRL algorithms, the implication is that
the agent has access to the true, global state of the environ-
ment. The assumption of an omniscient agent is often too
strong in practice: even though the agent is assumed to be an
expert in the given environment, the agent may be (and often
is) making optimal behaviour with a limited sensory capa-
bility. Hence, it calls for an extension of IRL algorithms to
partially observable environments.

In this paper, we present an IRL algorithm for partially ob-
servable environments. Specifically, we assume that the en-
vironment is modeled as a partially observable Markov deci-
sion process (POMDP), and try to compute the reward func-
tion given that the agent follows an optimal policy. Our al-
gorithm is mainly motivated by the classical IRL algorithm
by Ng and Russell [2000]. We believe that some of the more
recently proposed IRL algorithms could also be extended to
handle partially observable environments. The point of this

paper is to show the general framework for dealing with par-
tially observable environments, the computational challenges
involved in doing so, and some approximation techniques for
coping with the challenge.

We believe that our work will prove useful for many prob-
lems that could be modeled as POMDPs. For example,
the current practice in developing POMDP-based dialogue
systems for speech interfaces [Williams and Young, 2007]
mostly relies on a labor intensive process: the balance among
the reward of a successful dialogue, the penalty of an un-
successful dialogue, and the cost of information gathering
is manually adjusted until a satisfying dialogue policy is ob-
tained from the POMDP. Our work could serve as a founda-
tion for automating the reward specification process (e.g., us-
ing the dialogue corpus collected from a wizard-of-oz study)
and transferring the reward function to a different dialogue
domain (e.g., almost identical reward structure for the travel
reservation domain and the appliance control domain).

2 Preliminaries
In this section, we briefly review some of the notations and
definitions regarding the models for sequential decision mak-
ing under uncertainty, namely MDPs and POMDPs. We also
briefly overview the IRL algorithm by Ng and Russell [2000]
for the sake of presentation of our work.

2.1 MDPs and POMDPs
A Markov decision process (MDP) is defined as a tuple
〈S,A, T,R, γ〉: S is the finite set of states; A is the finite set
of actions; T is the state transition function where T (s, a, s′)
denotes the probability P (s′|s, a) of changing to state s′ from
state s by taking action a; R is the reward function where
R(s, a) denotes the immediate reward of executing action a in
state s, whose absolute value is bounded by Rmax; γ ∈ [0, 1)
is the discount factor.

A policy is defined as a mapping π : S → A. The value
function of policy π is the expected discounted return of exe-
cuting the policy in the state s:
V π(s) = R(s, π(s)) + γ

∑

s′∈S T (s, π(s), s′)V π(s′).

Given an MDP, the agent’s objective is to find an optimal
policy π∗ that maximizes the value for all the states, which
should satisfy the Bellman equation:
V ∗(s) = maxa

[

R(s, a) + γ
∑

s′∈S T (s, a, s′)V ∗(s′)
]

.

It is often useful to express the above equation in terms of
Q-function: π is an optimal policy if and only if

π(s) ∈ argmaxa∈AQ
π(s, a)

where
Qπ(s, a) = R(s, a) + γ

∑

s′∈S T (s, a, s′)V π(s′)

The partially observable Markov decision process
(POMDP) extends MDP for the agent’s noisy observation
of the environment. A POMDP is defined as a tuple
〈S,A,Z, T,O,R, b0, γ〉: S,A, T,R and γ are defined the
same as in MDPs; Z is the finite set of observations; O is the
observation function whereO(s, a, z) denotes the probability
P (z|s, a) of perceiving observation z when executing action
a and arriving in state s; b0 is the initial state distribution
where b0(s) denotes the probability of starting in state s.

