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Abstract

We consider a strategic dialogue task, where the ability to infer the other agent’s
goal is critical to the success of the conversational agent. While this problem can
be naturally formulated as Bayesian planning, it is known to be a very difficult
problem due to its enormous search space consisting of all possible utterances. In
this paper, we propose an efficient Bayes-adaptive planning algorithm for goal-
oriented dialogues, which combines RNN-based dialogue generation and MCTS-
based Bayesian planning in a novel way, leading to a robust decision-making under
the uncertainty of the other agent’s goal. We then introduce reinforcement learning
for the dialogue agent that uses MCTS as a strong policy improvement operator,
casting reinforcement learning as iterative alternation of planning and supervised-
learning of self-generated dialogues. In the experiments, we demonstrate that our
Bayes-adaptive dialogue planning agent significantly outperforms the state-of-the-
art in a negotiation dialogue domain. We also show that reinforcement learning
via MCTS further improves end-task performance without diverging from human
language.

1 Introduction

Building an end-to-end conversational agent for the goal-oriented dialogue is one of the most
promising applications of artificial intelligence, yet very challenging mainly due to the following two
reasons: First, since the other agent’s goal is not directly observable, the agent should be able to plan
under the uncertainty of the other agent’s goal. While this can be naturally formulated as Bayesian
planning, computing Bayes-optimal policy itself is generally infeasible except for very small-scale
problems. Second, optimizing the agent through goal-based training by vanilla reinforcement learning
(e.g. REINFORCE) is inefficient and unstable due to the high variance of policy gradient estimator,
and it typically leads to divergence from human language [6}[16]].

Due to the inherent difficulty of Bayesian planning, existing works for the end-to-end goal-based
dialogue agent either do not perform multi-step planning or just adopt a simple dialogue rollout
with an arbitrarily fixed goal of the other agent |16} 27], but these remedies do not fundamentally
address the problem. As for the issue of diverging from human language, interleaving reinforcement
learning (i.e. goal-based training) and supervised learning (i.e. maximum-likelihood training) has
been proposed and widely adopted, but it still suffers from divergence from human language even with
carefully chosen hyper-parameters. Recently, latent representation models for actions (or sentences)
[27,129] have been proposed to disentangle the semantics of the utterance and the natural language
generation. In the framework, goal-based training was performed in the space of the latent variables
instead of directly optimizing utterances. While these approaches can successfully prevent diverging
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from human language in principle, their goal-based learning process relying on the REINFORCE
gradient update is still unstable and is prone to local optima.

In this paper, we propose Bayes-adaptive dialogue planning (BADP), which integrates dialogue
generation based on RNN and approximate Bayes-optimal planning based on Monte-Carlo tree
search (MCTS) in a novel way. BADP assumes a generative model for sampling dialogue utterances,
typically represented by RNN conditioned on the dialogue history and the goal of the other agent.
Then, it searches for the best response among the sampled utterances, while maintaining the posterior
distribution over the goals of the other agent. This allows BADP to simultaneously keep the dialogue
natural to human and to be robust to the uncertainty of the other agent’s intent. BADP tames the
curse of dimensionality and the curse of history in Bayesian planning by adopting sample-based tree
search and root sampling that avoids repeated expensive posterior update within the tree search, as
introduced in Bayes-adaptive Monte-Carlo planning (BAMCP) [[L11 [12]].

We then leverage this approach for the reinforcement learning of the goal-oriented dialogue agent,
which uses MCTS as a powerful policy improvement operator. MCTS explores combinatorial action
sequences thus its search result can be dramatically better than the simple one-step greedy action, as
can be seen from the great success of Alpha(Go) Zero [21} 22]. Therefore, supervised learning of
self-generated dialogues by MCTS can yield global policy improvement beyond bad local optima,
while policy gradient methods are prone to such problem as they only perform local improvements.
Furthermore, the supervised learning stage circumvents the difficulty of credit assignment, which
makes the overall learning process much more stable with much lower variance of the gradient signal.
Finally, a supervision for training word-level RNN takes place on the level of the (self-generated)
sentence, which prevents divergence from human language. This is in contrast to the traditional
goal-based training of word-level RNN, which does not consider sentence-level linguistic suitability.

