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Abstract

The first track of the Ninth Dialog System Technology Chal-
lenge (DSTC9), “Beyond Domain APIs: Task-Oriented Con-
versational Modeling with Unstructured Knowledge Access,”
encourages the participants to build goal-oriented dialog sys-
tems with access to unstructured knowledge, thereby mak-
ing it possible to handle diverse user inquiries outside the
scope of API/DBs. It consists of three sub-tasks: knowledge-
seeking turn detection, knowledge selection, and knowledge-
grounded response generation. We claim that tackling these
sub-tasks separately is neither parameter-efficient nor of bet-
ter performance. In this paper, we present an end-to-end
document-grounded conversation system that utilizes a pre-
trained language model with an encoder-decoder structure. In
the human evaluation, our dialog system achieved the accu-
racy score of 4.3082 and the appropriateness score of 4.2665,
which ranked 9th out of 24 participant teams. Furthermore,
we conduct an ablation study and show that the end-to-end
encoder-decoder scheme enables more efficient use of param-
eters in the document-grounded conversation setting.

Introduction
Goal-oriented dialog systems assist users to fulfill their pur-
poses, such as booking, by properly understanding and re-
sponding to the user queries. Traditionally, they have relied
on internal databases and APIs, which are often insufficient
for diverse user demands; for example, a database may not
know specific information like if a hotel allows pets. How-
ever, such knowledge may be found in the FAQs and re-
views, etc. From this motivation, the first track of the Ninth
Dialog System Technology Challenge (DSTC9), “Beyond
Domain APIs: Task-Oriented Conversational Modeling with
Unstructured Knowledge Access” (Kim et al. 2020), encour-
ages the development of goal-oriented dialog systems with
access to the unstructured knowledge.

The research on the dialog systems with groundings to
the natural language documents has largely focused on the
chit-chat conversation. Many previous works (Ghazvinine-
jad et al. 2018; Moghe et al. 2018) had utilized RNN-based
sequence-to-sequence models. More recently, Transformer-
based models have been adopted for the document-grounded
conversation (Dinan et al. 2019; Gopalakrishnan et al. 2019).
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Meanwhile, the transfer learning with the language mod-
els pre-trained on large unlabeled data has become a pop-
ular approach in many natural language processing tasks.
Many recent works on the chit-chat conversation (Wolf et al.
2019b; Zhang et al. 2020) and task-oriented conversation
(Budzianowski and Vulic 2019; Ham et al. 2020) have opted
for this framework as well.

Recently, the pre-trained language models with encoder-
decoder structure such as T5 (Raffel et al. 2020) have
emerged and achieved the state-of-the-art on several bench-
marks including SuperGLUE (Wang et al. 2019). They com-
bine the generative capability of the auto-regressive decoder
such as GPT-2 (Radford et al. 2019) with the bi-directional
auto-encoder such as BERT (Devlin et al. 2019).

We propose an end-to-end document-grounded conversa-
tion system that utilizes a pre-trained language model with
an encoder-decoder structure. Specifically, the encoder re-
ceives the given dialog history paired with each candidate
knowledge, and the decoder generates the response based
on the encoding of the most relevant pair, if any. This model
stood at 9th place out of 24 participant teams in the final
evaluation. To analyze which components are more mean-
ingful, we further present an ablation study and show that
the end-to-end encoder-decoder scheme enables more effi-
cient use of parameters in the document-grounded conversa-
tion. The code for reproducing our results is available at our
GitHub repository1.

Task Description
Beyond Domain APIs: Task-Oriented
Conversational Modeling with Unstructured
Knowledge Access
We participated in the first track of DSTC9, “Beyond Do-
main APIs: Task-Oriented Conversational Modeling with
Unstructured Knowledge Access” (Kim et al. 2020). It aims
for a goal-oriented dialog system that can handle user re-
quests outside the scope of the API/DBs by accessing the
external unstructured knowledge.