Since the true state is hidden, the agent has to act based
on the history of executed actions and perceived observa-
tions. Hence, a policy in POMDP is defined as a mapping
from action-observation histories to actions. Since the num-
ber of possible histories grows exponentially in the number of
time steps, many POMDP algorithms use the concept of be-
lief. Formally, the belief b is the probability distribution over
the current states, where b(s) denotes the probability that the
state is s at the current time step. The belief update for the
next time step can be computed from the belief at the current
time step: given the action a at the current time step and the
observation z at the next time step, the updated belief baz for
the next time step is obtained by

baz(s
′) = O(s′, a, z)

∑

s T (s, a, s′)b(s)/P (z|b, a) (1)
where P (z|b, a) =

∑

s′∈S O(s′, a, z)
∑

s∈S T (s, a, s′)b(s).
Hence, the belief serves as a sufficient statistic for fully sum-
marizing histories, and the policy can be equivalently defined
as a mapping from beliefs to actions. Using beliefs, we can
view POMDPs as belief-state MDPs, and the value function
of an optimal policy satisfies the Bellman equation

V ∗(b) = maxa
[
∑

s b(s)R(s, a)

+ γ
∑

s′,z T (s, a, s′)O(s′, a, z)V ∗(baz)
]

.

Alternatively, a policy in POMDP can be represented as a
finite state controller (FSC). An FSC policy is defined by a
directed graph 〈N , E〉, where each node n ∈ N is associated
with an action a ∈ A and has an outgoing edge ez ∈ E per
observation z ∈ Z. The policy can be denoted as π = 〈ψ, η〉
where ψ is the action strategy associating each node n with
action ψ(n) ∈ A, and η is the observation strategy associ-
ating each node n and observation z with a successor node
η(n, z) ∈ N .

Given an FSC policy π, the value function V π is defined
over the joint space of FSC nodes and POMDP states: for
node n and state s,

V π(n, s) = R(s, a)

+ γ
∑

n′,s′ T
a,os(〈n, s〉, 〈n′, s′〉)V π(n′, s′) (2)

where
T a,os(〈n, s〉, 〈n′, s′〉) = T (s, a, s′)

∑

z∈Z s.t.
os(z)=n′

O(s′, a, z),

with a = ψ(n) and os(z) = η(n, z). The value at node n for
belief b is calculated by

V π(n, b) =
∑

s b(s)V
π(n, s), (3)

and the starting node for the initial belief b0 is chosen by n0 =
argmaxn V

π(n, b0). We can also define Q-function for an
FSC policy π:

Qπ(〈n, s〉, 〈a, os〉) = R(s, a)

+ γ
∑

n′,s′ T
a,os(〈n, s〉, 〈n′, s′〉)V π(n′, s′) (4)

which is the expected discounted return of choosing action a
at node n and moving to node os(z) upon observation z, and
then following policy π. Also the Q-function for node n at
belief b is computed by

Qπ(〈n, b〉, 〈a, os〉) =
∑

s b(s)Q
π(〈n, s〉, 〈a, os〉). (5)

With an FSC policy π, we can sort the reachable beliefs into
nodes, so that Bn denotes the set of beliefs that are reachable
when the current node is n. Note that |Bn| ≥ 1 for every
node n.

2.2 IRL for MDP\R
Formally, the inverse reinforcement learning (IRL) problem
in completely-observable Markovian environments is stated
as follows: Given an MDP\R 〈S,A, T, γ〉 and an expert’s
policy π, find the reward function R that makes π an optimal
policy for the MDP.

Ng and Russell [2000] present a necessary and sufficient
condition for the reward function R of an MDP to guarantee
the optimality of π:

Qπ(s, π(s)) ≥ Qπ(s, a), ∀s,∀a (6)
which states that deviating from the expert’s policy should
not yield a higher value. This condition can be equivalently
reformulated in terms of R:
Rπ(s) −Ra + (Tπ(s) − Ta)(I − γTπ(s))

−1Rπ(s) ≥ 0,∀s,∀a
(7)

where Ta denotes the |S| × |S| matrix with the element
(s, s′) being the transition probability T (s, a, s′) and Rπ(s)

denotes the |S| vector with the s-th element being the reward
R(s, π(s)).

Given the expert’s policy π, which is assumed to be opti-
mal, the reward function is found by solving the optimization
problem:

maximize
∑

s

∑

a∈A\π(s)

[

Qπ(s, π(s)) −Qπ(s, a)
]

− λ||R||1

subject to Constraint (7) and
|R(s, a)| ≤ Rmax,∀s,∀a

where λ is an adjustable weight for the penalty of having too
many non-zero entries in the reward function. The idea is to
maximize the sum of margins1 between the expert’s policy
and all other policies, in the hope that the expert’s policy is
optimal while favoring the sparseness in the reward function.

