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Abstract

While Partially Observable Markov Decision Processes (BX®4) and their multi-
agent extension Partially Observable Stochastic GameS@pprovide a natural and
systematic approach to modeling sequential decision rygiinoblems under uncer-
tainty, the computational complexity with which the sotuts are computed is known
to be prohibitively expensive.

In this paper, we show how such high computational resowgairements can be
alleviated through the use of symmetries present in thelpnobThe problem of find-
ing the symmetries can be cast as a graph automorphism (@#a)gmm on a graphical
representation of the problem. We demonstrate how such gjries can be exploited
in order to speed up the solution computation and provideprdational complexity
results.
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1. Introduction

Markov Decision Processes (MDPs) have been a classicalematical frame-
work for sequential decision making problems, in which tigerst must make action
decisions based on environment states. The number of stegsich the agent can
make decisions can either be finite or infinite, leading tatdihiorizon and infinite
horizon problems, respectively. However, although corapomally tractable, MDPs
have often been shown inadequate to successfully modeg#@’s noisy perception
of the environment state. In order to incorporate the uagett about the state per-
ception inherent in the agent, an extended formalism caléetially observable MDPs
(POMDPs) has emerged [12, 34, 31].
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POMDPs provide a model for single-agent sequential detisiaking under state
uncertainty thus turning the decision making problem ime of planning ([12]). Dif-
ferent from MDPs, POMDPs do not provide the agent with fulsetvability of the
states. Instead, the agent must infer which state it is indbas the noisy observations.
This results in defining a probability distribution over thtates, defined as lzelief
state to represent the uncertainty of the states. With this siredtra assumption,
the computational complexity of solving a POMDP problem jusnfrom P-complete
(MDP) to PSPACE-complete even for finite-horizon POMDPY.[Z0lving infinite-
horizon POMDPs is known to be undecidable [17].

There has been a lot of work on alleviating this intractépliiy means of comput-
ing approximate solutions. One of the most well-known wdHhegt shows both practi-
cality and theoretical guarantees is Point-Based Valuatltn (PBVI) by Pineau et al.
[25]. PBVI proceeds by sampling reachable belief statesralieg to various heuris-
tics in order to avoid the curse of dimensionality inducedHy continuous nature of
the belief states. The value backups are performed only @sethampled belief states
before collecting additional belief states. The main fathat determines the perfor-
mance of PBVI is the belief point selection heuristic. Tharigics used are intended
to capture the reachability of the belief points, therebgidng unnecessary computa-
tion on unreachable beliefs. One popular heuristic usetkeis3reedy Error Reduction
heuristic, which samples belief points that result in thgést error bound. PBVI be-
longs to a class of algorithms callpadint-basednethods, because value computation
is performed on a finite set of belief states, often calietief points'

Heuristic Search Value Iteration (HSVI) by Smith and Simm¢80] is another
point-based method that approximates the value functiarheuristic exploration of
belief states. It maintains an upper- and a lower-boundtfetitue value function, and
decreases the bound gaps by recursively selecting beditfsst The upper bound is
initialized at the corners of the belief simplex and is main¢d as a point set. Update
to this bound is performed by adding a new belief point, whadae is computed as
a projection onto a convex hull formed by belief-value paife lower bound is a
vector set, meaning that the value is updated at the newlgdalddlief, much like the
updates performed in PBVI. The belief point to be added iscied by a depth-first
search from the initial belief.

Another approach by which the intractability of the POMDRution can be eased
(in a practical manner) is to take advantage of the structegularities present in
POMDPs. One popular method uses the concepbafomorphisno reduce the state
space itself, thereby forming an equivalent model with a&pbt&lly much smaller size.
This technique, often callechodel minimizationhas been extensively studied in the
MDP domain, making use stochastic bisimulationf the states. Informally, bisimilar
states can be grouped together to form a smaller state dpacéhte original MDP, yet
the optimal policies of the original and the reduced MDP areatly related with each
other. The structural characteristics that allow for sgt@uping are reward equiva-
lence and block transition equivalence. The former propsidtes that the states in a
group should yield the same reward for any given action, &edatter that grouped

1In the sequel, we use the terms “belief points” and “beliafes” interchangeably.



states should have the same transition probability int@tbap of original destination
states. It is known that the optimal policy of the reduced MiaR belifted to be con-
verted into the optimal policy of the original MDP, hence mbdeduction results in
less computation [8, 10].

A different structural feature that is of interest to usaistomorphism An auto-
morphism of a model is a homomorphism to itself. By finding #lidomorphisms, or
symmetriespresent in the model, one may expect to reduce possiblydadut compu-
tation performed on the symmetric portion of the solutioaa It is this feature that
we propose to use on POMDPs in order to reduce computatiesaiirces needed for
computing optimal solutions. In particular, we are intéeelsin the POMDP symmetry
that is not related to reducing the size of the model, but caretheless be exploited to
speed up conventional point-based POMDP algorithms inted above.

The subject of symmetry in sequential decision making hasaen carried out
actively, with a few exceptions: Ravindran and Barto [26}evihe first to extend the
model minimization method to cover symmetries in MDPs. Maeently, Narayana-
murthy and Ravindran [20] constructively proved that thelgem of finding sym-
metries in MDPs belongs to the complexity class graph ispimiem-complete (GlI-
complete). In this latter work, the authors use a graph-daseoding of the MDP
to cast the problem of finding MDP symmetries to that of graptoaorphism (GA).
Our work is similar to this, in that we also reduce the probtendiscovering GA, but
provides a simpler and more intuitive approach along withezfical guide to applying
symmetries to existing algorithms. We also extend the donmainulti-agent settings.

Another work similar to ours is that of permutable POMDPs bysbi and Roy
[9]. This work was presented in the context of preferencatalion where the belief
states have permutable state distribution. Similarly ® dpproach we present, this
permutable POMDP framework is based on the idea that the¥ahctions of certain
classes of POMDPs are permutable with respect to the stateugstion. That is,
the components of the value function can be permuted acuptdithe permutation
of their corresponding states while maintaining value irargce. While the overall
idea is in league with our approach, there are two importéfférdnces. First, the
permutable POMDP only considers a specific type of symméty ¢an be found in
preference elicitation problems and models similar to thevtore specifically, they
show how certain preference elicitation problems can beigdb exhibit symmetric
properties. That is, they first provide certain conditionstate permutation should
satisfy and show how a preference elicitation POMDP can ltavgarameters set in
order to satisfy the stated conditions. As opposed to suttingeour research aims
to provide an algorithmic framework with which symmetrieancbe discovered and
exploited in general POMDP problems. Second, their symydfinition requires
that the equality condition hold for alll permutations, where is the number of states.
This is a very strict condition, and is therefore suitabledaly a very limited set of
problems. On the other hand, our formulation relaxes thésriction by considering
the state, action, and observation permutatiorgganips

Partially Observable Stochastic Games (POSGs) are a agstit extension to
the POMDPSs, where the actions and observations now takelectied form of all
agents. This change induces another leap in the compleidtgrishy: planning in
finite-horizon Decentralized POMDPs (DEC-POMDPs), whishaispecial class of



POSGs with common payoffs, is known to be NEXP-completel&nning in infinite-
horizon DEC-POMDP is again undecidable since DEC-POMDRsgsneralization
of POMDPs. Hansen et al. [11] give an exact algorithm forisg\POSGs, by means
of Multi-Agent Dynamic Programming (MADP). MADP performgiaamic program-
ming backups over an extendedulti-agent belief spacavhich is a distribution over
both the latent state and the policies of other agents. lardodkeep memory usage in
check, the notion oflominances used to prune unnecessary intermediate solutions at
each iteration.