Experimental results show that the proposed BADP outperforms the state-of-the-art end-to-end
dialogue agent in a negotiation dialogue domain, while properly accounting for the uncertainty of the
other agent’s goal. We also show that BADP works as a more effective policy improvement operator
than REINFORCE by a significant margin when optimizing the dialogue policy, without diverging
from human language. To the best of our knowledge, this is the first attempt to adapt MCTS as a
policy improvement operator [21]] in goal-oriented dialogues.

2 Background

2.1 Negotiation Dialogues and Notations

We focus on the negotiation dialogues proposed by Lewis et al. [[16]. In the negotiation dialogue, there
are 3 types of items (books, hats, balls) and two agents divide them via natural language conversation.
Agents have different goal (value functions) with values between 0 and 10 for each item. The goal of
each agent is assigned randomly and the agents cannot observe the other’s goal. Agents have two
processes, a dialogue process for the negotiation and a final selection process. If an agreement is
reached at the end of the negotiation, each agent receives a reward equal to the total value of obtained
items. If the selections are in conflict, both agents receive a reward of 0.

The negotiation dialogue proceeds as alternating between the utterance of our agent x; and the
utterance of the opponent y; at each time step t. We denote g, and g, as our agent’s goal and
the opponent’s goal respectively. We use a notation z;.; to represent a list of {x;, ;41,...,2;}.
The dialogue history hy = {@1.,y1.¢} and hexe 119141 = {Z1.441, Y1441 } denotes the sequence of
utterances between two agents. After the dialogue process, each agent selects an action a which is
the number of each item they finally select.

2.2 Challenges in Goal-Oriented Dialogues

Text generation has a number of important challenges such as lack of diversity and coherence [27],
and there have been various novel approaches. For example, Shi et al. [20] proposed an inverse
reinforcement learning algorithm for text generation which encourages to generate diverse texts by
entropy regularized policy gradient. Gu et al. [[10] also address the problem of generating diverse
responses using a multimodal latent structure. There are additional studies to tackle the problem of
semantic coherence through hierarchical structure and additional rewards [[17,[19]. Yet, our work is



complementary to existing approaches in that they can be adopted for any text generation algorithm.
We focus more specific challenges that exist only in goal-oriented dialogues:

e Bayes-optimal planning: Since the agent cannot observe the opponent’s goal, we need to
find a Bayes-optimal solution that considers the posterior of the opponent’s goal.

e Stable reinforcement learning: REINFORCE suffers from the high variance of policy
gradients, unstable training and divergence from human language. We need to develop a
more stable reinforcement learning algorithm for goal-oriented dialogues.

These problems have been raised in many studies on goal-oriented dialogues, e.g. [6}116}17]], but still
not satisfactorily addressed.

2.3 Bayes-Adaptive Monte-Carlo Planning

We can formulate a Bayes-optimal decision-making problem, pertinent to the uncertainty of the other
agent’s goal g,, as the following recursive Bellman’s equation:

V(h) = max [R(h,2) + Y Epiy, i [P(ylh, 7, 9,1V (hay) (M)

where P(g,|h) is the posterior distribution over the other agent’s goals given the dialogue history
h, and R(h, z) is the immediate reward for the utterance x at the dialogue history h. However, it is
intractable to solve Eq. (I exactly except for the very small-scale problems. Bayes-Adaptive Monte-
Carlo Planning (BAMCP) [[11]] precisely addresses the scalability issue of Bayesian planning by
employing Monte-Carlo tree search (MCTS) [} [14] that puts non-uniform search effort to promising
nodes, equipped with root sampling that avoids repeated expensive posterior updates during the
simulation.

More specifically, BAMCP samples an environment model P from the posterior distribution P(P|h)
given the history at the root node and uses the sampled P throughout the simulation (root sampling).
It also adopts UCT [[15], one of the MCTS algorithm, for selecting actions at intermediate nodes by
UCB rule [[1]:

log N(h)
arg max Q(h, 1) + ¢y | ——- (2)
T ECHILDREN(h) N(h,z)
where Q(h, z) is the average of the sampled rewards when action x is selected in h, N(h) is the
number of simulations performed through the node h, N(h,z) is the number of times action z
is selected in node h and c is the exploration constant that balances the exploration-exploitation
trade-off.