1We found it more successful to use the sum-of-margins ap-
proach than the minimum-of-margins approach in the original paper,
since the latter fails when there are multiple optimal policies.

When the expert’s policy is not explicitly given but instead
the trajectories of the expert’s policy in the state and action
spaces are available, the algorithm starts with a “base case”
random policy π1. Ideally, the true reward function R should
yield V ∗(s) ≥ V π1(s) since π∗ is an optimal policy with re-
spect toR. For a candidate reward function R̂, the value of π∗

for the starting state s0 is estimated by the average empirical
return:

V̂ ∗(s0) = 1
M

∑M
m=1

∑T−1
t=0 γtR̂(smt , a

m
t)

where {sm0 , sm1 , · · · , smT−1} and {am0 , a
m
1 , · · · , a

m
T−1} are the

T -step state and action sequences in them-th trajectory of the
expert’s policy. The values of other policies with candidate
reward function R̂ are either estimated by sampling trajecto-
ries or exactly computed by solving the Bellman equation.

The algorithm iteratively tries to find a better reward func-
tion R̂, given the set of policies found by the algorithm
Π = {π1, . . . , πk} up to iteration k, by solving the follow-
ing optimization problem:

maximize
∑

π∈Π p
(

V̂ ∗(s0) − V̂ π(s0)
)

where p(x) = x if x ≥ 0, and p(x) = 2x if x < 0. The al-
gorithm then computes a new policy π′ that maximizes value
function under the new reward function, and add π′ to Π. The
algorithm continues until it has found a satisfactory reward
function.

3 IRL in Partially Observable Environments
In this section, we present our IRL algorithms for partially
observable environments. Formally, given an POMDP\R
〈S,A,Z, T,O, b0, γ〉 and an expert’s policy π, we seek the
reward function R that makes π an optimal policy for the
POMDP. As in IRL for MDP\R, the expert’s policy can be
given either explicitly in the form of FSC or implicitly by the
sampled trajectories of beliefs.

3.1 IRL for POMDP\R from FSC Policies
One of the most natural ways to specify a policy for POMDPs
is to use the FSC representation. Hence, when the expert’s
policy is explicitly given, we will assume that it is represented
in the form of an FSC.

We could derive a simple and naive condition for the opti-
mality of the expert’s policy, by assuring that the action and
observation strategies are optimal at every node, analogous
to Equation (6). Given an expert’s policy π = 〈ψ, η〉,

Qπ(〈n, b〉, 〈ψ(n), η(n, ·)〉) ≥ Qπ(〈n, b〉, 〈a, os〉),

∀b ∈ Bn,∀a ∈ A,∀os ∈ NZ (8)
for every node n in π. This inequality states that any policy
that deviates from the expert’s action and observation strate-
gies should not yield a higher value than that of π. Since it is
infeasible to check the value for all possible beliefs, we ap-
proximate the condition by comparing the values only for the
sampled beliefs reachable by the expert’s policy.

However, Equation (8) is not a sufficient condition for the
optimality of π: not only we want to compare to the policies
with different action and observation strategies, but we also

want to take into account other policies that have different
number of nodes compared to π, including policies with an
infinite number of nodes! Since it is clearly infeasible to in-
clude all possible FSC policies into the inequality, we have
to resort to a subset of policies that provide a useful feasi-
ble region of the reward function. For example, Equation (8)
uses the set of |N ||A||N ||Z| policies that have the same (and
possibly fewer) number of nodes as the expert’s policy.

A more sound approach to defining the set of policies is
to use the set of FSC policies that arise during the dynamic
programming update of the expert’s policy [Hansen, 1998].
Given the expert’s policy π, the dynamic programming up-
date generates |A||N ||Z| new nodes for all possible action
and observation strategies, and these nodes can potentially be
a new starting node. This idea comes from the generalized
Howards’ policy improvement theorem [Howard, 1960]:
Theorem 1 If an FSC policy is not optimal, dynamic pro-
gramming update transforms it into an FSC policy with a
value function that is as good or better for every belief state
and better for some belief state.
Hence, if the value does not improve for any belief by the dy-
namic programming update, the expert’s policy should be op-
timal. We should proceed with caution however in the sense
that the dynamic programming update does not generate all
the necessary nodes to guarantee the optimality of the ex-
pert’s policy: the nodes in the expert’s policy are only those
reachable from the starting node n0, which yields the maxi-
mum value at initial belief b0. Nodes that yield the maximum
value at some other belief (i.e., useful) but not reachable from
n0 are not present in the expert’s policy. To guarantee the
optimality of the expert’s policy, we need to include those
non-existent but useful nodes in the dynamic programming
update, but since there is no way to recover them, we settle
for using only the nodes in the expert’s policy.

