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Abstract

Stochastic variational inference has emerged as an effective method for performing
inference on or learning complex models for data. Yet, one of the challenges in stochastic
variational inference is handling high-dimensional data, such as sequential data, and models
with non-differentiable densities caused by, for instance, the use of discrete latent variables.
In such cases, it is challenging to control the variance of the gradient estimator used in
stochastic variational inference, while low variance is often one of the key properties needed
for successful inference. In this work, we present a new algorithm for stochastic variational
inference of sequential models which trades off bias for variance to tackle this challenge
effectively. Our algorithm is inspired by variance reduction techniques in reinforcement
learning, yet it uniquely adopts their key ideas in the context of stochastic variational
inference. We demonstrate the effectiveness of our approach through formal analysis and
experiments on synthetic and real-world datasets.

Keywords: sequential variational inference, black-box variational inference

1. Introduction

One of the recent trends in machine learning is to learn a sophisticated probabilistic model
from complex data. Such a model is typically built on top of deep neural network, and the
learning commonly involves approximating the model’s intractable posterior. Computing a
good approximate posterior efficiently has been the aim of many research projects, which
led to a wide variety of approaches, such as stochastic variational inference when the model
yields explicit likelihood densities (Kingma and Welling, 2014; Hoffman et al., 2013; Burda
et al., 2016) and game-theoretic framework when likelihoods are only implicit (Goodfellow
et al., 2014).

Our goal is to advance the state of the art of generic stochastic variational inference
for sequential data. In particular, we want to have an inference algorithm that can ana-
lyze efficiently models with non-differentiable densities, such as those using discrete latent
variabmles. In fact, tackling such non-differentiable models or the ones with discrete latent
variables has been an active research topic in the variational-inference community. In the
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past few years, different types of techniques have been developed. Some focused on reduc-
ing the variance of existing gradient estimator with clever control variate (Grathwohl et al.,
2018; Tucker et al., 2017), while others focused on relaxing discrete random variables to
differentiable continuous ones (Maddison et al., 2017b; Jang et al., 2017) or removing the
smoothness assumption from existing techniques (Lee et al., 2018). Although significant
progress has been made, experts agree that discrete latent variables and non-differentible
densities are still stumbling blocks for stochastic variational inference. This sentiment is
consistent with the experiments reported later in this paper.

In the paper, we present a new algorithm for black-box variational inference for se-
quential data. Our algorithm is designed to handle both of continuous latent variables
and discrete latent variables effectively. It is based on three ideas, all coming from the
reinforcement-learning literature.

The first idea is to separate out a problematic part of the standard ELBO objective for
state space models, and to approximate this part using a separate optimization process.
Intuitively, the part computes a version of the ELBO from a state at time step t > 1,
instead of the usual t = 1. We call it future ELBO. The future ELBOs at different time
steps satisfy recursive equations, which our algorithm uses to compute their approximations.
These approximate future ELBOs are used during the estimation of the gradient of the
ELBO, and help reduce the variance of the estimator. The future ELBOs correspond to
critics in the actor-critic method of reinforcement learning. Briefly, we may consider that
actor-critic is combining REINFORCE algorithm with approximating future information,
especially value function in reinforcement learning and in our case, it corresponds to future
ELBO.

The second idea is to use so called trust region. Our variational-inference algorithm
computes approximate future ELBOs for a variational distribution qφ0 , but uses them to
estimate the ELBO and its gradient at a different variational distribution qφ1 . To manage
the potential harm of this seemingly incorrect use of these future ELBOs, our algorithm
uses trust region and limits the application of the future ELBOs to variational distributions
sufficiently close to qφ0 .

The third is natural gradient, which is derived from a second-order approximation of
trust region constraint. This means that when the algorithm computes the direction of
changing the variational distribution qφ, it uses a notion of distance or divergence inherent
to distributions themselves, not the choice of their parameterization. Natural gradients have
been used in the context of variational inference previously (Hoffman et al., 2013; Regier
et al., 2017).

We point out that while all of these ideas are inspired by policy gradient methods
in reinforcement learning, in particular, by TRPO (Schulman et al., 2015), their concrete
implementation in our algorithm is unique. While most of reinforcement learning algorithms
strive for sample efficiency due to the high cost of generating samples, our algorithm does
not do so. This is an acceptable option because generating samples is significantly cheaper
in stochastic variational inference than in reinforcement learning. This in turn provides
simplicity over TRPO in terms of formal analysis and implementation.