In this paper, as an extended version of our previous work, [48 extend the
algorithm to that of exploiting symmetries for POSGs as wéil particular, we will
show how the notion of symmetries can be extended to a mgdtivacase and how it
affects some of the game-theoretic concepts in POSGs.

2. Formal Models: POMDPs and POSGs

Before we present our main results and algorithms in deteal first review the
preliminaries of formal models for the single and multi-aggequential decision mak-
ing problems in partially observable environments usedis paper. We also define
optimal solutions for the models and representations fesétsolutions.

2.1. POMDPs

The partially observable Markov decision process (POMDP)] is a model for
sequential decision making problems in single agent gitiit is a generalization of
the MDP model that relaxes the assumption that the agentdmplete information
about the environment states.

Formally, a POMDP is defined as a tugle A, Z, T, O, R, by), where

e S is the set of environment states,
e Aisthe set of actions available to the agent,
e 7 is the set of all possible observations,

e T':5xAxS — [0,1] is the transition function witl'(s, a, s") = P(s'|s,a)
denoting the probability of changing to statefrom states by executing action
ay

e O:5x AxZ—|[0,1]is the observation function wit (s, a, z) = P(z|s, a)
denoting the probability of making observatiarwhen executing action and
arriving in states,

e R: S x A — Ris the reward function wher&(s, a) denotes the immediate
reward received by the agent when executing actiomstates,

e b, is the initial state distribution witlby(s) denoting the probability that the
environment starts in state



Since the agent cannot directly observe the states, it hearnsider the history of
its past actions and observations to decide the currerdraclihehistory at timet is
defined as

ht = {ao, 21,01, 22, .., a1-1,2t}

The action is determined by a poliay, which is a function that maps from the
histories to actions. For finite-horizon problems, whereassume that the agent can
execute actions for a finite time steps, the policy can beesegted using jpolicy tree
where each node is labeled with the action to execute, ardeziye is labeled with the
observation that the agent can receive at each time stelpwhiad) an observation edge,
the agent faces the next level subtree, whose root nodefigseibie action to execute
at the next time step. The sequence of action nodes and altiseredges traversed
while executing the policy naturally becomes the history.

The history leads to the definition ofteelief state which is the probability distri-
bution on the states given the history of actions and obsens

bi(s) = P(s¢ = s|hy, bo)

Upon executing actiom; and receiving observation, ;,, the belief stateh;,; =
7(be, at, ze+1) at the next time step is computed by the Bayes rule:

O(8', at, ze41) Y se g T, at, 5")be(s)
P(zt41]bt; ar) ’

beta(s') =

where
P(Zt+1|bt, Cl,t) = Z O(Sl, at, Zt+1) Z T(S, at, S/)bt(S).
s’eS sesS
The belief staté; constitutes a sufficient statistic for histosy, and can be represented
as anS|-dimensional vector. We can thus re-define the policy as ginggrom belief
states to actions.

Thevalueof a policy is the expected discounted sum of rewards by iolig the
policy starting from a certain belief state. The optimalueafunction is the one ob-
tained by following an optimal policy, and can be defined remely: given thet-1
step optimal value function, thiestep optimal value function is defined as

V' (b) = max | R(b,a) +7 ) P(z[b,a)Vi"y(7(b, a, 2)) (1)
z€EZ
whereR(b,a) = > _b(s)R(s,a) andy € [0, 1) is the discount factor.

2.2. POSGs

The partially observable stochastic game (POSG) 11] is an extension of the
POMDP framework to multi-agent settings. More formally, @$G withn agents is
defined as a tuplél, S, by, {Ai},{Z:}, T, 0,{R;}), where

e [ is the finite set of agents indexad. . ., n.

e S is the finite set of environment states.



e by is the initial state distribution wherg (s) is the probability that the environ-
ment starts in state.

e A, is the finite set of actions available to agénflso, the set ofoint actionsis
specified asd = [],.; As.

e 7, is the finite set of observations available to ager8imilarly, the set ofoint
observationss defined asZ = [[,.; Z;.

e T is the transition function wher&'(s,d, s’) = P(s'|s,a), the probability of
resulting in state’ when executing joint actiod in states.

¢ O is the observation function wher@(s, @, 2) = P(Z]d, s), the probability of
making joint observatiod when executing joint actiod and arriving in state.

e R; is the individual reward function whe®; (s, @) denotes the reward (payoff)
received by agentwhen joint actiory is executed in state

If we restrict every agent to share the same individual revfanction, the model be-
comes the Decentralized POMDP (DEC-POMDP) [3].

In POSGs, each agent independently makes its own decisgedlan the local
information available to the agent. The local informatidtime ¢ for agenti can be
represented as the local history

hit ={ai0,2i1, i1, %2, - Qit—1, Zit}

where actions,; . and observations; .. are from the setl; andZ;, respectively. The
local policy (.e., strategy)r; executed by ageritis then essentially a mapping from
the local histories to local actions. A joint policy is a sdétlacal policies for each
agent. Algorithms for POSGs find the joint policy, which itket of local policies
7 = {m,...,m,} for each agent, for solution concepts such as Nash equitibar
correlated equilibrium. In the case of DEC-POMDPSs whereatients have to cooper-
ate, the algorithms search for the optimal joint policy timatximizes the expected sum
of rewards over the planning horizon.

The agents in POSGs have to reason about other agentsigsdisiwell as the true
state, since they collectively affect the rewards and thegtansitions, and hence the
value. This leads to the definition pfulti-agent belief statevhich is a probability dis-
tribution over the hidden states and other agents’ polidies Hence, while dynamic
programming methods for POMDPs involve belief states arldevaectors defined
only over the system states, methods for POSGs involve tagént belief states and
value vectors defined over the joint space of the states drad agjents’ policies. Thus,
for each policyr € II, of agent;, there exists a value vectbf™ of dimension S||Ti_,|,
wherell_; is the set of policies for all other agents except ageht this paper, we fo-
cus on finite-horizon problems, and assume the local pdiogpresented as a decision
tree.



Formally, agent’s t-step value function of executing poliey while others are
executing policyw_; can be defined as

Vi(s,7oi) = Ri(s,dz) +7 Y Ols.d@z,2) Y T(s,dz, s )WV (s, 7_i(2-0)
7eZ s'eS
2)

wherew = {m,7_;} is the joint policy formed byr for agent: and 7_; for other
agentsz is the joint action for the current time step prescribed ypblicy 7, 7(z;)
is the ¢-1)-step local policy for agent after observation of;, and7_;(z_;) is the
(t-1)-step joint policy for other agents after observatio’of. For a given multi-agent
belief stateh;, the agent’s value of executing local policy is defined as

VED) = > bi(s, ®i) Vi (s, %) 3)

seS 7_,ef_;

3. Solution Methods

In this section, we briefly review some important solutiochieiques for POMDPs
and POSGs. There exists a wealth of literature presentirigusalgorithms on this
matter, but in this paper, we only discuss point-based vidduation (PBVI) [25] for
POMDPs and multi-agent dynamic programming (MADP) [11]R@SGs, which will
be discussed in the later sections.