2.4 Progressive Widening

The action space of dialogue domains consists of all possible utterances, thus its cardinality is infinite.
Therefore, classical UCT cannot straightforwardly be applied to these problems straightforwardly.
Progressive widening [7H9]] is one of the most widely used methods to solve this type of problems.
This approach maintains a finite number of available actions, and gradually adds a new action if the
following conditions holds:

[N(h)*] > |CHILDREN(h)] 3)

where o € (0, 1) is the parameter that adjusts the (sublinear) rate of growth for the set of available
actions, N (h) is the visit count of the node h, |CHILDREN(h)| represents the number of available
actions at the node h.

2.5 Reinforcement Learning

As a baseline algorithm for goal-based training, we use the REINFORCE algorithm. For rein-
forcement learning, pre-training through supervised learning is performed, and then the dialogues
are generated by a self-play with the supervised learning model, and the model is updated by the
generated dialogues and the rewards received R(z;) to maximize the expected reward:

LRL(Q) = wa,'vpe(w‘t\htfl,gz)[R(‘Tt)] 4
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Figure 1: Overall architecture of policy improvement via Bayes-adaptive dialogue planning.
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To compute the gradients, we use REINFORCE [26] as follows:

VoLrr(0) =Eg,p, [R(x1) Vg log po(zi|hi—1, 9)] )

This gradient estimator is unbiased but has high variance and leads unstable training. Especially in
goal-oriented dialogues, since this method is destined to diverge from human language, we alternate
with supervised learning [6} [16].

3 Bayes-Adaptive Dialogue Planning

For a strategic dialogue task against an opponent, it is important to exploit the opponent’s goal
uncertainty. In this section, we propose Bayes-adaptive dialogue planning (BADP), which combines
the RNN-based dialogue generation and MCTS for goal-oriented dialogues. BADP computes an
approximate Bayes-optimal policy, pertinent to the posterior distribution over the opponent’s goal,
with the goal of robust decision-making under uncertainty.

3.1 Model Components

We first describe two basic components of BADP: Text generation model and Action selection model,
which were proposed by [16].

3.1.1 Text Generation Model

We use an attention-based sequence-to-sequence RNN model for text generation [3,[16]]. The model
is initially trained by minimizing the negative log-likelihood of human-human negotiation dialogues:

in L(6) = — 1 D[R, gl 6
min (0) ;2 ogpo(x;” [l 1, 9") (6)
Once the model is trained, we can generate human-like utterances for the negotiation using this
model: 1 ~ po(-|he, gz )-

3.1.2 Action Selection Model

We also train the action selection model 74 (az|h7, g,) that predicts the final action at the end of
dialogue. We use the attention-based RNN model [3,|16] for the action selection model. Similarly,
this model is trained by minimizing the negative log-likelihood of the action given the dialogue
history and the agent’s goal in the training data:

m(gn L(¢)=— Z log qu(a;i) |h(Ti) , gg)) @)
Our agent will select the final action using this model: a ~ 74(:|hr, gz)-

3.2 Posterior Inference

In order to plan with the opponent’s goal (g,), we infer the posterior of g,. We assume a prior
P(g,) as a uniform categorical distribution since goal has a discrete value between 0 and 10 for each



Algorithm 1 Bayes-Adaptive Dialogue Planning (BADP)

procedure SEARCH(h)
repeat
gy ~ P(gylhe)
SIMULATE (h¢, gz, 9y)
until TIMEOUT ()
return arg max Q(h¢, Ti41)
Tiq1
end procedure
procedure SIMULATE(h:, gz, gy)
[x¢41, r, rollout] < SELECTACTION (h¢, gx)
[yt+1, ht+1] < TRANSITION(hy, Tit1, Gy)
if rollout then
R’ + ROLLOUT(ht+1, a» Gy)
else
R’ <+ SIMULATE(ht+1, gz, Gy)
end if
return UPDATES (7, R, hy, Tt41)
end procedure
procedure SELECTACTION(h¢, g)
if [N (h¢)*| > |CHILDREN(h;)| then
Ti41 ~ p9($t+1|ht79x)
Add x¢41 to CHILDREN (Z¢+41)