The track consists of three tasks, as illustrated in Figure 1.
The first task is Knowledge-seeking Turn Detection, where
the model determines if the user’s inquiry can be answered

1https://github.com/kaist-ailab/End-to-End-Enc-Dec-DSTC9
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Figure 1: An overview of the first track of DSTC9

with the API/DBs. If not, it moves to the second task, Knowl-
edge Selection, where the model chooses adequate knowl-
edge. In the third task, Response Generation, the response is
generated from the retrieved knowledge. The details of the
track can be found in (Kim et al. 2020; Gunasekara et al.
2020).

Dataset
The track used the following two datasets. The first dataset is
a modified version of MultiWOZ 2.1 dataset (Budzianowski
et al. 2018; Eric et al. 2019) augmented with additional
knowledge-seeking turns. A knowledge-seeking turn con-
tains a question and an answer regarding a specific knowl-
edge snippet about the domains and the entities of the Mul-
tiWOZ dataset. The first dataset is split into three sub-
sets for train, validation, and test. The labels contain the
ground-truth answers for the three tasks: whether the turn is
knowledge-seeking or not, the relevant knowledge snippet,
and the human response for the user utterance.

The second dataset is a newly collected dataset for the test
phase, differing from the first dataset in the domain, entity,
and locale, to evaluate the generalizability. It contains spo-
ken conversation as well as written conversation, which may
affect the robustness of the dialog system (Gopalakrishnan
et al. 2020). The test phase evaluation was conducted both
on the test split of the augmented MultiWOZ 2.1 and this
new dataset.

Baseline
Kim et al. (2020) proposed several baseline methods for this
track. They reported that leveraging the pre-trained language
models was the best-performing approach. They trained bi-
nary classifiers based on BERT (Devlin et al. 2019) for
Knowledge-seeking Turn Detection and Knowledge Selec-
tion tasks, and a language model based on GPT-2 (Rad-
ford et al. 2019) for Response Generation task. The baseline
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Figure 2: The illustration of our end-to-end encoder-decoder
scheme for document-grounded conversation.

for Knowledge-seeking Turn Detection uses only the dialog
context as the input, whereas the knowledge snippet is also
given to the baselines for the other tasks.

End-to-End Document-Grounded
Conversation with Encoder-Decoder

Pre-Trained Language Model
In this section, we describe our end-to-end approach for the
three tasks. The encoder solves both the Knowledge-seeking
Turn Detection task and the Knowledge Selection task; the
decoder solves the Response Generation task. Figure 2 illus-
trates the workflow of our approach.

Input Representation
Each input begins with <bos> token followed by the
turns in the dialog history, each starting with the corre-
sponding speaker token <user> or <system>. A can-
didate knowledge snippet follows the dialog history, with
<knowledge> token in-between. The knowledge snippet
is formatted as the concatenation of its three constituents,
separated by <knowledge-sep> token: the name of the
relevant entity (or domain if not applicable), the title of the
knowledge snippet, and the body of the knowledge snip-
pet. Both the dialog history and the knowledge snippet were
truncated up to the length of 128 tokens.

Fine-tuning
T5 (Raffel et al. 2020) utilizes the encoder-decoder structure
of Transformer (Vaswani et al. 2017). The encoder consists
of several encoder blocks, each containing a self-attention
layer and a fully connected layer. The decoder is shaped
similarly except for the additional attention layer over the
encoder output.

We fine-tuned the pre-trained T5 model in the following
way. We put an additional fully-connected layer which takes



Recall@1 Recall@2 Recall@5 Recall@10
0.7355 0.9020 0.9895 0.9955

Table 1: Validation performance of knowledge snippet filter-
ing method. Note that the scores are measured for the entities
rather than the individual snippets.

the encoder output at the <bos> token to classify if the dia-
log history and the provided knowledge snippet are relevant.
This binary classifier is trained with the binary cross-entropy
loss Lmc. When the provided knowledge snippet is relevant
to the dialog, the decoder is trained to generate the response
based on the encoder outputs with the cross-entropy loss
Llm. The encoder and decoder are jointly fine-tuned under
the multi-task loss L = Llm+λLmc, where λ is the balanc-
ing coefficient between the two losses.