3.1. PBVIfor POMDPs

The definition of the optimal value function in Equation 1dedo a dynamic pro-
gramming update to obtain thestep optimal value functiol,* from the ¢ — 1)-step
optimal value functiori/;* ;. The dynamic programming update could be represented
as abackup operatot{ on the value functions, such that given a belief state

Vi(b) = HV;-1(b) = max | R(b,a) +7 > P(zla,b)Vioi1(r(b,a, 2))
z2€Z

Since belief states provide a sufficient statistic for thetdries, they can be treated as
states in a continuous MDP, namely the belief state MDP. Moetcoming of this
approach is that the belief state is continuous, and so waatasimply use tabu-
lar representation for value functions as in discrete sspce MDPs, hence naively
performing the backup operation for every possible beliafesbecomes intractable.
However, Sondik [31] pointed out that the value function éaich horizont can be
represented by a s€t = {ay, -+, an } Of a-vectors, so that the value at a particular
belief state is calculated as:



The construction of'; is carried out via a series of intermedidtgeneration:

Iy ={a""a®"(s) = R(s,a)}

F?Z = {a?7z|a?7z(8) =7 ES’ES T(S7 a, S/)O(S/a a, Z)Oéi(S/), \V/Oéi c Ft—l}
[ =T + Beerly”
't = Uaeal'g,

where thecross-sunoperatord on setsd and B is defined as:
A® B={a+bVa€ A,be B}.

However, |T';| can be in the order o©(|A| |1“t,1||Z‘) in the worst case, leading to
a very high computational cost. The doubly exponential ghoof |T';| in ¢ can be
alleviated by pruning dominategvectors for all possible belief states, but the effect
of pruning is limited in practice. This is mainly due to thetféhat the backup is done
over all possible belief states. Point-based value iteng#®BVI) [25] attempts to limit
this growth by performing backups only on a finite detof reachable belief states.
Hence, in findind"; for V;, PBVI constructsl“j}’b, VYa € A, Vb € B, whose elements
are calculated by

Iy = {aglag(s) = Ris,a) + L. [argmaxgers(a-b)] ()}
and finally compute the best action for each belief state
'8 ={ala= argmaxaeA_ageF?,b(ag -b), Vb€ B}

Using T'; (or I'? as an approximation) foV;, the policy simply takes the form of
choosing the action associated wittgmax,, ., (o - b). Table 1 outlines PBVI. The
BACKUP routine refers to the process of creatiig, described above. The EXPAND
routine characterizes the heuristic aspect of PBVI, whask is to collect reachable
belief states from the given s& of beliefs. Heuristics for EXPAND includegreedy
error reduction where the belief states that reduce the expected errorbanegreed-
ily chosen, andstochastic simulation with explorative actiomhere the belief states
that mostly reduce the maximum distance among sampledf lstdites are greedily
chosen. In later sections, we will modify the BACKUP routineorder to exploit the
symmetries in POMDPs.

3.2. MADP for POSGs

Hansen et al. [11] propose a multi-agent dynamic progrargrfNADP) algorithm
for POSGs. The dynamic programming update in MADP consistao stages, first
enumerating-step policies fromi(1)-step policies and evaluating these policies to
obtain value functions, and then eliminating policies tuat not useful for any multi-
agent belief state.

Note that the multi-agent value function in Equation 3 wasresented as the
set of | S||Ti_;|-dimensional vectors. While the dynamic programming meshfor
POMDPs, such as PBVI, involve belief states and value vedefined only over the



Require: By, (initial set of belief states)K (maximum number of belief state ex-
pansions), and’ (maximum number of backups)
B = Binit
r={}
fork=1,...,Kdo

fort=1,...,7do
I' = BACKUP(B,T)
end for
Bieww = EXPAND(B,T)
B = BU Bpew
end for
Returnl’

Table 1: The PBVI algorithm

environment states, the methods for POSGs involve muéiibibelief states and value
vectors defined over the joint space of environment statdso#tmer agents’ policies.
Hence the dimension of value vectors will vary whenever d@cgas eliminated in the
second stage of dynamic programming update. A more convewiay to represent
the value is to prepare a value vector for each joint poficy II;, so that the state
value vectors and belief vectors be of a fixed dimens$kin

V() = Rils,@x) + 7 Lse 7 05,7, 2) e Tl n )V (5) (4)
The corresponding value function for a specific belief [0, 1] is:

V() = b(s)Vi(s). (5)

ses

Notice that given Equation 2, we can convert it into Equaidny concatenating_;
andw to construct the joint policyt. Also, given a joint policy, a state belief vector
of dimension|.S| can be computed for any horizarbased on the given initial state
distributiondy and the action/observation history up to timé& hus, Equation 3 can be
represented as Equation 5. We will use Equation 5 to reptéisewalue for the rest of
the section, for ease of exposition.

Given the sefl,_; = Mg % - x Ijp—q x -+ x II, s—1 Of (¢-1)-step joint
policies and the value vectobsﬁf,1 for all # € II,_,, the first stage of the dynamic
programming update exhaustively generdigs usingll, ,_; for each agent, which
is the set ot-step local policies for agent Assuming tree representations for policies,
the ¢-step local policy for agent can be created by preparing,| root action nodes,
and appending all possible combinations#eij-step local policies to the observation
edges of the root action node. The number of exhaustivelgmge¢ad:-step local poli-
cies will be|II; ;| = |A;||T;;—1|'%!!. CombiningIL ; for all the agents yields the set
of t-step joint policied, with size|II; |[TTo| - -[IL; ¢| - - -|IL, ¢|. The first stage of
dynamic programming update is concluded by computing ttheegaof joint policies,
Vi’f; for all # € I, and agent, using Equation 5.



Require: 1I; 0 = @ andV; o = {6} (initial value function) for each ageit
fort=1,...,7do
# The first stage of dynamic programming backup
fori=1,...,ndo
Perform backup ont{1)-step local policiedl; ;_; to produce the exhaustive
set oft-step local policiedl,; ;.
end for
Letﬁt =10 x oo x I X oo X Iy 4.
for all 7 e Ti, do
Computel ;f; (Equation 5) and add the value vectoig;.

end for
# The second stage of dynamic programming backup
repeat

fori=1,...,ndo

forall = € II; ; do
Pruner if very weakly dominated (Equation 6)
end for
end for
until no local policy was pruned in the loop

end for
return Sets of'-step policiedl; r and corresponding value vectarsy for eacl
agent;

Table 2: The MADP algorithm

With all the necessary policy backup and value computationaleted, the update
continues to the second stage, wherewbgy weakly dominated policiese pruned.
A local policy = of agenti is said to beweakly dominatedf the agent does not de-
crease its value by switching to some other local policy &hll others maintain their
own local policies, and there exists at least @ng < ﬁ,i,t such that switching away
from 7 strictly increases agens value. Avery weakly dominategolicy is one where
the weak dominance relation holds without the existencairement of the strict im-
provementin the value. The test for very weak dominance otallpolicyr of agent
1 can be determined by checking the existence of a probadiktyibutionp on other
policiesIl; ;\x such that

Y e, o AWV T ) > VT ), vs e S, vAL €T, (6)

whereVi;{f’ﬁ‘i} is the value vector of the joint policy formed hyfor agenti andz_;
for other agents. If there exists such a distribution, thémprunable since it is possible
for agent; to take astochastic policydetermined byp, while achieving the value no
worse than that ofr. This test for dominance is carried out by linear programgnin
(LP). A very weakly dominated policy can thus be safely pdiméthout any concern
for the loss in value. The pruning proceeds in an iteratetlifeswhere each agent
alternately tests for dominance and prunes accordinglys ifération stops when no

10



agent can prune any more local policies.