Our algorithm has the theoretical property that in an ideal setting, each update to the
variational distribution improves its ELBO. Also, our experiments with time-series models
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and discrete latent variables show that the algorithm outperforms the relaxation based on
concrete distribution, one of the best techniques for this kind of problem.

2. Background

We briefly review the basics of stochastic variational inference that needed to follow our
paper.

2.1. Variational Inference

Consider a probabilistic model defined by a density function p over random variables z ∈
Z ⊆ RM and x ∈ X ⊆ RL. Assume that x is observed. We would like to compute
the posterior distribution of latent z under observed x. Unfortunately, in most cases, it
is not possible to compute the exact posterior. This difficulty led to the development of
multiple approaches for approximating the posterior, in particular, variational inference
which phrases approximate posterior inference as optimization. A variational inference
algorithm assumes a family of approximating distributions {qφ(z;x)}φ, and sets up an
optimization problem for qφ by picking an objective function that intuitively measures the
approximation quality of qφ(z;x) to the posterior p(z|x) for a given x. A recent popular
choice is stochastic gradient ascent, which optimizes φ by following a sample-based estimate
of the gradient of the objective.

A common optimization objective is evidence lower bound (ELBO), given by

L(φ;x) = Ez∼qφ( ;x)

[
log

p(x, z)

qφ(z;x)

]
. (1)

By Jensen’s inequality, log p(x) ≥ L(φ;x), from which the name ELBO came. The inequality
becomes equality precisely when qφ(z;x) is p(z|x), the posterior itself.

To perform stochastic gradient ascent, two well-known algorithms, score estimator (re-
ferred to as REINFORCE (Williams, 1992) and likelihood ratio estimator (Glynn, 1990))
and reparameterization estimator (also known as pathwise estimator) (Kingma and Welling,
2014), are widely used. The reparameterization estimator generally shows better perfor-
mance than the score estimator in terms of variance. However, it has a limited scope of
applicability. In particular, it has the difficulty in handling models with discrete latent vari-
ables. Overcoming this limitation is still an active research topic, with multiple proposals
such as the handling of discrete latent variables via the Gumbel-softmax trick (Maddison
et al., 2017b; Jang et al., 2017) and the addition of a correction term for non-differentiable
boundaries to the estimator (Lee et al., 2018).

2.2. State Space Model

The state space model is a standard representation for dynamics behind sequential data. It
assumes a latent variable z formed by a random sequence z1, . . . , zT in RM , and an observed
variable x of a similar sequence form: x = (x1, . . . , xT ) with each xt having a value in RL.
Then, the joint density of x and z is represented by initial joint density p(x1, z1) and joint
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transition density p(xt+1, zt+1|x1, . . . , xt, z1, . . . , zt) as follows:

p(x, z) = p(x1, z1)

T∏
t=2

p(xt, zt|x1:t−1, z1:t−1) (2)

Here we use the subscript notation xi:j to denote the subsequence (xi, xi+1, . . . , xj). Note
that this setup permits time-dependent transition densities on xt and zt.

Variational inference is frequently employed for approximating the posterior p(z|x) of
the state space model. A popular choice of an approximating distribution qφ(z;x) in this
case is the one with the following factozation:

qφ(z;x) = qφ(z1;x)

T∏
t=2

qφ(zt|z1:t−1;x). (3)

3. Trust Region Variational Inference with Approximating Future ELBO

We now present our algorithm for performing stochastic gradient ascent. Our algorithm uses
following key ingredients: (i) surrogate objective approximating the ELBO with a variant of
the actor-critic method; (ii) handling the potential incorrectness caused from future ELBO
approximation through trust region; (iii) better gradient direction using natural gradient.
We explain these ingredients one at a time, and show how the original ELBO optimization
gets gradually transformed to our algorithm. We also show that when this problem is solved
exactly, the iteration of our algorithm improves the ELBO, even though the algorithm is
derived from our surrogate objective.

3.1. Variance Reduction via Function Approximation

The first ingredient of our algorithm is a particular type of approximation of the ELBO
inspired by the algorithms in reinforcement learning. In order to achieve this, we first
reformulate the ELBO by identifying recurrent terms that arise in state space models.