Inference
At inference time, we pass each of the candidate knowl-
edge snippets to the encoder and sort them by their pre-
dicted probabilities of relevance. Only when some of them
exceed the threshold θ = 0.5, the dialog is classified as the
knowledge-seeking turn, and the knowledge snippet with the
highest probability is selected.

From the decoder, the tokens are sampled using the nu-
cleus sampling with the probability threshold of p = 0.9,
the temperature of T = 0.7, and the maximum length of 40
tokens, following the scheme used for the GPT-2 baseline of
Task 3 (Kim et al. 2020).

Knowledge Snippet Filtering
We filtered the candidate knowledge snippets in the follow-
ing three steps. Firstly, the entities are extracted from the
dialog history using a rule-based algorithm. Secondly, the
extracted entities from the first step are then sorted by the
bi-gram TF-IDF retriever of DrQA (Chen et al. 2017). In or-
der to measure the relevance of each entity to the dialog, we
used the dialog history as the query, and the concatenation of
all the snippets of the entity as the document. Finally, we se-
lect all the snippets pertaining to the top-10 relevant entities
as the candidate knowledge snippets.

The rule-based entity extraction algorithm is as follows.
Above all, we tokenized both the dialog history and the en-
tity names by space and punctuation, and removed all the
tokens that are included in the NLTK (Loper and Bird 2002)
stop words for English. Note that the entity names are given
as part of the knowledge snippets.

After that, we extracted fingerprints for each entity name,
which are consecutive subsequences of tokens that are not
part of any other entity names. We did not use any finger-
prints containing only a single token that is one of the most
frequent 250 tokens in the dialog corpus. When an entity
name has no fingerprints, we used the entire entity name as
the fingerprint.

Finally, we performed approximate string matching for
fingerprints to recognize all the entities that appear in the
dialog history. The approximate string matching covers the
case where a single letter is added, dropped, or replaced

Entry ID Description
0 Ensemble
1 λ = 2, η = 5× 10−5

2 λ = 1, η = 6.25× 10−5

3 λ = 2, η = 6.25× 10−5

4 Our baseline

Table 2: Description of our submission entries.

Priority Description
Highest N = 10 λ = 2 η = 6.25× 10−5

N = 10 λ = 2 η = 5× 10−5

N = 10 λ = 1 η = 6.25× 10−5

N = 8 λ = 2 η = 6.25× 10−5

Lowest N = 8* λ = 2 η = 6.25× 10−5

Table 3: Description of our ensemble entry. The priority
is used for tie-breaking. The asterisk indicates that dur-
ing training, TF-IDF ranking was applied to all the entities
rather than those extracted from the dialog history.

in a token, and the case where two letters in the token
are swapped. The reason behind this is that many entity
names were misspelled in the training and validation di-
alogs; for example, Huntingdon Mariott Hotel was often
confused with Huntington Mariott Hotel.

Experiments
In this section, we present the objective and human evalua-
tion results at the first track of DSTC9. Note that only the
best submissions of the top-12 teams in the objective eval-
uation were subject to the human evaluation. We ranked at
10th place in the objective evaluation and 9th place in the
human evaluation. We also analyze how each component of
our approach affects performance via the ablation study.

Training Details
We used transformers library (Wolf et al. 2019a) for the
pre-trained language model, where we used a t5-large
model of 770M parameters. Unless noted otherwise, the ex-
periments used AdamW optimizer (Loshchilov and Hutter
2019) with an effective batch size of 16, an initial learning
rate of η = 6.25 × 10−5, linear learning rate decay for five
epochs, and a multi-task balancing coefficient of λ = 2.0.