Table 2 outlines the MADP algorithm for computing the set/ebtep joint poli-
cies. Note that this algorithm requires additional compateto select the joint policy
depending on the solution concept such as Nash equilibrikonDEC-POMDPs that
assume cooperative settings, a joint policy with the maximvalue for the initial state
distributionbd is selected as an optimal joint policy.

4. Symmetries in POMDPs and POSGs

In this section, we show how symmetries are defined in POMD®sSROSGs.
We show that finding symmetries for botch cases is a graphasoiism complete
(Gl-complete) problem - the complexity class of finding aatphisms in general
graphs. We present the graph encoding of a given POMDP andsH@$rder to
apply algorithms for finding graph automorphisms. We alsscdbe how POMDP
and POSG algorithms can be extended to exploit the symmeadigezovered in the
models.

4.1. Definition of Symmetries in POMDPs

There have been a number of works in the past to take advaotaige underlying
structure in decision theoretic planning models. Perhaygsad the most extensively
studied types of structural regularities would be that afloonorphism. It is directly
related to abstraction and model minimization technighestry to reduce the size of
the model.

A homomorphisne of a POMDP is defined a&s, ¢4, ¢z) whereggs : S — 5’
is the function that maps the statés, : A — A’ maps the actions, antl, : Z7 — 7’
maps the observations. Note that the mapped POMIDR= (S, A’, Z',T',0', R') is
areduced modedf M if any of the mappings immany-to-oneBecause of this property,
model minimization methods for POMDPs search for a homotmisrp¢ that maps\/
to an equivalent POMDR/’ with the minimal model size. Depending on the definition
of homomorphisny, we obtain different definitions of the minimal model.

A simple extension of MDP model minimization [10] to POMDRsdls to a ho-
momorphismy of form (¢s, 1, 1), wherel denotes the identity mapping. In order to
hold equivalence betweef andM’, ¢s should satisfy the following constraints:

TI(¢S(S)a a, ¢S(Sl)) = ZS//€¢§1(S/) T(S, a, SN)

R,(¢S(5)v a) = R(87 CL)
O'(¢s(s),a,z) = O(s,a,z)

Pineau et al. [24] extend the approach to the case when aigskdhy is given by an
expert, and they achieve a further reduction in the stateespimce some of the actions
become irrelevant under the task hierarchy.

Wolfe [36] extends the minimization method to compute horogwhism of a more
general form{¢s, ¢4, ¢z) where the observation mappigg can change depending

11



T(s,avsten, s’) | T(s,aterr,s’) | T(s, arichr, s')

s' = | SLEFT  SRIGHT | SLEFT SRIGHT | SLEFT _ SRIGHT
S = SLEFT 1.0 0.0 0.5 0.5 0.5 0.5
S = SRIGHT 0.0 1.0 0.5 0.5 0.5 0.5

Figure 1: Transition probabilities of the tiger domain

on the action. The constraints for the equivalence are diyen

T'(¢s(s),pa(a),ps(s")) = ZS,,€¢§1(S,) T(s,a,s")
R/(¢s(s), pa(a)) = R(s,a)
O'(¢s(s), pala), 9% (2)) = O(s,a, 2)

Note that the above methods are interested in finding mammy&omappings in
order to find a model with reduced size. Hence, they focus anpeing partitions
of the state, action, and observation spaces of which blogkesent aggregates of
equivalent states, actions, and observations, respict®ece the partitions are found,
we can employ conventional POMDP algorithms on the absB@dDP with reduced
number of states, actions, or observations, which in efledtices the computational
complexities of algorithms.

In this paper, we are interested in automorphism, which {gegigl class of homo-
morphism:

R
0

Definition 1. Anautomorphisny is defined ag¢s, ¢4, ¢z) where the state mapping
¢s : S — S, the action mapping4 : A — A, and the observation mappinty; :
Z — Z are all one-to-one mappings satisfying:

T(Saavsl) = T(¢S(S)7¢A(a)a¢5(8,))
O(Saavz) = O(¢S(S)a¢A(a)7¢Z(Z))
R(S’ a’) = R((bs (5)7 ba (a))

Hence ¢ maps the original POMDP to itself, and there is no assumpégarding
the reduction in the size of the model.

The classic tiger domain [12] is perhaps one of the best elesrip describe
automorphisms in POMDPs. The state sp&cef the tiger domain is defined as
{sLerT, sSriGHT}, representing the state of the world when the tiger is bettiedeft
door or the right door, respectively. The action spdde defined agagrt, arigHT, GLISTEN},
representing actions for opening the left door, openingidat door, or listening, re-
spectively. The observation spagés defined ag ziert, zricHT} representing hearing
the sound of the tiger from the left door or the right door,pedively. The speci-
fications of transition probabilities, observation prolliibs, and the rewards are as
given in Figure 1, Figure 2, and Figure 3. The initial beligfgiven agy (s grr) =
bo(srigHT) = 0.5.

Note that the tiger domain is already compact in the sengertimmization meth-
ods previously mentioned cannot reduce the size of the medamining the reward
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O(s,avisten; 2) | O(s,aLert, 2) | O(S, GRIGHT, 2)

2= | 2LEFT  ZRIGHT | ZLEFT ZRIGHT | ZLEFT _ 2RIGHT
S = SLEFT 0.85 0.15 0.5 0.5 0.5 0.5
s = srigut | 0.15 0.85 0.5 0.5 0.5 0.5

Figure 2: Observation probabilities of the tiger domain

R(s,a)
a4 = | GLISTEN JdLEFT dRIGHT
S = SLEFT -1 -100 10
S = SRIGHT -1 10 -100

Figure 3: Reward function of the tiger domain

function alone, we cannot aggregaigrr andarigut Since the rewards are different
depending on the current state being eithegr or sricut. By @ similar argument, we
cannot reduce the state space nor the observation space.

However, s et and sgrigyt €an be interchanged to yield an equivalent POMDP,

while simultaneously changing the corresponding actionsabservations:

SRIGHT If 8 = SLEFT
ps(s) = _

sLert  If s = SRiGHT

austen It @ = ausTeN
pala) = arigur  if @ = aterr

ALEFT if @ = arigHT

2rRiGHT  If 2 = 2LEFT
¢z(2) = _

2tert If 2 = 2RiGHT

Furthermore, this property yields symmetries in the bedtates andv-vectors in
the tiger domain, as can be seen in Figure 4.

The automorphism in POMDPs is the type of regularity we idtendiscover and
exploit in this paper: the symmetry in the model that doesmeatessarily help the
model minimization algorithm further reduce the size of thedel. Hence, rather
than computing partitions, we focus on computing all pdss#utomorphisms of the
original POMDP.

Note that if the original POMDP can be reduced in size, we @@ lexponentially
many automorphisms in the number of blocks in the partitiGior example, if the
model minimization yields a state partition with blocks of 2 states each, the number
of automorphisms become&’. Hence, it is advisable to compute automorphism after
we compute the minimal model of POMDP.
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25

a1 = [~86.5,23.5] a5 = [23.5, —86.5]

& ap = [3.38,19.4] oy = [19.4,3.38]

o as = [15.0,15.0]

- ¢

8 _

o

o
b1 be b3 by b5
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Value function of tiger domain obtained by PBVIwi belief statesb; andbs are symmetric,
hence the corresponding-vectorsa; and as are symmetric. The same argument appliedsta@and b,.
Although the illustration uses an approximate value fuorcitomputed by PBVI, the value function from
exact methods will show the same phenomenon.

