
Point-Based Bounded Policy Iteration for

Decentralized POMDPs

Youngwook Kim1 and Kee-Eung Kim2

1 Search Solutions, Seongnam-si, Korea
youngwook.kim@nhn.com,

2 Korea Advanced Institute of Science and Technology, Daejeon, Korea
kekim@cs.kaist.ac.kr

Abstract. We present a memory-bounded approximate algorithm for
solving infinite-horizon decentralized partially observable Markov de-
cision processes (DEC-POMDPs). In particular, we improve upon the
bounded policy iteration (BPI) approach, which searches for a locally
optimal stochastic finite state controller, by accompanying reachability
analysis on controller nodes. As a result, the algorithm has different op-
timization criteria for the reachable and the unreachable nodes, and it is
more effective in the search for an optimal policy. Through experiments
on benchmark problems, we show that our algorithm is competitive to
the recent nonlinear optimization approach, both in the solution time
and the policy quality.

1 Introduction

The decentralized POMDP (DEC-POMDP) is a popular framework for model-
ing decision making problems where two or more agents have to cooperate in
order to maximize a common payoff, and to act based on imperfect state in-
formation. While the DEC-POMDP can be applied to many domains such as
network routing and multi-robot coordination, it is known to be intractable for
computing an optimal policy [1].

In this paper, we are interested in solving infinite-horizon DEC-POMDPs by
searching in the space of fixed-size finite state controllers (FSCs). Specifically, we
represent the individual policy for each agent as a stochastic FSC in which the
nodes correspond to action selection strategies and the transitions correspond
to observation strategies. There have been proposed a number of methods for
finding FSC policies, but most relevant to our work are the bounded policy iter-
ation for DEC-POMDPs (DEC-BPI) and the nonlinear optimization approach
(NLO).

DEC-BPI [2] is a generalization of the bounded policy iteration algorithm
for POMDPs [3] to the DEC-POMDP. It is a greedy local search algorithm that
iteratively improves the individual policies of the agents. The policy improvement
is carried out by randomly choosing a node from an individual FSC policy, and
updating its parameters by solving a linear program. Although DEC-BPI is a

Variables: ε, x(ai), x(ai, zi, q
′
i)

Objective: Maximize ε
Improvement constraints:

∀q−i, s V (~q, s) + ε ≤
P

~a P (a−i|q−i)
h

x(ai)R(s,~a) + γ
P

s′,~z,~q′ x(ai, zi, q
′
i)

P (q′−i|q−i, a−i, z−i)T (s,~a, s′)O(s′,~a, ~z)V (~q′, s′)
i

Probability constraints:
P

ai
x(ai) = 1, ∀ai, zi

P

q′
i

x(ai, zi, q
′
i) = x(ai)

∀ai x(ai) ≥ 0, ∀ai, zi, q
′
i x(ai, zi, q

′
i) ≥ 0

Table 1. The linear program for DEC-BPI. The variable x(ai) represents ψi(qi, ai),
and x(ai, zi, q

′
i) represents ηi(qi, ai, zi, q

′
i). P (a−i|q−i) denotes

Q

k 6=i ψk(qk, ak), and

P (q′−i|q−i, a−i, z−i) denotes
Q

k 6=i ηk(qk, ak, zk, q
′
k).

scalable algorithm, it is prone to converging to a bad local optimum when we
enforce a fixed-size controller.

NLO [4] takes a more direct approach to finding an optimal policy by formu-
lating the overall problem as a nonlinear program (NLP) and let an NLP solver
take care of finding the solution. The advantage of this approach is that one
can harness the efficient search techniques available in the NLP solvers, there-
fore obtaining high quality policies compared to those from DEC-BPI. However,
most of the NLP solvers suffer from scalability, as the formulated problem is
nonconvex.

We propose an improved version of DEC-BPI that addresses some of the
limitations that prevent the algorithm from finding an FSC policy with a high
quality. Our insight for the improvement is based on the observation that we
need different optimization criteria depending on whether a controller node in
FSC is reachable or not. We show the effectiveness of the proposed algorithm
via experiments on standard benchmark problems.