Consider the following ELBO for the state space model, defined in (2) and (3):

L(φ;x) = Ez∼qφ( ;x)

[ T∑
t=1

log
p(xt, zt|x1:t−1, z1:t−1)

qφ(zt|z1:t−1;x)

]
. (4)

When the target density p is not smooth, the update of the parameter φ is often done using
the score estimator of the gradient of ELBO.

For the state space model, the gradient of ELBO has the following form:

∇φL(φ;x) =Ez∼qφ( ;x)

[ T∑
t=1

∇ log qφ(zt|z1:t−1;x)

T∑
t′=t

log
p(xt′ , zt′ |x1:t′−1, z1:t′−1)

qφ(zt′ |z1:t′−1;x)

]
(5)
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We can further reformulate the gradient by introducing the future ELBO Γφ(z1:t) given
the prefix of latent variables z1:t, 0 ≤ t ≤ T :

Γφ(z1:0) = L(φ),

Γφ(z1:t) = Ezt+1:T∼qφ( ;x)

[ T−1∑
t′=t

log
p(xt′+1, zt′+1|x1:t′ , z1:t′)

qφ(zt′+1|z1:t′ ;x)

]
,

Γφ(z1:T ) = 0.

Using the future ELBOs and their temporal difference ∆φ given by

∆γ
φ(z1:t) = log

p(xt, zt|x1:t−1, z1:t−1)
qφ(zt|z1:t−1;x)

+ γΓφ(z1:t)− Γφ(z1:t−1)

and ∆φ(z1:t) denotes ∆1
φ(z1:t). The gradient of ELBO in (5) can be simplified as follows

(the derivation is provided in Lemma 1 in the Appendix A.):

∇φL(φ;x) = Ez∼qφ( ;x)

[ T∑
t=1

∇φ log qφ(zt|z1:t−1;x)∆φ(z1:t)

]
.

If we use a naive Monte-Carlo estimation of the future ELBOs Γφ(z1:t), the algorithm
readily reduces to using REINFORCE (Williams, 1992) for the variational inference task.
However, this approach would exhibit too much variance mostly due to its sequential nature,
and thus impractical for all but very simple models. Ideally, we would like to develop a
low-variance unbiased estimator for the future ELBOs so that we can reduce the variance
of the ELBO gradient while incurring no bias.

The approach we propose in this paper is to train an expressive function approximator
with parameter w (e.g. neural networks) to approximate the future ELBOs

Γ̂w(z1:t) ≈ Γφ(z1:t)

without incurring too much bias, so that we can improve the overall perfomance of stochastic
variational inference. In the later sections, we will experimentally show that it is advanta-
geous to introduce even a significant amount of bias to reduce the variance of the ELBO
gradient. Careful readers would notice that this approach is reminiscent of actor-critic
methods in reinforcement learning.

3.2. Monotonic Improvement

In order to further improve stochastic gradient ascent, we can perform line search along the
gradient. To be specific, at iteration k, given the ELBO gradient ∇φL(φ;x)|φk computed
at φk, we seek to find optimal step size α∗ that maximizes the ELBO at each iteration,

α∗ = argmax
α

L(φ′α;x)

where φ′α = φk + α∇φL(φ;x)|φk , and set φk+1 ← φ′α∗ . One of the major challenges in
this approach is that it would require multiple evaluations of ELBO during line search. If
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we use the naive Monte-Carlo estimator for (4), the variance will be too large to obtain
α∗ reliably. We would like to reduce the variance of ELBO estimation, ideally reusing the
function approximator Γ̂w introduced in the previous section. Note that we cannot simply
take the prediction from Γ̂w as ELBO estimation since it is trained for φk, not φ′α

In order to achieve this, we introduce the following surrogate objective:

L̃(φ′, φk;x) = L(φk;x) + Ez∼qφ′ ( ;x)

[ T∑
t=1

∆φk(z1:t)

]
.

The above formula suggests that we can just focus on evaluating the second term for each
φ′ during line search, using the prediction from the function approximator Γ̂w trained for
φk.