Each instance contained N = 10 knowledge snippets,
among which the ground-truth knowledge snippet is in-
cluded if it is a knowledge-seeking turn. We applied the
knowledge snippet filtering before sampling the knowledge
snippets. The validation performance of the knowledge snip-
pet filtering is shown in Table 1.

Each team was allowed to submit at most five predictions
for all three tasks. Table 2 describes the details of our sub-
mission entries. The ensemble model (Entry ID 0) used hard
voting on the five T5-large models with varying training de-
tails as described in Table 3. We assigned priorities on the
constituent models based on the validation performance to
break any ties in the process. The next three entries (Entry



Entry ID Task 1: Turn Detection Task 2: Knowledge Selection Task 3: Response Generation
Precision Recall F1 MRR@5 Recall@1 Recall@5 BLEU-1 METEOR ROUGE-L

0 0.9984 0.9278 0.9618 0.9233 0.8959 0.9555 0.3523 0.3527 0.3500
1 0.9989 0.9122 0.9536 0.9161 0.8908 0.9478 0.3457 0.3496 0.3437
2 0.9842 0.9147 0.9482 0.9094 0.8802 0.9430 0.3485 0.3497 0.3469
3 0.9978 0.9011 0.9469 0.9137 0.8886 0.9427 0.3534 0.3565 0.3519
4 0.9905 0.8935 0.9395 0.8146 0.7622 0.8832 0.3181 0.3154 0.3200

Baseline 0.9933 0.9021 0.9455 0.7263 0.6201 0.8772 0.3031 0.2983 0.3039

Table 4: The objective evaluation results of our submission entries. Bold indicates the best scores.

ID 1, 2, 3) were the best single models in terms of validation
at the time of submission.

The last entry (Entry ID 4) is our baseline model, which is
similar to the baseline model of the track (Kim et al. 2020)
except that our knowledge snippet filtering method is used
for Task 2. We used bert-base-uncased of 109M pa-
rameters2 for Task 1 and 2, and gpt2-medium of 345M
parameters for Task 3.

Objective Evaluation
The objective evaluation results of our submissions are
shown in Table 4. Note that since Task 2 and 3 are only eval-
uated on the true positives of Task 1, the scores in Task 2
and 3 are adjusted in a way roughly equivalent to multiply-
ing the F1 score of Task 1. The ensemble model (Entry ID
0) performed better than or comparably to our other entries
across all the tasks. Meanwhile, our baseline model (Entry
ID 4) outperforms the track baseline on Task 2 even though
it slightly under-performs on Task 1. This gap in the Task 2
performance probably measures the effect of our knowledge
snippet filtering method. When we compare the performance
of our single models (Entry ID 1, 2, 3) to that of our baseline
(Entry ID 4), we see that the performance gain is significant
even considering the model size difference. We inspect this
aspect in the ablation study.

Human Evaluation
Table 5 shows the human evaluation results. For the human
evaluation, crowd workers were asked to read the conversa-
tion between a user and an agent and rate the accuracy of the
response with respect to the reference knowledge, and the
appropriateness of the response in connection with the con-
versation, on a scale of 1-5. The scores are weighted with the
knowledge-seeking turn detection performance, similarly to
the objective evaluation. Only the best submissions of the
top-12 teams in the objective evaluation were subject to the
human evaluation. Our proposed model (ensemble) ranked
9th place out of 24 participants with the accuracy score of
4.3082, the appropriateness score of 4.2665, and the aver-
age score of 4.2874.

Ablation Study
In this section, we analyze how each component of our ap-
proach affects performance. Table 6 shows the validation

2We tried larger BERT models but could not fine-tune them suc-
cessfully during the competition.