2 Background

A decentralized partially observable Markov decision process (DEC-POMDP)
is a multi-agent extension to the POMDP framework. More Formally, a DEC-
POMDP is defined as tuple 〈I, S, b0, {Ai}, {Zi}, T, O,R〉 where

– I is a finite set of agents
– S is a finite set of states shared by all agents
– b0 is the initial state distribution, where b0(s) denotes the probability that

the system starts in state s
– Ai is a finite set of actions available to agent i; the set of joint actions is

denoted as ~A =
∏

i∈I Ai

– Zi is a finite set of observations available to agent i; the set of joint obser-

vations is denoted as ~Z =
∏

i∈I Zi

– T is a transition function where T (s,~a, s′) denotes the probability P (s′|s,~a)
of changing to state s′ from state s by executing joint action ~a

– O is an observation function whereO(s,~a, ~z) denotes the probability P (~z|~a, s)
of making joint observation ~z when taking joint action ~a and arriving in state
s.

– R is a reward function where R(s,~a) denotes the shared reward received by
all agents when taking joint action ~a in state s.

Each agent decides which action to take over a series of discrete time steps
called a horizon. Since the state is not directly observable and the observations
are local to each agent, the agent chooses actions based on its own local histories.
This mapping from local observation histories to actions comprises a local policy,
and the set of every agent’s local history comprises a joint policy. The goal
of DEC-POMDP planning algorithms is to find an optimal joint policy that
maximizes expected cumulative reward over the horizon. In the case of infinite-
horizon DEC-POMDPs, we use a discount factor 0 ≤ γ < 1 in order to guarantee
finite cumulative rewards.

A popular representation for policies in infinite-horizon problems is to use
stochastic finite state controllers (FSCs). The local policy for agent i is repre-
sented as a stochastic FSC πi = 〈Qi, ψi, ηi〉, where

– Qi is the finite set of controller nodes,
– ψi is the action selection strategy for each node, where ψi(q, a) denotes the

probability P (a|q) of choosing action a in node q,
– ηi is the observation strategy for each node, where ηi(q, a, z, q

′) denotes the
probability P (q′|q, a, z) of changing to node q′ from node q when executing
action a and making observing z.

The set of πi for each agent i comprises a joint policy ~π, and the set of nodes
from each agent’s controller comprises a joint node. The cumulative reward (also
called value) for state s and joint node ~q is defined as

V (~q, s) =
∑

~a

∏

i ψi(qi, ai)
[

R(s,~a) + γ
∑

s′ T (s,~a, s′)·
∑

~z O(s′,~a, ~z)
∑

~q′

∏

i ηi(qi, ai, zi, q
′
i)V (~q′, s′)

]

(1)

Above system of linear equations for obtaining value function of a joint policy
is called the Bellman equation. The starting joint node ~q0 is selected by

~q0 = argmax~q

∑

s b0(s)V (~q, s)

which states that the controller is assumed to start in the joint node that max-
imizes its value from the initial state distribution.

2.1 Bounded Policy Iteration for DEC-POMDPs

Bernstein et al. [2]’s bounded policy iteration for DEC-POMDPs (DEC-BPI) is
an extension of the bounded policy iteration algorithms for POMDPs [3] to the

Variables: v(~q, s) and for each agent i, x(qi, ai), x(qi, ai, zi, q
′
i)

Objective: Maximize
P

s b0(s)v(~q0, s)
Bellman constraints:

∀~q, s v(~q, s) =
P

~a

ˆ
Q

i x(qi, ai)
˜

h

R(s,~a) + γ
P

s′,~z,~q′ T (s,~a, s′)O(s′,~a, ~z)
ˆ

Q

i x(qi, ai, zi, q
′
i)

˜

v(~q′, s′)
i

Probability constraints:

∀qi

P

ai
x(qi, ai) = 1, ∀qi, zi, ai

P

q′
i

x(qi, ai, zi, q
′
i) = 1

∀qi, ai x(qi, ai) ≥ 0, ∀qi, zi, ai, q
′
i x(qi, ai, zi, q

′
i) ≥ 0

Table 2. The nonlinear program for finding the optimal controller. The variable
x(qi, ai) represents ψi(qi, ai), and x(qi, ai, zi, q