The surrogate objective is a first-order approximation to the ELBO at φk, in the sense
that

L̃(φ′, φk;x)|φ′=φk = L(φk;x)

∇φ′L̃(φ′, φk;x)|φ′=φk = ∇φL(φ;x)|φ=φk
Nonetheless, the surrogate objective is destined to be inaccurate as we increase the distance
between φ′ and φk. Hence, we perform search only in the neighborhood of φk defined in
terms of KL divergence:

maximize L̃(φ′, φk;x)

subject to DKL(qφ′(z;x)‖qφk(z;x)) ≤ δ, (6)

with the constant δ specifying the radius of the neighborhood region. This constrained
optimization also suggests that we should follow the direction of the natural gradient (Amari,
1998; Hoffman et al., 2013; Schulman et al., 2015; Regier et al., 2017), which can be obtained
by multiplying the inverse of Fisher information matrix to the plain gradient. The overall
algorithm is shown in Algorithm 1.

We can provide a formal guarantee on the monotonic improvement of policies found in
each iteration.

Theorem 1. Given the parameter φk at iteration k, assume that ∆φk is bounded. Then,

for any φ with L̃(φ, φk;x) > L(φk;x), there exists δ > 0 such that

L(φ;x) ≥ L(φk;x).

Careful readers would again notice that Algorithm 1 and the above theoretical result
are reminiscent of Trust-Region Policy Optimization (TRPO) (Schulman et al., 2015) in
reinforcement learning. However, our algorithm takes advantage of the fact that we can
freely sample latent variable z during line search. In reinforcement learning, this amounts
to executing every policy encountered during line search, which would be out of the ques-
tion. Thus, TRPO relies on importance sampling to evaluate policies on the same batch
of samples, while our algorithm uses the direct Monte-Carlo method. This leads us to
simpler theoretical analysis and more robust experimental results compared to TRPO in
reinforcement learning. In Appendix C, we analyze this difference from a theoretical point
of view.
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Algorithm 1 Trust Region Sequential Variational Inference

Input: x, p(x, z), δ.

1: Initialize φ0, α, and ∆̂.
2: for k = 0, 1, . . . do
3: Compute natural gradient H−1g, where H is Fisher information matrix and g is

gradient ∇φL̃(φ̂, φk;x).

4: Compute parameter φ̂ = φk + αH−1g.
5: if L̃(φ̂, φk;x) > L(φk;x) and

DKL(qφ̂( ;x)‖qφk( ;x)) ≤ δ then

6: Set φk+1 ← φ̂.
7: else
8: Adjust α and break.
9: end if

10: end for

4. Related Work

The reparameterization estimator (Kingma and Welling, 2014) is a technique of choice for
controlling high variance during the estimation of the gradient in stochastic variational
inference. It is known to perform better than the score estimator, also known as REIN-
FORCE (Williams, 1992). However, the reparameterization estimator has a limited scope of
applicability, because it works only for models with differentiable densities. In recent years,
there are studies to overcome this limitation and make the trick apply for models with dis-
crete latent variables or more generally models with non-differentiable densities. Some tried
to relax the discrete variables and apply this trick to the relaxed models (Maddison et al.,
2017b; Jang et al., 2017), while others developed clever control variate to REINFORCE so
as to reduce its variance (Mnih and Gregor, 2014; Grathwohl et al., 2018). There is also
a work that combines both of these approaches (Tucker et al., 2017). Finally, there has
been an attempt to remove the smoothness assumption in the reparameterization estima-
tor (Lee et al., 2018). Note that all of these work focus on changing two key algorithms,
REINFORCE and the reparameterization estimator, so that the new algorithm has a wider
applicability or has less variance. In contrast, our work attempts to adopt a different kind
of policy-search algorithms from reinforcement learning for variational inference.

There have been multiple attempts to replace the ELBO by new better objectives for
variational inference, such as the so called IWAE and FIVO objectives inspired by impor-
tance sampling (Burda et al., 2016) and sequential Monte-Carlo (Maddison et al., 2017a;
Naesseth et al., 2018; Le et al., 2018). These objectives give tighter lower bounds to the
marginal likelihood of observed data than the ELBO. Intuitively, this means that the ob-
jectives are capable of improving the approximation of a given variational distribution. Our
work is orthogonal to this line of research, and combining them is an interesting future
topic.