Formally, for the set of newly generated nodes Nnew, the
value function of node nnew ∈ Nnew with action strategy of
selecting action a and observation strategy os is given by
V new(nnew, s) = R(s, a)

+ γ
∑

n′,s′ T
a,os(〈n, s〉, 〈n′, s′〉)V π(n′, s′) (9)

where V π is the value function of the expert’s policy calcu-
lated from Equation (2). Note that V new as well as V π are
linear in terms of R. Now, the value function of policy π
should satisfy
V π(n, b) ≥ V new(nnew, b), ∀b ∈ Bn,∀nnew ∈ Nnew

(10)
for every node n ∈ N in order to guarantee the optimality of
the expert’s policy π.

A more computationally efficient way to generate the set of
policies is to use the witness theorem [Kaelbling et al., 1998].
Re-stated in terms of FSC policies, we have the following:
Theorem 2 LetUa be a nonempty set of useful nodes with the
action strategy of choosing action a, and N a be the complete
set of useful nodes with the action strategy of choosing action
a. Then Ua 6= N a if and only if there is some node ñ ∈ Ua,
observation z, and n′ ∈ N for which there is some belief b
such that

V new(nnew, b) ≥ V π(n, b)

for all n ∈ Ua, where nnew is a node that agrees with ñ in
its action and all its successor nodes except for observation
z, for which η(nnew, z) = n′.
The witness theorem tells us that if we generate all possi-
ble nnew’s by changing the successor node of each single
observation and check the value for all possible beliefs, we
can guarantee the optimality of π. This leads us to the same
inequality constraint as Equation (10), except that Nnew is
defined in a different way. For each action a, we prepare
Ua = {n ∈ N|ψ(n) = a} and use the witness theorem to
generate |N |2|Z| new nodes. We then use the dynamic pro-
gramming update to generate |A−N ||N ||Z| additional nodes,
where A−N is the set of actions that is not selected at any
of the nodes in N . Hence, using the witness theorem, we
have |Nnew| ≤ |N |2|Z| + |A−N ||N ||Z|, often much fewer
compared to those generated by only using the dynamic pro-
gramming update.

Let us now turn our attention to the complete optimization
problem. If we use the optimality constraint in Equation (8),
we would like to maximize the sum of margins between the
expert’s policy and other policies, while making the reward
function as sparse as possible:

max
∑

n∈N

∑

b∈Bn

∑

a∈A\ψ(n)

os∈NZ\η(n,·)

[V π(〈n, b〉) −Qπ(〈n, b〉, 〈a, os〉)]

− λ‖R‖1

subject to Constraints (2), (3), (4), (5), (8), and
|R(s, a)| ≤ Rmax,∀s,∀a

If we use the dynamic programming update or the wit-
ness theorem, the policies other than the expert’s policy are
captured in nnew’s, hence the optimization problem now be-
comes:
max

∑

n∈N

∑

b∈Bn

∑

nnew∈Nnew

[V π(n, b)−V new(nnew, b)]−λ‖R‖1

subject to Constraints (2), (3), (9), (10), and
|R(s, a)| ≤ Rmax,∀s,∀a

where Nnew is the set of nodes generated by the dynamic
programming update, or by the witness-based method.

3.2 IRL for POMDP\R from Sampled Trajectories
In many cases, the expert’s policy may not be explicitly given,
but the set of trajectories may be available instead. Here, we
assume that it is the set of T -step belief trajectories, where the
m-th trajectory is denoted by {bm0 , b

m
1 , . . . , b

m
T−1}. If the ob-

servation trajectories {zm0 , zm1 , . . . , zmT−1} and the action tra-
jectories {am0 , a

m
1 , . . . , a

m
T−1} are available instead, we can

reconstruct the belief trajectories by using the belief update
in Equation (1).