′
i) represents ηi(qi, ai, zi, q

′
i), and v(~q, s)

represents the value function V (~q, s). Each controller have a designated initial node,
forming the initial joint node ~q0.

multi-agent case. It is a greedy local search algorithm that iteratively improves a
joint stochastic FSC with a fixed number of nodes by alternating between policy
evaluation and improvement. In the policy evaluation step, DEC-BPI computes
the value function of the current joint controller by solving the Bellman equation
in Equation (1). In the policy improvement step, DEC-BPI randomly selects one
of the nodes of an agent, and solves the linear program shown in Table 1 to obtain
an improved controller.

DEC-BPI guarantees monotonic improvement in the value for all the joint
nodes and the states. This however also results in only a locally optimal solution,
which often degrades in quality as we have more agents or larger controllers. One
way to alleviate the local convergence issue is to compute the relative occupancy
distribution

o(~q′, s′) = b0(s
′)δ(~q0, ~q

′) + γ
∑

~q,s,~a,~z

[

o(~q, s)T (s, a, s′)·
∏

i ψi(qi, ai)O(s′,~a, ~z)
∏

i ηi(qi, ai, zi, q
′
i)

]

(2)

and bias the improvement by using o(~q′, s′) as the weight for each joint node and
state. The main idea is to analyze the reachability of joint node and state pairs,
and concentrate the improvement on those that are more frequently visited than
others.

2.2 Nonlinear Optimization Approach

Amato et al. [4]’s nonlinear optimization (NLO) takes a more direct approach
to obtaining an optimal controller. The problem is formulated as a nonlinear
program (NLP), shown in Table 2, and a state-of-the-art NLP solver is used to
find solutions. Since the problem is nonconvex, most of the NLP solvers yield
only a locally optimal solution, as in the case with DEC-BPI. However, since
we are exploiting advanced search heuristics readily available in the NLP solver,
the solution is often much better in quality than that from DEC-BPI.

Fig. 1. DEC-BPI fails to discover a good set of policies.

There are two issues regarding this approach. First, although advanced NLP
solvers are quite fast, they are not as scalable as LP solvers. Since solving a
nonconvex NLP is a hard problem, we can naturally expect that NLO using a
general NLP solver takes much more time than DEC-BPI. Second, we would
like to pinpoint the exact cases where DEC-BPI performs a lot worse than NLO,
rather than just being satisfied with a “black-box” approach that works well
in practice. However, the sophisticated search heuristics implemented in NLP
solvers hinder us from such an analysis.

3 Point-Based DEC-BPI

Before we present our algorithm, let us take a closer look at the policy improve-
ment in DEC-BPI. The linear program in Table 1 tries to find better parameters
for qi, assuming that we use the controller with the new parameters for the first
time step, and then the one with the old parameters from the second step on.

An important reminder is that the FSC actually represents a set of policies for
each agent, of which each policy is determined by selecting one of the nodes as the
starting node. We want the intermediate FSCs during the iterations of DEC-BPI
to represent the set of policies that perform well with respect to various reachable
state distributions starting from b0, but DEC-BPI does not necessarily show this
behavior. Figure 1 shows such a case in the decentralized tiger problem [5], where
the current policy for agent 1 consists of nodes {q1,1, q1,2, q1,3} and that for agent
2 consists of {q2,1}, and DEC-BPI chooses q1,3 for the improvement. Note that
q1,1 and q1,3 are identical policies that prescribe executing OpenLeft at the first
step and then executing Listen from the second step on. It would be better if
one of the two nodes represent a different but useful policy, rather than wasting
an FSC node. For example, executing OpenRight in q1,3 would be useful when
the the tiger is behind the left door, but DEC-BPI would not yield such a policy
since the monotonic improvement condition requires improving the value for all

state distributions, including the case when the tiger is more likely to be on the
right.