Rank Team ID Accuracy Appropri-
ateness Average

Ground-truth 4.5930 4.4513 4.5221
1 19 4.3917 4.3922 4.3920
2 3 4.3480 4.3634 4.3557
3 10 4.3544 4.3201 4.3373
4 15 4.3793 4.2755 4.3274
5 17 4.3360 4.3076 4.3218
6 7 4.3308 4.2989 4.3149
7 18 4.3309 4.2859 4.3084
8 13 4.3763 4.2360 4.3061
9 23 (Ours) 4.3082 4.2665 4.2874

10 11 4.2722 4.2619 4.2670
11 20 4.2283 4.2486 4.2384
12 21 4.1060 4.1560 4.1310

Baseline 3.7155 3.9386 3.8271

Table 5: Overall results of the human evaluation.

performances of several ablated models. Figure 3 demon-
strates some randomly sampled responses on the validation
set from the ablated models, conditioned on the ground-truth
knowledge snippet. The scores for Task 2 and 3 are evalu-
ated both on the ground-truth and on the prediction of the
previous tasks.

For easier comparison, we trained a smaller t5-base
model of 220M parameters and labeled it as T5 in Ta-
ble 6. To examine the effectiveness of the encoder-decoder
structure, we also fine-tuned GPT-2 (Radford et al. 2019),
which is an auto-regressive decoder-only model. We trained
a gpt2-medium model of 345M parameters to jointly
solve Task 1, 2, and 3 under a similar training scheme. We
did not fine-tune an encoder-only model since it was hard to
solve all the tasks jointly in an end-to-end manner.

As shown in Table 6 and Figure 3, GPT-2 significantly
under-performed T5 on Task 3 while only producing compa-
rable results on Task 1 and 2, even with 57% more parame-
ters. This may be due to the lack of bi-directionality enjoyed
by the encoder-decoder structure. This result provides sup-
porting evidence for the advantage of the encoder-decoder
structure in the knowledge-grounded conversation domain.

On the other hand, to assert the merit of end-to-end multi-
task learning, we trained two additional models. T5 (Task
1 & 2) is the same as T5 except that it is trained on the
multiple-choice loss Lmc only. It utilizes only the encoder
part of the model. T5 (Task 3), on the other hand, is trained



Models Task 1: Turn Detection Task 2: Knowledge Selection Task 3: Response Generation
Precision Recall F1 MRR Recall@1 Recall@5 BLEU-1 METEOR ROUGE-L

T5 0.9882 0.9731 0.9806 0.9622
(0.9788)

0.9470
(0.9611)

0.9791
(0.9989)

0.3971
(0.4065)

0.3997
(0.4100)

0.3871
(0.3981)

Without encoder-decoder structure

GPT-2 0.9931 0.9727 0.9828 0.9635
(0.9727)

0.9484
(0.9536)

0.9802
(0.9951)

0.2675
(0.2675)

0.2752
(0.2761)

0.2841
(0.2850)

Without end-to-end multi-task training

T5 (Task 1&2) 0.9958 0.9693 0.9824 0.9619
(0.9726)

0.9445
(0.9514)

0.9801
(0.9959) -

T5 (Task 3) - - (0.4033) (0.4082) (0.3928)

Table 6: Validation performances of the ablated models. The scores evaluated on the ground-truth of the previous tasks are
written in parentheses. Bold indicates the best scores.

on the language modeling loss Llm only, conditioned on the
ground-truth knowledge snippets. It takes advantage of both
the encoder and decoder part of the model solely for the
response generation. These two combined make up a 50%
larger two-stage model for the three tasks. However, this
two-stage model failed to produce a significant improvement
over the end-to-end model. This demonstrates the benefit of
end-to-end multi-task learning. We speculate that the three
tasks are highly interrelated so that sharing the weight en-
abled the model to take advantage of the knowledge from
other tasks and thereby resulted in more efficient use of pa-
rameters.