The connection between probabilistic inference and reinforcement learning has been
explored in the past. The recent review article of Levine (Levine, 2018) provides a good
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overview of past and recent studies on this topic with an emphasis on using probabilistic
inference techniques, such as stochastic variational inference, for finding good robust policies
in variational inference. In particular, the article shows how entropy reinforcement learning
is related to stochastic variational inference (Levine, 2018), which is also used to improve
the performance of an algorithm by Igl et al. (2018). The use of reinforcement learning
techniques for probabilistic inference is explored by Weber et al. (2015), who also suggested
the use of value function and critic to reduce variance as in our work. However, they stopped
at deriving formulas and suggesting ideas, without showing how they should be converted
to a practical algorithm. Our work carries out this maturing step by using further ideas,
such as trust region and natural gradient, from reinforcement learning, adjusting them to
the setting of variational inference, and showing the theoretical and practical stability of
the final algorithm for variational inference.

There have been several attempts to apply natural gradient and trust region to vari-
ational inference. Hoffman et al. (2013) applied natural gradient to stochastic variational
inference, and Theis and Hoffman (2015) improved it using trust region. However, both of
these works use the setup where approximation distributions have global parameters and
local parameters. It is not clear how to apply their results to the setting of amortized
variational inference considered in this paper. Also, Arenz et al. (2018) applied the trust-
region-based policy search algorithm for variational inference, but they did not consider
state space models and did not exploit the recursive relationship on future ELBOs as we
do in this paper.

5. Experiments

We implemented our algorithm and compared it experimentally with existing approaches.
We used two types of models in our experiments. The first is a model for a linear dynamical
system. This model does not use any discrete variables, and has a differentiable density.
Thus, it is amenable to algorithms known to perform well, such as reparameterization
estimator. We chose this model to see how our algorithm compares with existing algorithms
on such relatively easy models. The second is sequential deep generative models for two real-
world music datasets (Boulanger-lewandowski et al., 2012), which again use both discrete
and continuous latent variables. In this last case, models are not fully specified, but include
neural networks with unknown parameters. We follow the recipe of variational auto-encoder
and extend our algorithm such that it not just learns an approximate posterior but also
(the parameters of) a model itself.

In all of these experiments, our algorithm performs as good as or better than existing
approaches. Explaining these findings form the rest of this section.

5.1. Experimental Setup

When implementing our algorithm for these experiments, we made certain choices on several
parts of the algorithm. First, adopting function approximator Γ̂w(z1:t) gives rise to the
requirement of learning it. There are previous studies about effective ways to learn function
approximator in reinforcement learning. Among them, we chose generalized advantage
estimator (GAE) (Schulman et al., 2016) with parameter λ = γ = 0.9 to compute the
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Figure 1: Learning curves for three linear dynamical systems with dimensions 2, 5, and 20.
Note that dimensions are 2, 5, 20 from left.

Algorithm Dimension Test ELBO CPU Time(s)

TRSeqVI 2 −2.160(±0.001) 100.291
5 −4.977(±0.006) 133.835
20 −19.477(±0.466) 466.726

REPARAM 2 −2.150(±0.001) 61.513
5 −6.215(±1.601) 99.212
20 −15.236(±0.003) 422.635

SCORE 2 −2.377(±0.007) 38.621
5 −11.139(±0.634) 93.297
20 −230.324(±26.694) 428.335

Table 1: Consumed CPU time for the 1, 000 iteration

approximation, which is defined as follows:

Âφ =
T∑
t=1

(γλ)t−1∆γ
φ(z1:t).

The GAE controls trade-off between variance and bias through γ and λ, which are generally
near 1. Next, to compute natural gradient efficiently, we applied conjugate gradient algo-
rithm with trust region constrained by 10−3. Finally, we used Adam optimizer (Kingma
and Ba, 2015) with learning rate 10−3 to perform stochastic gradient ascent.