The main idea behind our point-based DEC-BPI is to have different opti-
mization criteria depending on whether or not a controller node is reachable
from the set of useful nodes. Formal definitions will follow shortly, but roughly
stated, a joint node is useful if and only if it yields a maximum value at some

B ← SampleBeliefs()
repeat

V ~π ← Evaluate(~π)
C ← ReachableNodeStates(B,~π, V ~π)
(ε, ~π)← ImprovePolicy(~π, V ~π, C)

until no improvement in any node of any agent

Table 3. Point-based DEC-BPI

reachable multiagent belief from b0 by following the optimal joint policy, and
reachable if and only if the probability of visiting the joint node from any use-
ful node is non-zero under the current joint controller. The overall algorithm is
shown in Table 3, and in the remainder of this section, we explain each step of
the algorithm.

3.1 Sampling Beliefs

Since it is intractable to find the exhaustive set of reachable multiagent beliefs
under the optimal policy, we approximate the set by sampling from a random
policy, similar to [6]. Formally, given a T -step joint tree policy and a joint history
~hT = 〈~a1, ~z1, . . . ,~aT , ~zT 〉 of actions and observations from time step 1 to T , the

associated (unnormalized) state distribution b(~hT , ·) is recursively computed by

b(~hT , s
′) = O(s′,~aT , ~zT)

∑

s T (s,~aT , s
′)b(~hT−1, s)

where ~hT−1 is the sub-history from time step 1 to T − 1, and b(~h0, s) = b0(s).

We also denote by hi,T the local history of ~hT specific to agent i, so that we

can equivalently write ~hT = {hi,T |i ∈ I}. Note that
∑

s b(
~hT , s) equals the

probability of the joint observation history 〈~z1, . . . , ~zT 〉 under the given T -step
tree policy.

The random policy in our case is chosen to be an arbitrary T -step tree policy,
which yields

∏

i |Zi|
T joint histories, one for each leaf of the tree. Denoting this

set of joint histories by ~HT , each random instantiation of the T -step policy (by

randomly selecting actions) generates exactly one belief b : ~HT × S → [0, 1], a
probability distribution on the joint histories and the states. Denoting the set
of local histories for agent i by Hi,T , we can equivalently represent the belief by
b :

∏

i Hi,T × S → [0, 1].

Example: If the local policies are 2-step policies with always executing Lis-

ten, there are 4 local histories for each agent, and the belief is represented as the
following table:

C ← {}
for each belief b ∈ B do

fb ← argmax{fi:Hi→Qi}

P

~h,s
b(~h, s)V ~π(f(~h), s)

for each joint history ~h ∈ ~H and state s ∈ S do

if b(~h, s) > 0 then

C ← C ∪ {〈f b(~h), s〉}
end if

end for

end for

repeat

for all 〈~q′, s′〉 s.t. 〈~q, s〉 ∈ C and T ~π(~q, s, ~q′, s′) > 0 do

C ← C ∪ {〈~q′, s′〉}
end for

until no more node-state pair to add

Table 4. Procedure ReachableNodeStates

HL,HL HL,HR HR,HL HR,HR

HL,HL
0.2610 0.0461 0.0461 0.0081

0.0003 0.0014 0.0014 0.0081

HL,HR
0.0461 0.0081 0.0081 0.0014

0.0014 0.0081 0.0081 0.0461

HR,HL
0.0461 0.0081 0.0081 0.0014

0.0014 0.0081 0.0081 0.0461

HR,HR
0.0081 0.0014 0.0014 0.0003

0.0081 0.0461 0.0461 0.2610

where the row represents the observation history of agent 1, and the column
represents the observation history of agent 2. Each cell has b(~h,TigerLeft) in the

top, and b(~h,TigerRight) in the bottom.