procedure TRANSITION(A¢, Ti41, Gy)
if | NV (ht, z¢41)?] > |CHILDREN(z¢41)| then
Ye+1 ~ Por (Yer1|he, Tet1, gy)
Add y¢+1 to CHILDREN(Z¢41)
N(ht41) < 0,Q(ht41) 0
else
Yt+1 ~ por (Y € CHILDREN(Z¢41)|he, Tet1, gy)
end if
return [yet1, ReTr1Yer1]
end procedure

procedure ROLLOUT(h¢, gz, Gy)

if End-of-Dialogue then

return R(h¢, gz, gy)

end if

Ter1 ~ po(Tes1|he, )

T4 R(ht,l'z+1)

Yer1 ~ Do (Ye+1]he, Tet1, gy)

hit1  heTi41Ye4+1

return r + ROLLOUT(h¢41, 9z, gy)
end procedure

N(ht,xt41) < 0,Q(ht, Tt41) < 0
rollout < true
else

procedure UPDATES(r, R, hy, T4+1)
R« r+ R
N(ht,ItJrl) < N(ht7 $t+1) +1
Q(he, we41) + Q(he, Tet1) + %ﬁﬁ)
return R
end procedure

log N (ht)

Te41 N(h¢,»)

Q(htax) +c

arg max
Z ECHILDREN (h¢)

rollout < false
end if
return [z:y1, R(h¢, z+41), rollout]
end procedure

item, i.e. 113-dimensional categorical distribution in the negotiation dialogue domain. Then, given
the likelihood model of the dialogue generation model pg(y:|hi—1, gy), we can infer the posterior
distribution by Bayes’ rule:

P(gy|ht) X P(gy)pe(ht‘gy)

which again falls into categorical distribution.

®)

3.3 Bayes-Adaptive Dialogue Planning

We now describe Bayes-adaptive dialogue planning (BADP), which is a Bayes-optimal planning
method based on Monte-Carlo tree search (MCTS) with the opponent’s goal as a hidden state. The
pseudo-code of BADP is presented in Algorithm[T]and each simulation of MCTS in BADP consists
of the following steps:

1. Atroot node, sample an opponent’s goal g, from the posterior P(gy|h;) given the dialogue
history h; (root sampling), and uses the sampled g,, throughout the simulation.

2. When the (double) progressive widening criteria is satisfied, we add a new node to the tree
with a new newly sampled utterance from x ~ pg(z|h, g) (or y ~ per (y|he, Te41, gy))-

3. Select a next sentence x4+1 by UCT inside the tree or by sampling utterances from dialogue
generation model py(x|hy, g,.) during rollout.

4. Once the dialogue simulation is terminated, a final reward is given based on the result of the
dialogue, and it is back-propagated towards the root node.

Our BADP algorithm combines the RNN-based dialogue generation model and MCTS-based
Bayesian planning. Since every action considered in MCTS are all generated from the RNNs
that are pre-trained via supervised-learning of human-to-human dialogues, the search does not end
up with utterances that severely diverge from human language. Also, BADP is equipped with root



vs. LIKELIHOOD Score (all)  Score (agreed) % Agreed Average Turns % Pareto Optimal
LIKELIHOOD 5.47 vs 5.44 6.41 vs 6.36 85.4% 4.99 56.1%
ROLLOUT 6.88 vs 5.11 7.61 vs 5.65 90.5% 5.32 68.3%
DIVERSE ROLLOUT* | 8.41 vs N/A N/A N/A N/A N/A
MCTS 8.14 vs 5.32 8.19 vs 5.36 99.4% 5.12 70.4%
PRIOR BADP 8.29 vs 4.09 8.32 vs 5.01 99.6% 4.86 67.2%
POSTERIOR BADP 8.54 vs 4.76 8.56 vs 4.77 99.8% 5.19 70.1%

Table 1: Experimental results of planning methods against the LIKELTHOOD model. LIKELIHOOD
denotes the result of supervised learning model (without planning). ROLLOUT and MCTS represents
the result of the corresponding planner. The results with * are from [[L6]. All other results are averaged
over 12258 dialogues.