5.2. Linear Dynamical Systems

We first conducted an experiment on linear dynamical systems with three different dimen-
sions d ∈ {2, 5, 20}. The underlying dynamics in each of these cases is fixed, and has the
following form:

zt = Azt−1 + vt,

xt = Czt + wt,

where zt and xt are d-dimensional latent and observed variables at time step t, the next A
and C are d × d randomly-chosen matrices with determinant 1, and vt and wt denote the
d-dimension Gaussian noises with variance 0.01Id.
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Algorithms JSB Nottingham

TRSeqVI (C) −8.831(±0.096) −2.438(±0.064)
REPARAM (C) −8.586(±0.014) −3.122(±0.051)
TRSeqVI (D) −7.687(±0.096) −2.135(±0.053)

REPARAM (D) −8.579(±0.025) −3.195(±0.288)
SCORE (D) −8.666(±0.088) −3.491(±0.495)

Table 2: Results for test ELBO of JSB and Nottingham.

Our variational distributions use information only at the current and previous steps and
have the form:

qφ(zt|z1:t−1;x) = qφ(zt|zt−1;xt)

We compared three algorithms: reparameterization estimator (denoted as REPARAM),
score estimator (denoted as SCORE), and our algorithm (denoted as TRSeqVI).

The result is shown in the Figure 1 for dimension 2, 5, and 20. For the 20-dimension
case, we also report a zoomed-in version of the graph to highlight the difference between
REPARAM and TRSeqVI. In all three cases, our algorithm converges faster and has less
standard error than the other two algorithms, and achieves as good an ELBO as REPARAM,
which outperforms SCORE in terms of ELBO. Although the inner loop of TRSeqVI per-
forms more computation than those of REPARAM and SCORE (due to line search), it does
not incur too much overhead. Table 1 shows the CPU time of the three algorithms during
the first 1, 000 iteration. Since the initial setup time for running these algorithms is usually
needed, the differences shown in the table have little impact on the overall time of these
algorithms.

5.3. Polyphonic Music Datasets

The last experiment is on two polyphonic music datasets, JSB chorales and Nottingham
folk tunes (Boulanger-lewandowski et al., 2012). On these datasets, we need to learn both
models and variational distributions. The model learning is done by the stochastic gradient
ascent with respect to the ELBO objective, while the inference of variational distributions
is carried out by three different algorithms, SCORE, REPARAM and TRSeqVI. The gen-
erative models for these datasets can be formulated with or without using discrete latent
variables, although it is more intuitive to use discrete ones. For TRSeqVI and REPARAM,
we try both alternatives; for REPARAM, using models without discrete latent variables
means that we do not need to use relaxation and introduce additional approximation. Quite
naturally, using models with discrete latent variables gives better results in both cases than
using the ones without those variables.

The latent variables of the model for JSB chorals is 32 dimensional, and the one for
Nottingham is 64 dimensional, regardless of whether they are formed in terms of discrete
or continuous ones. Variational distributions have the form

qφ(zt|zt:1−1;x) = qφ(zt|z1:t−1;x1:t)

which mean that they depend on information on observations up to time step t. The
(z1:t−1;x1:t−1) parts are summarized by recurrent neural networks, and we use diagonal
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covariance matrices when models are built in terms of continuous latent variables. Also, we
use a data encoder and latent encoder to encode data and latent variable. In detail, we use
a single-layer LSTM for recurrent neural network. Also, all of probability densities, data
encoder, and latent encoder are fully connected neural networks with one hidden layer. The
hidden layers here have the same size as the dimension of the latent variable.

In Table 2, (C) means that an algorithm uses continuous latent variables with the
Gaussian distribution, and (D) means that an algorithm uses discrete latent variables with
the Bernoulli distribution. We run the algorithms in the table, for 300, 000 iterations in
both of JSB and Nottingham domains. As seen in this table, TRSeqVI outperforms the
other alternatives in both datasets, regardless of whether we use a model with countinuous
latent variables or the one with discrete variables. It is worth noting that the best performer
is TRSeqVI(D), which beats its continuous counterpart TRSeqVI(C).

6. Conclusion

In this work, we introduced and analyzed a new algorithm for variational inference which
successfully tackles the issue for non-differentiable models, such as the one with discrete
latent variables. To achieve this goal, we applied three key ideas, approximation function of
future ELBO, trust region update, and natural gradient, all of which are inspired from rein-
forcement learning. By taking advantage of the difference between variational inference and
reinforcement learning, we improved these ideas from reinforcement learning by designing a
method for efficient line search and obtaining a simple proof for theoretical guarantee. Our
experiments show the promise of the performance of our algorithm on state space models
with discrete latent variables.