In order to derive an IRL algorithm for POMDP\R from
the sampled belief trajectories, we make the same assumption
as in Ng and Russell [2000] about the reward function
R(s, a) = α1φ1(s, a) + α2φ2(s, a) + · · · + αdφd(s, a)

where φ1, . . . , φd are the known basis functions mapping
from S × A to <, and the αi’s are the unknown parameters.

Choose a number of beliefs bj , j = 1, . . . , J.
Choose a random initial policy π1, and set Π = {π1}.
for K = 1 to MaxIter

Find α̂i’s by solving the linear program:
maximize

∑J
j=1

∑K
k=1 tjk

subject to V̂ π(bj) − V πk(bj) ≥ tjk, tjk≥0, |α̂i|≤1
Find πK+1 that is optimal w.r.t. the reward function
R̂(s, a) = α̂1φ1(s, a) + α̂2φ2(s, a) + · · · + α̂dφd(s, a)

if V πK+1(bj) − V̂ π(bj) ≤ ε,∀j then return R̂
else Π = Π ∪ {πK+1}

return R̂
Figure 1: IRL for POMDP\R from the sampled trajectories.

The reward for belief b is then calculated by
R(b, a) =

∑

s b(s)R(s, a)

= α1

∑

s b(s)φ1(s, a) + · · · + αd
∑

s b(s)φd(s, a)

= α1φ1(b, a) + · · · + αdφd(b, a)

where φi(b, a) =
∑

s b(s)φi(s, a). We also define V̂ πi (bm0)
to be the average empirical return of them-th trajectory when
using each basis function as the reward function (R = φi)

V̂ πi (bm0) = φi(b
m
0 , a

m
0) + γφi(b

m
1 , a

m
1)

+ · · · + γT−1φi(b
m
T−1, a

m
T−1)

so that we have
V̂ π(bm0) = α1V̂

π
1 (bm0) + · · · + αdV̂

π
d (bm0).

Noting that bm0 = b0 for all m, the average empirical return
at b0 is given by

V̂ π(b0) = 1
M

∑M
m=1 V̂

π(bm0) (11)
which is linear in terms of α1, . . . , αd.

Given the definitions above, the rest of the derivation is
fairly straightforward, and leads to a similar algorithm to that
of Ng and Russell [2000], shown in Figure 1. The algorithm
iteratively tries to find a reward function parameterized by
αi’s that maximizes the sum of the differences between the
V̂ π of the expert’s policy and V πk of each FSC policy πk ∈ Π
found so far. The differences in the values are measured at the
representative beliefs bj’s, which are chosen if they appear
frequently in the early time steps of the trajectories, ensuring
low estimation error in the values. We could use the initial
belief b0 as the only representative belief (similar to Ng and
Russell [2000] using only s0), but we found it more effective
in our experiments to include additional beliefs since they of-
ten provide a better guidance in the search of the reward func-
tion by tightening the feasible region. The average empirical
return of the expert’s trajectories at the representative belief
bj is computed by

V̂ π(bj) =
1

Mj

M
∑

m=1

V̂ π(bmj) =
1

Mj

M
∑

m=1

d
∑

i=1

αiV̂
π
i (bmj)

=
1

Mj

M
∑

m=1

d
∑

i=1

αi

T−1
∑

t=Tm
j

γt−T
m
j φi(b

m
t , a

m
t) (12)

where Tmj is the first time that bj is found in m-th trajectory
and Mj is the number of trajectories that contain bj . How-
ever, computing V πk(bj) is not well defined since bj may be
unreachable under πk. In our work, we use an upperbound ap-
proximation V πk(bj) ≈ maxn V

πk(n, bj), where V πk(n, bj)
is computed by Equation (3).

When πK+1 = π, the differences in the value function for
all representative beliefs will vanish. Hence, the algorithm
terminates when all the differences in the values are below the
threshold ε, or the iteration number has reached the maximum
number of steps MaxIter.