4.2. Properties of Symmetries in POMDPs

As shown in the tiger domain, the automorphisms of POMDPeakthe symme-
tries present in belief states andvectors; Given a POMDR/ with automorphism
¢ = {ds,0a,0z), letT'* be the set of-vectors for the optimal value function. In this
setting, we provide the following two theorems that can bhgl@iked when computing
a solution to a given POMDP.

By a slight abuse of notation, for a vectoof dimension|S|, we let¢s(v) be the
transformed vector whose elements are permutegldy

Theorem 1. If b is a reachable belief state, thery (b) is also a reachable belief state.

Proof. First, giveng = (¢s, ¢4, ¢z), note that
b (s) = b2 (@5 (s)),

because the automorphism ensures fh@t, a,s’) = T(¢ds(s),da(a),ds(s’)) and
O(s,a,2) = O(¢s(s),0a(a),dz(z)). This means that the symmetric image of a
reachable belief vectdr, that is,¢s(b), is also reachable from the initial beligf by
executing a “symmetric policy”, where the actiaris mapped t@ 4 (a).

In other words, ifb is reachable from initial belief stafg by executing a policy
tree, ¢5(b) can also be reached by executing the policy tree where antides are
relabeled using 4 (a) and the observation edges are relabeled uging ). O

14



Theorem 2. If o € T*, thengg(a) € T*.

Proof. We prove by induction on horizohin I';. By the definition of automorphism,
R(s,a) = R(¢s(s), pa(a)). Hence, ifa € Ty thengs(a) € To.

Suppose that the argument holds For ;. This implies that'a € T'y°%, ¢s(a) €
FfA(“)’¢Z(Z) by the definition of"y>*. If o € ', then by definition, for some andb,

a(s) = ay(s) = R(s,a) + Z argmax(a’ - b)
27 O‘,EF:‘Z

Consider its symmetric image defined as

a(ps(s)) = R(ps(s), pala) + Y argmax (" - ¢s(b)).

¢7(z)€z @/ €rfAD P2

For each observatiofiz (=), the argmax will select’” which is the symmetric image
of o’ selected in thargmax,, cpe.= (o - b). Hence we haves(a) € I'y. O

In this work, we specialize the PBVI algorithm to exploit syretries, as will be
shown in later sections. However, the theorems we proviglganeral enough to be ap-
plied to a variety of different value function-based algfoms. We argue so, because the
unifying theme of all value function-based algorithms ie tltependence am-vectors
and/or belief points, and the two theorems we presentedatelithat the symmetric
images of the sampled belief points amevectors contribute equivalently to the over-
all value. For example, the randomized point-based backi®eiseus [32] can benefit
from our results by not having to perform redundant backugragpon on symmetric
beliefs. Symmetries can be exploited in search based methach as HSVI or For-
ward Search Value Iteration (FSVI) [29] in a similar mann#r.particular, multiple
backups can be performed for a single sampled belief poirtakiyng the symmetric
image of that sampled belief. The gist is that, while différealue function-based
methods provide different sampling approaches, our fraonkewan be universally ap-
plied to enhance the sampling procedure.

4.3. Definition of Symmetries in POSGs

Extending the definition to POSGs introduces agent-to-ageppings, where the
local actions and observations of an agent are mapped te tif@nother agent. For-
mally, the automorphism for POSGs is defined as follows:

Definition 2. An automorphisn for agenti on a POSG is a tuplégr, ¢s, ¢ 5, ¢ ;)
with ¢ x = {¢a,|i € I} ando; = {¢z,|i € I}, where agent mapping; : I — I,
state mappings : S — S, action mapping®a, : A; — Ay, (), and observation
mappingspz, : Z; — Zy, ;) are all bijections satisfying

T(S,C_i, S/) T(¢S(S)7¢E(a)a¢5(8/))
O(s,d, ) = O(¢s(s), ¢ 5(@), 9 7(2))
Ri(s,d@) = Ry, () (¢s(s), ¢ 5(d@))

Sy

forall s, s’, @, andz.
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Joint Action SLEFT— SRIGHT | SLEFT— SLEFT | SRIGHT— SLEFT | SRIGHT— SRIGHT
{a1,LisTEN, 82,LISTEN} 0 1 0 1
Other 0.5 0.5 0.5 0.5

Figure 5: State transition probabilities of the Dec-Tigendin. The second row shows the transition prob-
abilities of all joint actions composed of at least one nisteh individual action.

A special case when agent mappitigis an identity mappingy is said to be an
intra-agent automorphismOn the other hand, i$; is a non-identity mapping, it is
said to be annter-agent automorphisminformally speaking, inter-agent automor-
phism allows interchanging agents as long as the local m@md observations are
interchanged accordingly. On the other hand, intra-agetatraorphism is confined to
interchanging the local actions and observations withiagent. It can be thought that
intra-agent automorphism captures the symmetry presetheisingle-agent POMDP
level, while the inter-agent automorphism extends the sgtryrto the multi-agent
level.

To illustrate, we present the decentralized tiger (Decefligomain [19]. Dec-Tiger
is a multi-agent extension to the classical tiger domainer&éhare now two agents,
setting the agent sét= {1, 2}, that must make a sequence of decisions as to whether
they should open the door (jointly or separately) or list€he states are the same as
the tiger domain:s_grt andsgigut. Each agent has the same set of actions that are
equivalent to the single agent cas@; Listen , & rigHT, &, eFT ¢ = 1 0r2}, where
a;, x indicates the actiotX’ of agenti. The observation space is duplicated from the
single-agent case as wel{z; | ert, Z rigut| ¢ = 1 0r2}, with the notations defined
similarly.

If at least one agent performs an open action, the statesr#setther one with 0.5
probability. If both continue with a listen action, then thés no change of state.

Each agent individually observes the tiger from the correom with probability
0.85 when performing a listen action. When both agents parfojoint listen action,
then the resulting joint observation probability is congmiais a product of the individ-
ual probabilities. All other joint actions where at lease@yent performs a non-listen
action result in a uniform distribution over the joint obgations.

Rewards are given equally to both agents, and are designedctmurage coop-
eration. The maximum reward can be attained by coopergtofgning the tiger-free
room. If each agent chooses a differentroom, then a highlfygaagiven. If they coop-
eratively open the tiger room, then they still suffer a pgndidut at a much lesser cost.
Jointly listening costs a small penalty, whereas openieditier-free room while the
other agent listens will result in a small reward. If, on thkey hand, one agent opens
the tiger room while the other is listening, then they indur tvorst possible penalty.
The transition probabilities, observation probabilifiaad rewards are summarized in
Figure 5, Figure 6, and Figure 7, respectively.

One possible symmetry that exhibits an inter-agent mapgimgesented in Fig-
ure 8. For the complete list of symmetries in Dec-Tiger, wetathe reader to consult
Figure 15 in Section 7 where we report experimental results.
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Joint Observation| SEertr | SRiGHT
{Zl,LEFTa 227|_EFT} 0.7225]| 0.0225
{Zl,LEFTy ZQ7R|GHT} 0.1275| 0.1275
{Zl,R|GHT| ZQ’LEFT} 0.1275| 0.1275
{Zl,RIGHTx ZQ’R|GHT} 0.0225| 0.7225

Figure 6: Observation probabilities of the Dec-Tiger domfair joint action{a; Listen.a2,LisTEN}. The

probabilities for other joint actions are uniform, and arsitted.