Related Works
Generating response grounded on unstructured knowledge
has been an active research area in the field of non-goal-
oriented conversation systems. Ghazvininejad et al. (2018)
extended the sequence-to-sequence model with an addi-
tional recurrent network encoder for external facts in a sim-
ilar manner to Memory Network (Sukhbaatar et al. 2015).
Moghe et al. (2018) adapted a copy-or-generate model to the
knowledge-grounded conversation. Gopalakrishnan et al.
(2019) utilizes the Transformer model (Vaswani et al. 2017)
where the decoder attends to the concatenation of the dia-
log history and the selected knowledge, encoded by a shared
encoder.

The most similar to our work is Transformer Memory
Network (Dinan et al. 2019). They compared the two-stage
model and the end-to-end multi-task model for the two
tasks of knowledge selection and response generation. The
two-stage model employs two separate encoders and one
decoder. The first encoder encodes each knowledge and
each dialog context independently. After an attention-based
knowledge selection, the encodings of the dialog context
and the selected knowledge are concatenated, on which the
second encoder and the decoder operates. The end-to-end
model, on the other hand, does not introduce the second en-
coder, and the decoder directly processes the concatenated
encoding.

Dinan et al. (2019) reported that the two-stage model out-
performed the end-to-end model. However, we showed in
our ablation study that the end-to-end training scheme per-

forms better in our approach. We speculate that the lack of
bi-directional incorporation of the dialog context and the
knowledge was critical to the poorer performance of the
end-to-end version of Transformer Memory Network. In our
work, we fully utilize the capability of the bi-directional en-
coder.

Meanwhile, many recent works on dialog systems have
adopted the transfer learning approach using large-scale
pre-trained language models. TransferTransfo (Wolf et al.
2019b) and DialoGPT (Zhang et al. 2020) proposed the
transfer learning schemes suited for the dialog systems,
based on GPT-2 (Radford et al. 2019). Meena (Adiwardana
et al. 2020) pre-trained a sequence-to-sequence Evolved
Transformer (So, Le, and Liang 2019) on large-scale data
to produce a sensible and specific conversation.

In the goal-oriented setting, Budzianowski and Vulic
(2019) and Ham et al. (2020) fine-tuned GPT-2 models on
the MultiWOZ dataset; Budzianowski and Vulic (2019) gen-
erated the response from the dialog context containing the
belief state and the database state as well as the dialog his-
tory, whereas Ham et al. (2020) generated the response and
intermediate states from the dialog history in an end-to-end
manner. Our work lies in line with these transfer learning ap-
proaches, except that we utilize pre-trained language models
with an encoder-decoder structure, which are more suited to
the document-grounded conversation setting as we demon-
strated in the ablation study.

Conclusion
In this paper, we presented an end-to-end encoder-decoder
model for document-grounded conversation. Our method
can be applied to any pre-trained models with an encoder-
decoder structure. In the official evaluation results, we could
observe that our proposed models outperform the base-
lines across all the tasks by significant margins. The hu-
man evaluation result showed that our approach can respond
with reasonable accuracy and appropriateness. We further
demonstrated by ablation study that the end-to-end encoder-
decoder scheme enables more efficient use of parameters.
One limitation of our methodology is the dependency on the
heuristics and traditional information retrieval systems for
knowledge snippet filtering. Overcoming this dependency



by integrating neural retrievers can serve as a future research
direction.

Acknowledgments
This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2020-
0-00940, Foundations of Safe Reinforcement Learning and
Its Applications to Natural Language Processing).

References
Adiwardana, D.; Luong, M.-T.; So, D. R.; Hall, J.; Fiedel,
N.; Thoppilan, R.; Yang, Z.; Kulshreshtha, A.; Nemade, G.;
Lu, Y.; et al. 2020. Towards a human-like open-domain chat-
bot. arXiv preprint arXiv:2001.09977 .

Budzianowski, P.; and Vulic, I. 2019. Hello, It’s GPT-2 -
How Can I Help You? Towards the Use of Pretrained Lan-
guage Models for Task-Oriented Dialogue Systems. In Pro-
ceedings of the 3rd Workshop on Neural Generation and
Translation@EMNLP-IJCNLP 2019.