Goal (Value functions) 10 10 10
BADP 3xbook value=2 2xhat value=0 I1xball value=4 | o 9 9 0.60
LIKELIHOOD  3xbook value=2 2xhat value=2 1xball value=0 | . s s
BADP I would like the ball and the books A) , 5 5
LIKELIHOOD I need the books and the hats 045
BADP So i get the books and the ball? (B) ¢ ¢ ¢
LIKELIHOOD  Yes ° ’ : 030
BADP <selection> () 4 N N
LIKELIHOOD  book=0 hat=2 ball=0 3 3 3
BADP book=3 hat=0 ball=1 2 2 I:I:I 2 _ -015
Selection Reward 1 1 1
BADP 3xbook 1xball 10/10 . - :l 0 - |:| 0 - 000
LIKELIHOOD 2xhat 410 Book Hat Ball Book Hat Ball Book Hat Ball
(A) (8) (€

Figure 2: Qualitative results of posterior inference. The heatmap represents the marginal probability
of posterior distribution which is used to goal sampling of each BADP’s turn. The red box represents
the opponent’s true value of each item.

sampling [11]] thus avoids expensive posterior update. Lastly, it can be formally shown that BADP
converges to Bayes-optimal solution asymptotically as the number of simulations goes to infinity,
thanks to the consistency result of BAMCP [11] and (double) progressive widening [2].

4 Policy Improvement via Bayes-Adaptive Dialogue Planning

Similar to [21]], we can use MCTS as a powerful policy improvement operator for reinforcement
learning. Similarly we use BADP as a policy improvement operator for dialogue policy improvement.
Dialogues generated from self-play of BADP using 7 and the supervised learning model are expected
to have higher rewards than the dialogues generated directly from policy 7. Therefore, we can exploit
these self-generated dialogues for policy improvement, where the following two steps are repeated:

1. Use BADP with the current dialogue generation model pg(x¢|hi—1, g;;) to collect the (im-
proved) self-play dialogues D(®), D) where

DO =, a)
denotes the ¢-th dialogue.

2. Update the dialogue generation model parameter 8 by minimizing the negative log-likelihood
of the self-generated dialogues:

arg min —Zzlogpe DR, g0y

which corresponds to the supervised learning of the improved policy.

We continue to update the dialogue policy via policy iteration with BADP operator until convergence.

5 Experiments

In this section, we show experimental results of our proposed models on negotiation dialogues.
First, we compare the performance of BADP with baseline planning algorithms, and perform the
qualitative analysis for the posterior inference of the opponent’s goal. Second, we also show that



vs. LIKELIHOOD | Score (all)  Score (agreed) % Agreed Average Turns % Pareto Optimal
LIKELIHOOD (0) | 5.47 vs 5.44 6.41 vs 6.36 85.4% 4.99 56.1%
LIKELIHOOD (1) | 6.37 vs 4.82 7.20 vs 5.45 88.4% 5.00 58.6%
LIKELIHOOD (2) | 7.54 vs 4.45 8.27 vs 4.89 91.1% 4.73 73.2%
LIKELIHOOD (3) | 8.25vs 4.20 8.78 vs 4.47 94.0% 4.40 78.7%
LIKELIHOOD (4) | 8.47 vs 4.14 8.92 vs 4.36 94.9% 431 79.4%
LIKELIHOOD (5) | 8.57 vs 4.12 8.99 vs 4.33 95.3% 4.22 81.3%

Table 2: Experimental results for the policy improvement with BADP. LIKELIHOOD(k) denotes the
result of supervised learning on k-th iteration. All the results are averaged over 12258 dialogues.

vs. LIKELIHOOD Score (all) Score (agreed) % Agreed Average Turns % Pareto Optimal
BADP (1) 8.54 vs 4.76 8.56 vs 4.77 99.8% 5.19 70.1%
BADP (2) 9.13 vs 4.25 9.15 vs 4.26 99.8% 4.78 81.7%
BADP (3) 9.19vs 4.15 9.21vs 4.16 99.8% 4.43 83.1%
BADP (4) 9.20vs 4.13 9.21vs4.14 99.8% 431 82.6%
BADP (5) 9.20 vs 4.12 9.22vs4.12 99.8% 4.27 83.1%

Table 3: Experimental results for planning iteration of the policy improvement with BADP. BADP(k)
denotes the result of BADP on k-th iteration. All the results are averaged over 12258 dialogues.

the performance of BADP-based policy improvement is consistently improved, and BADP works
as a more powerful policy improvement operator compared to REINFORCE. We compare both
quantitative and qualitative performances of BADP-based policy improvement with REINFORCE-
based policy improvement.