A natural follow-up is to design a specialized algorithm for learning generative models
that goes well with the inference algorithm presented in this paper. In our experiment,
we just used the stochastic gradient on the standard ELBO objective, but given that al-
ternative objectives for model learning are actively explored and pursued recently, there
may be a different objective for model learning that works better with the algorithm in the
paper. Another possible follow-up is to combine our algorithm with existing techniques.
When the density of a model is differentiable with respect to certain latent variables, we
would like to make our algorithm use this smoothness property by, for instance, applyinging
reparameterization selectively only on those variables.
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Appendix A. Details of Gradient Derivation

Lemma 1. For any φ, using future ELBO does not cause any bias. It means,

∇φL(φ;x) = Ez∼qφ( ;x)

[ T∑
t=1

∇φ log qφ(zt|z1:t−1;x)∆φ(z1:t)

]
holds.

Proof. We start the proof from (5):

∇φL(φ;x) =
T∑
t=1

∫
qφ(z;x)∇φ log qφ(zt|z1:t−1;x)

T∑
t′=t

log
p(xt′ , zt′ |x1:t′−1, z1:t′−1)

qφ(zt′ |z1:t′−1;x)
dz

=
T∑
t=1

∫
qφ(z1:t;x)∇φ log qφ(zt|z1:t−1;x)

{
log

p(xt, zt|x1:t−1, z1:t−1)
qφ(zt|z1:t−1;x)

+ Γφ(z1:t)

}
dz1:t

=
T∑
t=1

∫
qφ(z1:t;x)∇φ log qφ(zt|z1:t−1;x)∆φ(z1:t)dz1:t

= Ez∼qφ( ;x)

[ T∑
t=1

∇φ log qφ(zt|z1:t−1;x)∆φ(z1:t)

]
.

Note that ∫
qφ(z1:t;x)∇φ log qφ(zt|z1:t−1;x)Γφ(z1:t−1)dz1:t

=

∫
qφ(z1:t−1;x)Γφ(z1:t−1)

∫
∇φqφ(zt|z1:t−1;x)dztdz1:t−1 = 0

Appendix B. Proofs of Theorem 1

In this section, we clarify the condition of Theorem 1 and provide proof. Before starting
proof, we introduce a lemma needed to prove theorem.

Proof of Theorem 1.

L(φ;x)− L(φk;x)

= Ez∼qφ( ;x)

[ T∑
t=1

{log p(xt, zt|x1:t−1, z1:t−1)− log qφ(zt|z1:t−1;x)} − L(φk;x)

]

= Ez∼qφ( ;x)

[ T∑
t=1

{
∆φk(z1:t;x)− log

qφ(zt|z1:t−1;x)

qφk(zt|z1:t−1;x)

}]

= Ez∼qφ( ;x)

[ T∑
t=1

∆φk(z1:t;x)

]
−DKL(qφ(z1:T ;x)‖qφk(z1:T ;x))

= d(x)−DKL(qφ(z1:T ;x)‖qφk(z1:T ;x)) ≥ d(x)− δ ≥ 0
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if δ ≤ d(x) holds for

d(x) = L̃(φ, φk;x)− L(φk;x) = Ez∼qφ( ;x)

[ T∑
t=1

∆φk(z1:t;x)

]
.

Appendix C. Theoretical Analyze for Alternative Line Search

In this section, we analyze for the condition of δ if we rely on importance sampling like
TRPO. For this analysis, define another surrogate objective L′(φ, φk;x) as

L′(φ, φk;x) = L(φk;x) + Ez∼qφk ( ;x)

[ T∑
t=1

qφ(zt|z1:t−1;x)

qφk(zt|z1:t−1;x)
∆φk(z1:t;x)

]
.

Before introducing a theorem, we need following lemma:

Lemma 2. Assume that for any parameter φ and φk, there are finite constants ∆max(x) > 0
and δ > 0 which satisfy

∆max(x) = max
z1:t
|∆φk(z1:t;x)|,

δ ≥ DKL(qφ(z1:T ;x)‖qφk(z1:T ;x)).