Joint Action SLEFT SRIGHT
{a1 riGHT, @2,RIGHT} 20,20 0,0
{a1,LeFT, 82, LEFT} 0,0 20,20
{aLR.GHT, ag7|_E|:T} -100,-100| -100,-100
{aLLEFT, aQ,RIGHT} -100,-100| -100,-100
{a1,LisTEN, @2,LISTEN} -2,-2 -2,-2
{a1,LisTEN: @2, RIGHT} 9,9 -101,-101
{a1 riGHT, @2,LIsTEN} 9,9 -101,-101
{ai,usten, @,Lert} | -101,-101 9,9
{ai,LerT, @, LsTen} | -101,-101 9,9

Figure 7: Individual rewards of the Dec-Tiger domain

4.4. Properties of Symmetries in POSGs

As with the case with POMDPs, the symmetries in POSGs rewedililregularities
present in the model. In this section, we formally state ttaperties of symmetries
in POSGs, which will be used to extend MADP in the later sexgioAgain, with a
slight abuse of notation, we extend the domaim @b local and joint policy trees, the
output of which is another policy tree with all the actionglarbservations permuted
accordingly. That isg() for any policy treer is a permuted policy tree whose action
nodes have been mappedby and the observation edges have been permuted;by

Theorem 3. Given an automorphism = (¢1, s, ¢ 1, ¢ 7).
Vii(s) = VT (6s(5))
for all s at all time stepd <t¢ <T.

Proof. We prove by induction oh. Fort = 1, only the immediate reward matters:

Vi (s) = Ri(5,@) = Ry, ) (05(5), 62(@) = V') L (5(5).

The first and last equalities follow from the fact that a 1pgp®licy tree is simply a
single action node. The second equality holds by the definaf automorphism.
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, Agent2 ifiis Agent 1

or(i) = L
Agentl ifiis Agent2

¢s(s) = ldentity mapping

az,usten  If a = a1 LsTEN

da,(a) = Qasriur  if @ = a1 riGHT

agerr  if a =aq eFT

ay,usten  If a = ag isTEN

$a,(a) = Qarricur  if a = asriGHT

ai,LEFT if @ =asEFT

ZoRIGHT If 2 = 21 LEFT

(bZl (Z) = .
ZolerT  If 2 = 21 RIGHT
ZILRIGHT If 2 = 29 | EFT
(bZz( ) = .
ZiLerT  If 2 = 22 RIGHT

Figure 8: An example of an inter-agent symmetry for Dec-Tige

Assume that the theorem holds for &8 up tot = k-1 (i.e. for policy trees of
depthk — 1). Fort = k, the Bellman equation unfolds as

(s,@)+~ Y T(s,d,s")O(s,a, 5)‘@7;(?1(5/)
s ES,ZGZ
T(0s().¢4(@). 5(<)
= Ry (65(5), ) + Z (¢5(7(T(¢)Z<é) )(a)7¢z*l(z))
ps(s')es V¢I()k 1 (9s(s))
Pz (2)eZ

All the terms except th& (-) can be shown equal by the definition of automorphism.
The equality of the next-step value term is established lyitlductive hypothesis,
since the subtrees (all of which arke € 1)-level subtrees) encountered by following
Zin 7 are symmetric to the ones encountered by following2) in ¢(7). Therefore,
the equality holds for alt > 1. O

Because Theorem 3 holds for all valuestpive will henceforth drop the horizon
superscript whenever possible. Based on the above theorem, we can neafa|tw-
ing statement regarding very weak dominance under the pcessf symmetries:

Theorem 4. If the local policyr of agenti is very weakly dominated, then the local
policy ¢(w) of agenty;(4) is also very weakly dominated for any automorphism
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Proof. From Equation 6, the local policy of agent is very weakly dominated if there
exists a probability distributiop on other local policie$I; \ 7 such that

S oW ) > VI ), s, vr e
7! €I\ 7

Consider the local policy)(7) of agent¢;(i). In order to prove that(w) is very
weakly dominated, we have to show that there exists a prétyathistribution p’ on
agentp;(i)'s other local policiedl,, ;) \#(m) such that

{77 _gr 0} {o(m)7—g, )} - =
Z p’(?T”)V(bI(i) () > Vi) 1O (8),V8, YTy i) € Mg, (i)
7 €lly i) \@(7)

Note that the local policyr’ of agent: corresponds to the local poliey(=’) of agent
¢1(i). Hence for eactr” < Tl,,;)\¢(7), we can always find’ < II;\7 such that
7" = ¢(7’) sinceg is bijective. If we sep’(n”) = p(n’) wherer” = ¢(x’), we have
found a probability distributiop’ that satisfies the above inequality. O

From Theorem 4, it follows that a policy tree and all of its syetric images can be
pruned without loss in the value if any of them is known to beyweeakly dominated:

Corollary 1. If a policy = can be pruned, thea(w) can be pruned as well.

As in the case of POMDPs, we adopt MADP to demonstrate thaungesfs of
symmetries in POSGs. While this approach may seem algocific, we argue
that the theoretical basis on which such exploitations adans general enough to be
applied to other algorithms as well.

For example, there has been much significant work on solviBG{POMDPs in
recent years, including Bounded Policy lIteration (BPI), [¥lemory-Bounded Dy-
namic Programming (MBDP) [28], Heuristic Policy Iterati@dPl) [2], Point-Based
Bounded Policy Iteration (PB-BPI) [14], Point-Based Pyligeneration (PBPG) [37],
Constraint Based Policy Backup (CBPB) and Team Decisiohlpro based Policy It-
eration (TDPI) [15]. These algorithms often share commanatational steps, such
as exhaustive or partial dynamic programming backup ofggsi pruning dominated
policies and improving policies using mathematical progmsing. The theoretical re-
sults above can be used to reduce the number of policies afeddoy the dynamic
programming backup, as well as the number of mathematicgrams to solve. We
can also apply recent results on exploiting symmetriesdace the sizes of mathemat-
ical programs themselves [5], but the details are left fourfel work.

The symmetries also have various impacts on the game thearetlysis of the
given POSG. To facilitate our discussion, we will conved tiven POSG to a normal
form game. We will also adhere to the term “policy” for the ealf consistency, al-
though “strategy” is more widely adopted in game theory. Asfed out by Hansen
etal.[11], a POSG at time horizarcan be converted to a normal form game by enlist-
ing all the policy trees as possible actions. We also incthdénitial state distribution
in order to have scalar payoffs rather thaftrdimensional vector payoffs. This is done
by taking the inner product of each value vedtgt and the initial state distributioby.
This inner product will become the payoff entry into our certed game.
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We denote the payoff of a joint policy for agenti as u;(7), or equivalently,
ui({m;, ©_;}). Itfollows thatu;(7) = ue, ;) (¢(7)), due to Equation 7.

> bo(s)Vi(s) = D bolds(s)VE T (@5(s)) (7)

For our discussion on symmetries for game theoretic solutancepts, we begin
with the Nash equilibrium A (pure-strategy) Nash equilibrium is a joint policy such
that for any fixed agent, that agent has no incentive to warddly switch its policy
provided that others do not change theirs.

Proposition 1. If a joint policy 7 is a Nash equilibrium in a normal form representation
of the given POSG, then its symmetric imag#) also constitutes a Nash equilibrium.