4 Experiments
The first set of experiments concerns with the case when
the expert’s policy is explicitly given using the FSC repre-
sentation. We chose three POMDP problems for the exper-
iments: Tiger, 1d maze, and 5 × 5 grid world. The tiger
and the 1d maze problems are classic benchmark problems in
the POMDP literature, and their specifications can be found
in [Cassandra et al., 1994]. The 5 × 5 grid world problem
is inspired by the one in [Ng and Russell, 2000], where the
agent can move west, east, north or south, and their effect is
assumed to be deterministic. The agent always starts from
the north-west corner of the grid and aims to reach the goal
in the south-east corner. The current position cannot be ob-
served directly but the presence of the walls can be perceived
without any noise when the agent is on the border of the grid.
Hence, there are nine observations, eight of them correspond-
ing to eight possible configurations of the nearby walls when
on the border, and one corresponding to no wall observation
when not on the border. The optimal policies for the prob-
lems were computed using PBPI [Ji et al., 2007], and used as
the expert’s policies.

We experimented with all three approaches in Section 3.1:
the Q-function based approach, the DP-update based ap-
proach, and the witness theorem based approach. As in the
case of IRL for MDP\R, we were able to control the sparse-
ness in the reward function by tuning the penalty weight λ.
With the suitable value for λ, all three approaches yielded the
same reward function. The estimated reward function is com-
pared to the true reward function in Figure 2 for the tiger and
1d maze problems, and in Figure 3 for the 5 × 5 grid world
problem. We discuss each result below.

In the tiger problem (top of Figure 2), the true reward func-
tion is not sparse since every action is associated with a non-
zero reward. Since our methods favor sparse reward func-
tions, there is some degree of difference between the true
and the learned reward functions, most notably for the lis-
ten action, where our methods assign zero reward instead of
-1 as in the true reward. However, we can apply the policy-
invariant reward transformation [Ng et al., 1999] on the true
reward function so that listen action yields zero reward. The
learned reward function is very close to the transformed one,
as shown in the figure.

In the 1d maze problem (bottom of Figure 2), the expert’s
policy has three nodes: node n0 (the starting node) chooses
to move right, and changes to node n1 upon observing noth-
ing or to node n2 upon observing goal; node n1 chooses to

left right left right left right

−1
01

0
10

1
Re

wa
rd

listen open left open right

left middle goal right left middle goal right

−1
0

1
Re

wa
rd

move left move right

Figure 2: Result of IRL from FSC policies. Top: Tiger prob-
lem. Bottom: 1d maze problem. Black bars: The true reward.
White bars: The estimated reward.

move right and always changes to node n2; node n2 chooses
to move left, and changes to node n0 upon observing noth-
ing or to itself upon observing goal. If we follow the expert’s
policy, the probability of moving right is larger than that of
moving left in the left and middle states. Furthermore, the
probability of moving right in the middle state is larger than
that of moving right in the left state. Hence, the algorithm
assigns negative rewards for moving left in the left and mid-
dle states, and even a lower reward for the middle state than
that for the left state. However, the optimal policy from the
POMDP with the learned reward function is the same as the
expert’s policy.

Finally, in the 5× 5 grid world problem (Figure 3), the ex-
pert’s policy is very simple: the agent moves east until it ob-
serves the north-east corner, and moves south until it observes
the south-east corner. In the figure, the states are numbered
sequentially from the start state, so that state 0 corresponds
to the north-west corner, state 4 corresponds to the north-east
corner, and state 24 corresponds to the south-east corner. Our
methods assign positive reward for moving east in the goal
state, and zero or negative reward for all other pairs of state
and action. Again, even though the learned reward function is
different from the true one, it yields the same optimal policy.

The second set of experiments is for the case when the ex-
pert’s trajectories are given. We experimented on the same
set of three problems, with the basis functions chosen as fol-
lows: for the tiger and the 1d maze problems, we used the
table representation for the reward function, i.e., each pair of
state and action as its own basis function; for the 5 × 5 grid
world problem, we prepared six basis functions, five for the
states in the south border, and one for all other states. We
sampled 5000 belief trajectories each of length 50 time steps.
In each iteration K of the algorithm (Figure 1), we evaluated
πK+1 using the true reward. Figure 4 shows the mean values
and the standard deviations of 100 trials on the tiger and the
1d maze problems. For the tiger and the 1d maze problems,
our algorithm took an average of 3.91 and 1.97 iterations re-
spectively. The learned reward upon termination yielded the
optimal policy in 90% and 98% of the trials for the tiger and
the 1d maze problems respectively. The overall average value
of the policies was 1.54 for the tiger problem (optimal pol-
icy yields 1.93), and 1.19 for the 1d maze problem (optimal
policy yields 1.20). We excluded the result on the 5 × 5 grid

−1
0

1

move west
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24state

−1
0

1

move east
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24state

−1
0

1

move north
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24state

−1
0

1

move south
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24state

Figure 3: IRL from FSC policy in 5 × 5 grid world. Black bars: The true reward. White bars: The estimated reward.