5.1 Training Details

We use human-human negotiation dialogues as the pre-training data collected by Lewis et al. [[16]].
All hyper-parameters for baseline model training are set as described in [27]. For BADP, we use an
exploration constant for UCT of 5, the number of actions for each node of 15, and the number of
simulations of 300. For the policy improvement, we used the 12258 dialogues from the self-play
with planning as the training data for each supervised learning step. We use baseline model as a user
simulator for our interactive training and end-task evaluation.

5.2 Bayes-Adaptive Dialogue Planning

We conduct experiments on the negotiation dialogue domain to compare the performance of BADP
with the following baseline algorithms: LIKELIHOOD uses simple supervised learning model from
human-human dialogues, ROLLOUT uses the LIKELTHOOD model combined with goal-based decoding
using a simple dialogue rollout [16], DIVERSE ROLLOUT uses hierarchical text generation model with
diverse rollout [27/], MCTS uses the LIKELIHOOD model combined with MCTS (assuming that the
opponent’s goal is the same as the agent’s goal, as in ROLLOUT), and PRIOR BADP/POSTERIOR BADP
uses the supervised learning model (either trained by human-human dialogues or self-play dialogues)
combined with our BADP based on prior/posterior of the opponent’s goal.

Table [T| summarizes the experimental results of our methods (PRIOR BADP, POSTERIOR BADP) and
baseline algorithms. As can be seen in Table[I] POSTERIOR BADP outperforms the state-of-the-art
performance, even with the most simple RNN model as a dialogue generation model. A simple
dialogue rollout model, ROLLOUT fails to boost the performance dramatically, since it is open-loop
planning algorithm that does not consider the intermediate results of each simulation, while MCTS
performs closed-loop planning. Also, goal sampling with updated posterior (POSTERIOR BADP)
shows that better performance than using the fixed goal (MCTS) or the sampled goals from the prior
(POSTERIOR PRIOR).

5.3 Posterior Inference Examples

Figure [2] shows an illustrative example of the inferred posterior distribution. In the dialogue example
between the LIKELIHOOD and POSTERIOR BADP models, we visualize the posterior distribution.
At the beginning of the dialogue, starting with no history, the opponent’s goal is sampled from
the uniform prior distribution. As the dialogue proceeds, the posterior inferred from the dialogue



vs. LIKELIHOOD Score (all)  Score (agreed) % Agreed Average Turns % Pareto Optimal
LIKELIHOOD 5.47 vs 5.44 6.41 vs 6.36 85.4% 4.99 56.1%
REINFORCE* 7.10 vs 4.20 7.90 vs 4.70 89.9% N/A 58.6%
BADP-RL(PRIOR) 8.40 vs 4.10 8.89 vs 4.34 94.5 % 4.18 78.0 %
BADP-RL(POSTERIOR) | 8.57 vs 4.12 8.99 vs 4.33 95.3% 4.22 81.3%

Table 4: Comparison of different reinforcement learning algorithms. The results with * are from [16].
All other results are averaged over 12258 dialogues.

history becomes more accurate. Through the both of numerical improvement and visualized posterior
distribution, we can see that the POSTERIOR BADP is able to generate appropriate responses by
reflecting the opponent’s goal.

5.4 Policy Improvement via Bayes-Adaptive Dialogue Planning

In this section, we evaluate the performance of BADP as a policy improvement operator. The policy
improvement consists of updating the policy by supervised learning and generating dialogues by
planning. Table 2]and [3]show the results of supervised learning and planning according to iteration.
LIKELIHOOD(k) and BADP(k) represent the k-th iteration results of the supervised learning and
BADP-based planning. The model updated through LIKELIHOOD is used for BADP, and dialogues
generated through BADP are used for supervised learning in LIKELIHOOD. We performed policy
improvement until the scores converged. The results show that the performance of the policy is
robustly improved.