3.2 Reachability of Nodes and States

Once we evaluate the value of current policy by Equation (1), we identify the
set of useful joint nodes. Formally, a joint node ~q of joint controller ~π is useful

for belief b ∈ B if it maximizes the value at the belief. In particular, since each
belief is associated with a set of joint histories, and hence associated with a set
of local histories for each agent, we search for an assignment fi of local controller
node to each local history for every agent so that

V ~π(b) = max
{fi:Hi→Qi}

∑

~h,s
b(~h, s)V ~π(f(~h), s),

where f = {fi}. The range of fi’s becomes the set of useful joint nodes for the
belief b. Intuitively, the useful nodes are the candidate initial nodes if the system
starts at the state distributions dictated by the belief b.

Variables: ε, x(ai), x(ai, zi, q
′
i)

Objective: Maximize ε
Improvement constraints: ∀〈qi, q−i, s〉 ∈ C,

V (~q, s) + ε ≤
P

~a P (a−i|q−i)
ˆ

x(ai)R(s,~a) + γ
P

s′,~z,~q′:〈~q′,s′〉∈C x(ai, zi, q
′
i)

P (q′−i|q−i, a−i, z−i)T (s,~a, s′)O(s′,~a, ~z)V (~q′, s′)
˜

Unreachability maintenance constraints: ∀〈qi, q−i, s〉 ∈ C and ∀〈~q′, s′〉 6∈ C
P

~a,~z P (a−i|q−i)x(ai, zi, q
′
i)P (q′−i|q−i, a−i, z−i)T (s,~a, s′)O(s′,~a, ~z) = 0

Probability constraints as in Table 1

Table 5. The linear program in point-based DEC-BPI for improving reachable node
qi.

Variables: x(ai), x(ai, zi, q
′
i)

Objective: Maximize
P

h−i,s b(hi, h−i, s)
P

~a P (a−i|f
b(h−i))

h

x(ai)R(s,~a) + γ
P

s′,~z,~q′:〈~q′,s′〉∈C x(ai, zi, q
′
i)

P (q′−i|f
b(h−i), a−i, z−i)P (s′, ~z|s,~a)V (~q′, s′)

i

Unreachability maintenance constraints: ∀h−i, s with b(hi, h−i, s) > 0 and ∀〈~q′, s′〉 6∈ C

P

~a,~z P (a−i|f
b(h−i))x(ai, zi, q

′
i)P (q′−i|f

b(h−i), a−i, z−i)T (s,~a, s′)O(s′,~a, ~z) = 0

Probability constraints as in Table 1

Table 6. The linear program in point-based DEC-BPI for improving unreachable node
qi with respect to local history hi in belief b. P (s′, ~z|s,~a) is a shorthand notation for
T (s,~a, s′)O(s′,~a, ~z).

Once we have identified the set of useful joint nodes, we examine the reacha-
bility of all the joint nodes from the useful joint nodes. Table 4 shows the overall
pseudo-code for finding the set of reachable joint nodes given the set B of be-
liefs. Note that we attach state information to each reachable node, so that our
reachability analysis is performed on the pairs of nodes and states.

Example: Given the belief b shown in the previous example, the policy
in Figure 1 will have 〈q1,1, q2,1〉 and 〈q1,2, q2,1〉 as useful joint nodes. Note that
〈q1,3, q2,1〉 is not selected, since it has the same value as 〈q1,1, q2,1〉 for all the
unnormalized state distributions in the table. We can enforce f b to assign the
same joint node for the same value by imposing a lexical ordering on the nodes.
The procedure will finally return

C = {〈q1,1, q2,1,TigerLeft〉, 〈q1,1, q2,1,TigerRight〉,

〈q1,2, q2,1,TigerLeft〉, 〈q1,2, q2,1,TigerRight〉}.

3.3 Modified Policy Improvement

As in DEC-BPI, our algorithm randomly selects one of the node of an individual
controller and uses an LP solver to find new parameter values that improve the
controller. However, the LP is formulated differently depending on the reacha-
bility of the selected node. The joint node ~q is defined to be reachable if there
exists state s such that 〈~q, s〉 ∈ C, and the node qi is defined to be reachable if
there exists q−i such that ~q = 〈qi, q−i〉 is reachable.