Iterations

Va
lu

e
of

 p
ol

icy

1 2 3 4−2
00

−1
00

0
10

Iterations
1 2 3

0.
7

1
1.

3

Figure 4: Results of IRL from sampled trajectories. Left:
Tiger problem. Right: 1d maze problem.

world problem in Figure 4, since the optimal reward is found
in only 1 iteration for all the trials.

5 Conclusion and Future Work
We presented an IRL framework for dealing with partially
observable environments. Experimental results on POMDP
benchmark domains show that, in most cases, our algorithm
robustly finds solutions close to the true reward functions gen-
erating exactly the same optimal policy. The presented work
is only a demonstration of how the existing body of work on
IRL on MDP\R could be extended to POMDP\R, and more
recent IRL techniques as well as some of the IRL-based ap-
prenticeship learning techniques could be similarly extended
by following our line of thought.

There are a number of challenges that should be addressed
in the future. First, the scalability of our methods should be
improved, so that we can handle more realistic problems with
large policies, such as dialogue management problems with
hundreds of policy nodes. Second, it remains as an open prob-
lem whether there exists a sufficient condition for optimality
and a tractable method exploiting it. Even we use the witness
theorem as a non-sufficient condition, we may end up with a
huge number of constraints. We could sample from the ex-
haustive set of conditions, but the theoretical analyses should
be accompanied. Third, some of the issues regarding the con-
vergence to suboptimal rewards could be addressed by more
recent techniques, such as Abbeel and Ng [2004] and Raman-
chandran and Amir [2007].

6 Acknowledgments
This work was supported by Korea Research Foundation
Grant KRF-D00527, and by Defense Acquisition Program
Administration and Agency for Defense Development of Ko-
rea under contract UD080042AD.

References
[Abbeel and Ng, 2004] Pieter Abbeel and Andrew Y. Ng.

Apprenticeship learning via inverse reinforcement learn-
ing. In Proceedings of ICML, 2004.

[Cassandra et al., 1994] Anthony R. Cassandra, Leslie Pack
Kaelbling, and Michael L. Littman. Acting optimally in
partially observable stochastic domains. In Proceedings of
AAAI, 1994.

[Hansen, 1998] Eric A. Hansen. Finite-Memory Control
of Partially Observable Systems. PhD thesis, Depart-
ment of Computer Science, University of Massachusetts
at Amherst, 1998.

[Howard, 1960] Ronald A. Howard. Dynamic Programming
and Markov Processes. MIT Press, Cambridge, MA, 1960.

[Ji et al., 2007] Shihao Ji, Ronald Parr, Hui Li, Xuejun Liao,
and Lawrence Carin. Point-based policy iteration. In Pro-
ceedings of AAAI, 2007.

[Kaelbling et al., 1998] Leslie Pack Kaelbling, Michael L.
Littman, and Anthony R. Cassandra. Planning and act-
ing in partially observable stochastic domains. Artificial
Intelligence, 101, 1998.

[Ng and Russell, 2000] Andrew Y. Ng and Stuart Russell.
Algorithms for inverse reinforcement learning. In Pro-
ceedings of ICML, 2000.

[Ng et al., 1999] Andrew Y. Ng, Daishi Harada, and Stuart
Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings
of ICML, 1999.

[Ramachandran and Amir, 2007] Deepak Ramachandran
and Eyal Amir. Bayesian inverse reinforcement learning.
In Proceedings of IJCAI, 2007.

[Russell, 1998] Stuart Russell. Learning agents for uncer-
tain environments (extended abstract). In Proceedings of
COLT, 1998.

[Williams and Young, 2007] Jason D. Williams and Steve
Young. Partially observable Markov decision processes for
spoken dialog systems. Computer Speech and Language,
27, 2007.

[Ziebart et al., 2008] Brian D. Ziebart, Andrew Maas, J. An-
drew Bagnell, and Anind K. Dey. Maximum entropy in-
verse reinforcement learning. In Proceedings of AAAI,
2008.