Proof. Given a Nash equilibriunt*, the following inequality holds by the definition:
wi({mi, @25}) > wi({mi, 72, }), Vi, mi # w7

The automorphism guaranteesr) = ug, ;) (¢(7)), for any joint policys. Therefore,
Ug, (i) (P(T*)) > ug, iy ({P(m:), (7% ;)}), Vi, m; # 77, which establishes the fact that
¢(7*) is a Nash equilibrium as well. O

Proposition 1 easily generalizes to mixed-strategy Naslilibgum. Note that
our notion of symmetries generalize the definition used assicalsymmetric games
which requires that there exists an invariant action magppin and observation map-
ping ¢~ for all possible permutations of agents. Our theoreticalilts could be used
in making game solvers more scalable, widening the apglitabf the techniques
by Cheng et al. [7]. The facts presented in this section leaal tnore efficient pro-
cedure for finding the equilibria of symmetric POSGs. Indteasearching for every
single equilibrium present in POSGs, we can speed up theepsoloy applying the
symmetries of the POSGs to the equilibria that have alreaéy lniscovered.

Thecorrelated equilibrium(CE) [21] generalizes the mixed-strategy Nash equilib-
rium. Whereas the mixed-strategy Nash equilibrium is defitcebe an independent
probability over the local policies, the CE is a probabibityer the joint policies allow-
ing for the dependencies among agents’ local policies. Bhahe probabilityp over
the joint policies is a CE if

Yor p(@ui(®) = 2 p(@)ui({m, 7—i}), Vi andVm # m;. (8)

With symmetries present in the normal form game represemntat the POSG, we can
prove a symmetric property of a CE.

Proposition 2. Letp be a CE of the normal form representation of a given POSG. Then
there exists a (possibly same) @Esuch thay’ (¢(7)) = p(#) for any automorphism
¢ of the given POSG, and any joint poligy

Proof. Given a CEp, we can re-write Equation 8 as

2wy Pt i) (6(T))

~—

v

Sy o PO ({8(0), S(7_0))), Vi, Vo, # s
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Note that sincer] # m;, ¢(7;) # ¢(m;) due tog being bijective. This modified form
states thap(7) can also be used as a probability with whiglr) is chosen. Therefore,
there exists a CE that assigns probabitity) to ¢(7). O

5. Symmetry Discovery in the Models

In this section, we show that finding the symmetries preserPOMDPs and
POSGs is a graph isomorphism (GI) complete problem, the ctstipnal complex-
ity class of finding the automorphism groups of general gsaplVe thus present the
graph encoding of a given POMDP and POSG in order to use a guaoimorphism
algorithm for finding symmetries in the model.

5.1. Graph Encoding of a POMDP

We first describe how we can cast the problem of finding autpimems in POMDPs
as that of finding automorphisms in graphs. Specifically, weslvow how we can en-
code a given POMDP as a vertex-colored graph, so that thenauphism found in
the graph corresponds to the automorphism in the POMDP. @upoach here will
prove useful when we discuss the computational complexitliscovering POMDP
automorphismsin the later part of this section.

A vertex-colored grapltz is specified by V, E, C, ), whereV denotes the set of
vertices,E denotes the set of edgés;, v;), C is the set of colors, angd : V' — C
denotes the color associated with each vertex. An autonwrpp : V — Vis a
permutation ofi” with the property that for any edge;,v;) € E, (¢(vi), ¢(v;)) Is
also inE, and for any vertex; € V, ¥ (v;) = ¥(é(v;)).

We can encode a POMDP as a vertex-colored graph in order y gpph au-
tomorphism algorithms. The encoded graph is composed dbilmving classes of
vertices and edges, their counts being presented in passgh

e States [S| vertices): for every state, we prepare vertex; and make every
vertex share the same unique colds: € S, ¥(vs) = cstate

e Actions (A| vertices): for every action, we prepare vertex, and make every
vertex share the same unique coldiz € A, 1 (v,) = caction

e Next states|S| vertices andS| edges): for every statg, we prepare vertex,
and make every vertex share the same unique colgrie S, ¥(vs) = Cstate-
We connect the next-state vertex to the state vertex, if and only if s’ = s.

e Observations|¢| vertices): for every observationy we prepare vertex, and
make every vertex share the same unique cdlere Z, ¢ (v,) = cops

e Transition probabilities||?| A| vertices and3|S|?| A| edges): for every triplet
(s,a,s"), we prepare vertexr(; . ) that represents the transition probabil-
ity T'(s,a,s’) and assign colors so that two vertices share the same color if
and only if the transition probabilities are the sans, a, '), V(s”,d’, s""),
w(vT(s,a,s’)) = ¢(UT(5”,a’,s”)) iff T(S, a, Sl) = T’(SH7 CL/, Sm). We connect the
the transition probability vertex;(, , .y to the corresponding state, action, and
next-state vertices, v, anduv.
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e Observation probabilitied §||A||Z| vertices and3|S||A||Z| edges): for every
triplet (s, a, z), we prepare vertexo, ...y that represents the observation prob-
ability O(s, a, z) and assign colors so that two vertices share the same color if
and only if the observation probabilities are the samés, a, 2), V(s',d’, 2'),
Y(V0(s,0,2)) = Y(VO(s,ar,2y) T O(s,a,2) = O(s',d’,2"). We connect the
observation probability vertex, s ,,-) to the corresponding state, action, and
observation vertices,, v, andv,.

e Reward function |S||A| vertices an®|S||A| edges): for every paifs, a), we
prepare vertexwr(s ,) that represents the rewar(s,a) and assign colors so
that two vertices share the same color if and only if the relware the same:
V(s,a),Y(s',a"), Y(VR(s,a)) = Y(VR(s a)) If R(s,a) = R(s',a’). We connect
the reward vertexp(, ) to the corresponding state and action vertiegsand
Vg-

o Initial state distribution|(S| vertices andS| edges): for every state we prepare
vertexvy, () that represents the initial state probabilitys) and assign colors so
that two vertices share the same color if and only if theah#tate probabilities
are the samev's, Vs', 1 (vy, (s)) = ¥ (vpy(s)) Iff bo(s) = bo(s"). We connect the
initial state probability vertexy, ) to the corresponding state vertex

The graph encoding process is mechanical, and the colorsdges are carefully pre-
pared in order to preserve the equivalence of the model lardegraph automorphism.
Figure 9 shows the result of the graph encoding process éatigler domain.

The encoded graph is sparse, consisting@f5|?|A|| Z|) vertices and)(|S|?| A|| Z|)
edges, hence the number of edges is linear in the number iagr Despite super-
polynomial running time in the worst case, typical graphoaubrphism solvers are
efficient for sparse graphs. As we reportin Section 7, we nsedy [18] for the graph
automorphism solver, and it quickly found automorphismshi@ encoded graphs of
benchmark POMDP domains with up toc60” vertices.

As a minor remark, note that we choose the colors such #ffak (s .,s)) #
Y(V0(s,0,2)) €VEN T (5,0,5") = O(s,a,z). This is to prevent the transition prob-
ability being permuted with observation probability vees. Similar restrictions apply
to all other vertices of different classes.