If the node qi selected for improvement is reachable, we solve the LP shown
in Table 5. There are a number of remarks noteworthy to mention: first, the
monotonic improvement is only concerned with reachable joint nodes and states.
We can even have a worse value if the joint node and state is unreachable. Second,
for the unreachable joint nodes and states at the next time step, they are forced
to remain unreachable after the improvement. This constraint is related to the
first remark, since unreachable joint nodes may degrade in value and we certainly
do not want to make transition to them.

On the other hand, if the selected node qi is unreachable, we solve the LP
shown in Table 6. The LP essentially tries to make the selected node useful
for some belief. In order to do so, we select a belief b from B, and change the
assignment for one of the agent i’s local history to qi. Note that the assignment
of nodes to local histories in b is already computed as f b in Table 4, and here, we
change the assignment for only one local history hi to qi while other assignments
remaining the same as f b. We also prevent the node from making transition to
unreachable nodes since otherwise the node may not become useful even though
it maximizes the value for the belief. The LP is solved for each local history of
each belief until an improvement over the value of the old assignment is found.

Example: For the belief in our running example, f b makes assignment
for agent 1 as follows: HL,HL → q1,2, HL,HR → q1,2, HR,HL → q1,2, and
HR,HR → q1,1. Assume that our algorithm selects q1,3, which is unreachable,
for improvement. Further assume that the local history HL,HL is selected as hi.
Table 6 will change q1,3 to executing OpenRight and making transition to q1,2.

3.4 Theoretical Properties

The point-based DEC-BPI guarantees monotonic improvement for all the sam-
pled beliefs in B.

In order to prove this, we first show that

∀〈~q, s〉 ∈ C, V ~π′

(~q, s) ≥ V ~π(~q, s)

where ~π′ is the policy after the improvement. In the case of Table 5, this naturally
follows from the observation that the transitions of ~π happens only within C,
and the unreachability maintenance constraints prevent transition outside of C.
Hence, it can be viewed as the original DEC-BPI policy improvement of a sub-
controller for a sub-problem derived from C. In the case of Table 6, where the
selected node qi is not reachable from C, changing the parameters of qi would
not affect the value of any 〈~q, s〉 ∈ C.

Finally, observing that for any b ∈ B,

V ~π(b) =
∑

~h,s
b(~h, s)V ~π(f b(~h), s)

and for any joint history ~h and state s, either 〈f b(~h), s〉 ∈ C or b(~h, s) = 0, we
have

V ~π′

(b) ≥
∑

~h,s
b(~h, s)V ~π′

(f b(~h), s)

≥
∑

~h,s
b(~h, s)V ~π(f b(~h), s) = V ~π(b)

thus concluding the proof.

4 Experiments

We implemented all three algorithms discussed in this paper: DEC-BPI, NLO,
and point-based DEC-BPI. All the algorithms were implemented in Java, and
the LP and the NLP solvers used in our implementation were GPLK and IPOPT,
respectively. We used three DEC-POMDP problems for the experiments: decen-
tralized tiger [5], grid-small [2], and box-pushing [7]. We refer the readers to the
above references for the exact specification of the problems.

Our implementation of DEC-BPI was actually the biased version of DEC-
BPI, which takes into account the reachability of joint nodes and states by com-
puting the occupancy distribution (Equation (2)). This is to let DEC-BPI take
advantage of the modification known to be effective in improving performance.

We also accordingly modified the LPs for point-based DEC-BPI (Table 5
and Table 6) using the occupancy distribution in order to favor biased policy
improvement, assuming a uniform probability of starting in one of the useful
nodes. The beliefs were collected from randomly instantiated 1-step and 2-step
tree policies, as well as the initial state distribution b0. The number of beliefs
for each problem is: 11 for decentralized tiger, 15 for grid-small, and 20 for
box-pushing.

We ran each algorithm on each problem, starting from randomly instantiated
stochastic controllers with varying number of nodes. We executed 20 runs for
each controller size, measuring the value and the wall clock time of each run. We
report the runs with the highest values rather than the averages, since a common
approach to dealing with locally optimal solutions in local search algorithms is
to re-start multiple times with different seeds and take the best local optimum
as the final solution. The experiments were performed on a Linux platform with
Intel 2.66GHz CPU.