We also show that BADP-based policy improvement, BADP-RL, works as a much stronger policy
improvement operator over REINFORCE. Results are shown in Table [l BADP-RL achieve a better
reward, higher agreement rate, and Pareto efficiency than the REINFORCE algorithm. In addition,
we found that the results of goal sampling from the posterior distribution are better than the results of
goal sampling from the prior distribution. We also evaluated models in real dialogues with people,
and compared the naturality of utterances from reinforcement learning models. Our BADP-RL
outperforms REINFORCE both in the end-task performance and the language quality. Detailed
results are provided in Appendix [A]

6 Related Work

In traditional goal-oriented dialogues, the dialogue state tracking is done with explicitly defined
dialogue states [13} |18, 25]. However, this requires additional work, such as defining and annotating
the dialogue states. Recently, end-to-end goal-oriented dialogue methods without explicit dialogue
state have been proposed [4], and studies on implicit latent representations have been proposed
[23l 24]. In the negotiation dialogue, latent variable models have been proposed and shown to
improve performance [27,29]. In this paper, we employ both explicit and implicit approaches: the
text generation model is based on RNN, which is inherently implicit, and the opponent’s goal is
represented as a categorical random variable, which is inherently explicit.

Reinforcement learning has shown remarkable success in many natural language domains such as text
generation [[17, 28], question answering [6] and goal-oriented dialogue [[16}29]]. Most approaches
use REINFORCE-like gradient update to maximize the rewards, but they have limitations such as
high variance, unstable training and diverging from human language. Recently, Silver et al. [21]
achieved human-level performance in Go domain by using MCTS as a policy improvement operator.
Inspired by this work, we presented a powerful and stable dialogue policy improvement algorithm
(BADP-RL) by using the BADP algorithm as a policy improvement operator.

7 Conclusion

In this paper, we presented Bayes-adaptive dialogue planning (BADP), a novel end-to-end dialogue
planning algorithm for strategic goal-oriented dialogues that require inference on the other agent’s
goal. Further, we integrated BADP into reinforcement learning, which uses BADP as a powerful
policy improvement operator. Our experimental results show that BADP models outperform the
state-of-the-art performance in the negotiation domain and it can offer the interpretation of the agent’s
negotiation strategy being executed by the posterior distribution over the opponent’s goal.
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Appendix A Human Evaluation

To confirm the naturality of utterances from reinforcement learning models, we evaluated models
in real dialogues with people. We collected 150 dialogues between each model and participants.
In addition to collecting end-task performance scores of REINFORCE and BADP-RL against the
participants, we asked participants to evaluate the language quality of the models on a scale between
1 (worst) and 5 (best). Table[5|summarizes the result. Our BADP-RL outperforms REINFORCE both
in the end-task performance and the language quality. Table [6] shows an dialogue example, which
clearly indicates that BADP-RL does not diverge from human language, whereas REINFORCE
generates nonsensical sentences (e.g. repeating the same word or generating a sentence that human
cannot understand).

Model Score  Language quality
REINFORCE | 4.91 2.55
BADP-RL 7.43 4.70

Table 5: Comparison of REINFORCE and BADP-RL on end-task performance and language quality.

Goal (Value functions)

HUMAN 1xbook value=4 1xhat value=6 3xball value=0

AGENT1xbook value=0 1xhat value=4 3xball value=2
REINFORCE I would like the hat, you can have, we deal. BADP-RL I would like the hat and two balls.
HUMAN I need the hat and the book. HUMAN I want a book and hat, you can have 3 balls
REINFORCE I would like. BADP-RL  okay deal!
HUMAN You can have the all balls HUMAN <selection>
REINFORCE <selection> BADP-RL book=0 hat=0 ball=3
HUMAN book=1 hat=1 ball=0 HUMAN book=1 hat=1 ball=0
REINFORCE  book=0 hat=0 ball=3

Selection Reward Selection Reward

HUMAN 1xbook 1xhat 10/10 HUMAN 1xbook 1xhat 10/10
REINFORCE 3xball 6/10 BADP-RL 3xball 6/10

Table 6: Dialogue examples of reinforcement learning models against human. For the same context
dialogue, REINFORCE makes lots of grammatical errors and diverges from the human language, but
BADP generates human-like dialogues with high rewards.
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