Then,∣∣∣∣Ez∼qφ( ;x)

[ T∑
t=1

∆φk(z1:t;x)

]
−Ez∼qφk ( ;x)

[ T∑
t=1

qφ(zt|z1:t−1;x)

qφk(zt|z1:t−1;x)
∆φk(z1:t;x)

]∣∣∣∣ ≤ T∆max(x)
√

2δ

holds.

Proof. ∣∣∣∣Ez∼qφ( ;x)

[ T∑
t=1

∆φk(z1:t;x)

]
− Ez∼qφk ( ;x)

[ T∑
t=1

qφ(zt|z1:t−1;x)

qφk(zt|z1:t−1;x)
∆φk(z1:t;x)

]∣∣∣∣
≤

T∑
t=1

∣∣∣∣Ez∼qφ( ;x)

[
∆φk(z1:t;x)

]
− Ez∼qφk ( ;x)

[
qφ(zt|z1:t−1;x)

qφk(zt|z1:t−1;x)
∆φk(z1:t;x)

]∣∣∣∣
=

T∑
t=1

∣∣∣∣ ∫ {qφ(z1:t−1;x)− qφk(z1:t−1;x)
}
qφ(zt|z1:t−1;x)∆φk(z1:t;x)dz1:t

∣∣∣∣
≤

T∑
t=1

∆max(x)

∫ ∣∣qφ(z1:t−1;x)− qφk(z1:t−1;x)
∣∣q(zt|z1:t−1;x)dz1:t

≤
T∑
t=1

∆max(x)
√

2DKL

(
qφ(z1:t−1;x)‖qφk(z1:t−1;x)

)
≤

T∑
t=1

∆max(x)
√

2DKL

(
qφ(z1:T ;x)‖qφk(z1:T ;x)

)
= T∆max(x)

√
2δ.

15



Kim Jang Lee Jeon Yang Kim

Note that the inequality DTV(qφ(z1:t;x)‖qφk(z1:t;x)) ≤
√

2DKL(qφ(z1:t;x)‖qφk(z1:t;x))
for any t comes from Pinsker’s inequality.

Now, we construct a theorem, which is similar to Theorem 1:

Theorem 2. Given the parameter φk at iteration k, assume that ∆φk is bounded. Then,
for any φ with L′(φ, φk;x) > L(φk;x), there exists δ > 0 such that

L(φ;x) ≥ L(φk;x)

Proof. Fix φk and suppose φ satisfies L′(φ, φk;x) > L(φi;x). Now, set notations ∆max(x)
and d′(x) as

∆max(x) = max
z1:t
|∆φk(z1:t;x)|,

d′(x) = L′(φ, φk;x)− L(φk;x).

Then, ∆max(x) is finite and d(x) > 0 from the condition of theorem. Using these
notations with Lemma 2, we obtain following

L(φ;x)− L(φk;x)

= Ez∼qφ( ;x)

[ T∑
t=1

{
∆φk(z1:t;x)− log

qφ(zt|z1:t−1;x)

qφk(zt|z1:t−1;x)

}]

= Ez∼qφ( ;x)

[ T∑
t=1

∆φk(z1:t;x)

]
−DKL(qφ(z1:T ;x)‖qφk(z1:T ;x))

≥ Ez∼qφk ( ;x)

[ T∑
t=1

qφ(zt|z1:t−1;x)

qφk(zt|z1:t−1;x)
∆φk(z1:t)

]
− T∆max(x)

√
2δ −DKL(qφ(z1:T ;x)‖qφk(z1:T ;x))

≥ Ez∼qφk ( ;x)

[ T∑
t=1

qφ(zt|z1:t−1;x)

qφk(zt|z1:t−1;x)
∆φk(z1:t)

]
− T∆max(x)

√
2δ − δ

≥ d′(x)− (δ + T∆max(x)
√

2δ)

Assume that δ < 1, then δ <
√
δ and therefore,

L(φ;x)− L(φk;x) ≥ d′(x)−
√
δ(1 +

√
2T∆max(x)).

It means, for any δ > 0 with

δ ≤ min

{
1,

(
d′(x)

1 +
√

2T∆max(x)

)2}
satisfies Theorem 2.

It means, when we use L̃, it is enough to δ < min{1, d(x)}. But, when we use L′, then
δ is more strongly constrained, since in general d(x) ≈ d′(x) � 1 and therefore, square
greatly reduces constraint.
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