Budzianowski, P.; Wen, T.-H.; Tseng, B.-H.; Casanueva, I.;
Stefan, U.; Osman, R.; and Gašić, M. 2018. MultiWOZ
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Example #1
Dialog Context

... ...
User Yes, please. I’m going to need a taxi to take me from the hotel to the restaurant.
System what time do you want to leave
User I need to arrive at the restaurant by 12:45. I also need the contact number and car type please.
System look out for a yellow skoda with contact number 07860378071
User Will I be able to cancel my taxi booking later?

Relevant Knowledge
Q: What is the cancellation policy?
A: You are able to cancel for free up to 24 hours in advance, we will charge 10 GBP after the cancellation

time frame.
Generated Responses

Ground-truth You can cancel the taxi booking up to 24 hours in advance, after that it is 10 GBP. Do you have any other
questions I can answer today?

T5 You can cancel for free up to 24 hours in advance. After that there is a 10 GBP charge. Is there anything
else I can help you with?

GPT-2 nope, you may cancel up to 24 hours for free, 10 gbp after this time frame. Anything else for you today?
T5 (Task 3) You can cancel up to 24 hours in advance. After that there is a 10 GBP fee. Do you have any other

questions?

Example #2
Dialog Context

... ...
User I’d like to know how I can get written confirmation. Is that something passengers can obtain?
System Once the booking is complete, you will get a confirming email. I hope that’s o.k.; any other questions

about the train?
User Will we be able to use wireless internet during the ride

Relevant Knowledge
Q: Is there WiFi available on the train?
A: There will be basic WiFi service on the train, the ID is GreatNorthern WiFi.

Generated Responses
Ground-truth Basic wi-fi service is available for passengers. Can I be of any other assistance?
T5 Yes, you’ll be able to use wifi on the train. The ID is GreatNorthern WiFi. Anything else I can do for you?
GPT-2 This train service provides basic WiFi services. Do you require assistance with anything else?
T5 (Task 3) Yes, you can use wifi on the train. Is there anything else I can do for you?

Example #3
Dialog Context

... ...
User Yes could you give me the phone number for The Nirala?
System Their number is 01223 360966.
User Which part of town it is in?
System it is located in the north part of town
User Does this restaurant allow customers to BYOB?

Relevant Knowledge
Q: Do you have BYOB?
A: BYOB is not available at The Nirala.

Generated Responses
Ground-truth No, BYOB isn’t allowed for guest. Do you need anything else?
T5 BYOB is not currently available at The Nirala. Do you have any other questions?
GPT-2 Is that okay?
T5 (Task 3) No, BYOB is not an option at this restaurant. Do you have any other questions about the restaurant?

Figure 3: Randomly sampled responses on the validation set from the ablated models, conditioned on the ground-truth knowl-
edge snippet. We only show the last few turns of the dialog contexts due to space constraints.



guage Understanding Systems. In Advances in Neural Infor-
mation Processing Systems.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; Davi-
son, J.; Shleifer, S.; von Platen, P.; Ma, C.; Jernite, Y.; Plu,
J.; Xu, C.; Scao, T. L.; Gugger, S.; Drame, M.; Lhoest,
Q.; and Rush, A. M. 2019a. HuggingFace’s Transform-
ers: State-of-the-art Natural Language Processing. arXiv
preprint arXiv:1910.03771 .
Wolf, T.; Sanh, V.; Chaumond, J.; and Delangue, C. 2019b.
TransferTransfo: A Transfer Learning Approach for Neu-
ral Network Based Conversational Agents. arXiv preprint
arXiv:1901.08149 .
Zhang, Y.; Sun, S.; Galley, M.; Chen, Y.-C.; Brockett, C.;
Gao, X.; Gao, J.; Liu, J.; and Dolan, B. 2020. DialoGPT:
Large-Scale Generative Pre-training for Conversational Re-
sponse Generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics.