Figure 2 through 4 show the value and time results on the problems. Point-
based DEC-BPI was able to yield controllers that attain values much higher than
those from DEC-BPI, while taking a fraction of time compared to NLO. Note
that in the case of decentralized tiger and grid-small, the controllers were able
to achieve almost the same level of performance as those from NLO, although
they required additional number of nodes. In the case of box-pushing, we believe

2 4 6 8 10 12

−2
0

−1
5

−1
0

−5
0

Controller size
Va

lu
e

PB−BPI
BPI
NLO

2 4 6 8 10 12

0
20

0
40

0
60

0
80

0
12

00

Controller size

Ti
m

e
(s

)

PB−BPI
BPI
NLO

Fig. 2. Value and time results on the decentralized tiger problem.

1 2 3 4 5 6 7 8

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

Controller size

Va
lu

e

PB−BPI
BPI
NLO

1 2 3 4 5 6 7 8
0

10
00

20
00

30
00

40
00

50
00

Controller size

Ti
m

e
(s

)

PB−BPI
BPI
NLO

Fig. 3. Value and time results on the grid-small problem.

that we need more nodes than reported here in order to have the performance
comparable to NLO, since there are many more reachable beliefs than other
problems, and we may need a node for each belief in order to be effective.

5 Conclusion and Future Work

In this paper, we have presented a point-based approach to finding fixed-size
stochastic controller for DEC-POMDPs. Specifically, we proposed a novel im-
provement technique for DEC-BPI, which addresses some of the limitations that
prevent from finding a controller with a high value. First, we relaxed the mono-
tonic improvement condition for all possible beliefs to the subset of reachable
beliefs from the initial state distribution. This technique addresses bad local op-
tima often encountered by DEC-BPI. Second, we analyze the reachability of each
node in the intermediate controllers, and impose different improvement condi-
tions depending on whether the node is reachable or unreachable. This technique
makes unreachable nodes, which do not contribute to maximizing value for any
belief, be useful for some reachable belief. As a result, the set of policies as
dictated by the controller will spread out through the reachable beliefs, hence
making the search more effective than DEC-BPI.

1 2 3 4 5

0
50

10
0

15
0

20
0

Controller size
Va

lu
e

PB−BPI
BPI
NLO

1 2 3 4 5

0
20

0
40

0
60

0
80

0
12

00

Controller size

Ti
m

e
(s

)

PB−BPI
BPI
NLO

Fig. 4. Value and time results on the box-pushing problem.

Although we have presented the algorithm in the context of DEC-POMDPs,
the technique could also be used without difficulty in improving BPI for POMDPs.
We are also investigating making the algorithm more scalable, such as incorpo-
rating the technique for dealing with sparse controllers [8].

References

1. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decen-
tralized control of Markov decision processes. Mathematics of Operations Research
27(4) (2002) 1192.

2. Bernstein, D.S., Hansen, E.A., Zilberstein, S.: Bounded policy iteration for decen-
tralized POMDPs. In: Proceedings of IJCAI. (2005) 1205.

3. Poupart, P., Boutilier, C.: Bounded finite state controllers. In: Proceedings of NIPS.
(2003) 1209.

4. Amato, C., Bernstein, D.S., Zilberstein, S.: Optimizing memory-bounded controllers
for decentralized POMDPs. In: Proceedings of UAI. (2007) 1241.

5. Nair, R., Tambe, M., Yokoo, M., Pynadath, D., Marsella, S.: Taming decentral-
ized POMDPs: Towards efficient policy computation for multiagent settings. In:
Proceedings of IJCAI. (2003) 1206.

6. Szer, D., Charpillet, F.: Point-based dynamic programming for DEC-POMDPs. In:
Proceedings of AAAI. (2006) 1207.

7. Seuken, S., Zilberstein, S.: Memory-bounded dynamic programming for DEC-
POMDPs. In: Proceedings of IJCAI. (2007) 1208.

8. Hansen, E.A.: Sparse stochastic finite-state controllers for POMDPs. In: Proceed-
ings of UAI. (2008) 1312.