5.2. Graph Encoding of a POSG

Similar to the POMDP case, the problem of finding POSG autpiniems can be
reduced to finding the automorphism group of a properly eadagtaph. The graph
encoding we use here is not so much different from the POMDORo@eh, with the
exception of the vertices that reflect the multi-agent atspec

The encoded graph is composed of the following classes ti€esrand their edges:

e Agents (I| vertices): we prepare one vertex per agent, assigning the saique
color.

e States (S| vertices): we prepare one vertex per state, assigning the saique
color.
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Figure 9: Encoding the tiger domain as a vertex-colored lyrdpo vertices have the same color if and only
if their shapes and fillings are the same.

o Next states |G| vertices and S| edges): we prepare another vertex per state,
assigning the same unique color, however different fromctiier of state ver-
tices. We connect each next-state vertex to the correspgsthte vertex, so that
permuting state vertices yields permuting next-statdsestin the same order.

e Actions (_, |A;| vertices and , | A;| edges): we prepare one vertex per action,
assigning the same unique color. We connect each actioexvirtthe corre-
sponding agent vertex to represent to which agent the aistiavailable.

e Observations)_, | Z;| vertices andd_, | Z;| edges): we prepare one vertex per
observation, assigning the same unique color. We connebtaaservation ver-
tex to the corresponding agent vertex to represent to whjehtthe observation
is available.

e Transition probabilities|G|? [, |4;| vertices and || + 2)|S|?T], | 4:| edges):
we prepare one vertex per transition probability, assigtire same unique color
if and only if they have the same probability. We connect daahsition proba-
bility vertex to the corresponding state, next-state, astoha vertices.

e Observation probabilitieg§| [ |, | A:||Z;| vertices and2|I| + 1)|S| [, |4:||Zi|
edges): we prepare one vertex per observation probalabiigning the same
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color if and only if they have the same probability. We cortreszh observation
probability vertex to the corresponding state, action, aloskrvation vertices.

e Individual reward functions|(||S| [, | A:| vertices and|I| + 2)|I||S| ], |4
edges): we prepare one vertex per individual reward, asgigihe same color
if and only if they have the same reward. We connect each rewentex to the
corresponding agent, state, and action vertices.

e Initial state distribution |S| vertices and S| edges): we prepare the vertices
corresponding tay (s) the same way as they are for POMDPs.

The resulting graph ha®(|]|S|? [T, |A:||Z:]) vertices andO(|I]?|S|? 1, |A:l|Z:])
edges. For DEC-POMDPs where the agents share the same fewetidn, there will
beO(|I||S|>T1, |A:||Zi|) edges so that the number of edges is linear in the number of
vertices.

5.3. Computational Complexity

A recent study on the computational complexity of finding MBJPnmetries [20]
showed that the problem of finding the symmetries of a giverAMian be polynomi-
ally reduced to the problem of finding the automorphisms efabrresponding graph
encoding. Hence, it is known that the computational conipl@f finding the symme-
tries of an MDP belongs to the graph isomorphism-completec(@nplete) class. In
this section, we extend the result on MDPs to POMDPs and PO@keg a similar
but slightly different approach.

For ease of exposition, we provide two lemmas that will befuwlsa proving the
main theorem regarding the results for POSGs. We will usdahewing definitions
for the proof in the first lemma:

Definition 3. Given POSGV/, GG, denotes the vertex-colored undirected graph rep-
resentation ofA/. Themodel verticef G, are the vertices corresponding to the
state, action, observation, and agentsidf Theparameter verticesf G, are the
ones corresponding to transition, observation, and rewfartttions ofM .

We also adjust notations regarding symmetries in orderdagart confusion: Sym-
metries pertaining to graphs will be denoted¢gswith a G subscript, whereas sym-
metries of POSGs will retain the notations introduced in Bigéins 1 and 2.

Lemma 1. A symmetry of\/ corresponds to a unique automorphisnif;, and vice
versa.

Proof. First, assume that a symmetpyof M is given. From this, we can prove the
existence of a unique automorphista of G;. To construct a uniqués from ¢,
proceed by first mapping the model vertices according.td-or example, given an
action vertexv,,, we setog (vq, ) «— Uga, ) (aoc)” Note that mapping the agent ver-
tices simultaneously still maintains the edge connegtivéicause their corresponding
action and observation vertices are mapped accordinglyt, Me permute the param-
eter vertices that are connected to the model vertices. [attexr permutation must
be possible becausgpreserves the probabilities and rewards (whose correspgnd
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vertex colors are the same). To specify the permutationseopirameter vertices, con-
sider a pair of tuple$; = (s,d, z,s") andty = (¢s(s), ¢ (@), ¢ 3(2), ds(s')). By
construction of+,, the verticesir(, a. ) andvT(¢S(8)74)5(5)7%(3,)), corresponding to
T(s,d,s") andT(ps(s), ¢ z(@), ¢s(s")), respectively, share the same color since the
two probabilities are equal undét This assertion holds for any arbitrary choice of
t1, by definition of POSG symmetry. The only components coretett the relevant
parameter vertices are the participating model verticaserafore,gc (vr(s,a,s)) —
UT(ps(s).6 1 (a),65(s")) Preserves the color and edge constraints of graph autorisonph
The same argument applies to the observation probabildyreward vertices, com-
pleting the construction afs. The construction ob is tailored to a specifig, and

is different for some othep’ # ¢, since the POSG symmetries are bijections. Thus,
there is only one for a specificy.

To show the other direction, assume we are giveép &f G ;. Consider two tuples
t1 = (vs, {va, }, {vz, },ver) @ndta = (dc(vs), {dc(va,)}, {dc(vz,) }, da(vs)). The
set of vertices for both tuples run over all agefts I. The verticesus, vy, {vq, }
of t; are connected to a transition probability vertex z . that corresponds to
T(s,d,s’), whered is the joint action formed by concatenating the actionsespond-
ing to the verticeqv,, }. The analogue holds for another transition probabilitytexer
VT ($s(5).6 1(@),bs(s")) of to. Because there can be only ong, ; ) for the triple
(s,d,s’), only the vertices irt; are connected 10T (45 (5).6 £(a).5(s")) and no other.

It follows that the following two equalities hold:

0 (VT(s,a,5) = VT (ps(s),6 5(@).05(s"))
V(oa(vr(sas))) = (Ur(ss(s).es(@)sss))

If this were not true, there must exist another vertex that is mapped tor(, 5 o).
Then, by the property of graph automorphism, the corresppaneertices int, should
also be connected toy - otherwise, vertices iri; cannot be mapped to those of
to. However, this is a contradiction to the wé,, is constructed, since the vertices
in ¢t are connected to two transition probability vertices. Hfere, there exists an
automorphismp such thatl’(s,d, s") = T(¢s(s), ¢ z(@), ¢s(s’)), wherepg(vs) =
Vgs(s)> PG (Va;) = %(%m),v@' € I,a; € A;,s € S. The analogous equalities for
the observation and reward functions can be proved simildflurthermore, similar
to the proof of the reverse direction, is unique to the giverys becauseps is a
bijection. O

We also show that, given any vertex-colored undirectedlgéapwe can construct
POSG so that an automorphism@fcorresponds to a unique symmetry of the POSG,
and vice versa. The constructed POSG consists of a singtd,aagion, and obser-
vation. Each state of the POSG corresponds to each vertéx & more detail, the
construction is as follows: Prepare a POSG state pereach’. With a slight abuse
of notation, we will use the notations for states and vestiogerchangeably. We take
the agent set to be a singleton set. There is only a singleraatifor this POSG, and
the transition probabilities are determined as followst de;(v) denote the degree of
vertexv. ThenT (v,a,u) = m,wv,u) € E. A self-transition of probability 1 is
implicitly assigned to zero-degree vertices. Therefdre ttansition probability assign-
ment will needO(|V'|D) time, whereD = max,cy deg(v). This complexity is again

25



upper-bounded by (|V|?), since there can be at mdst| — 1 edges connected to any
given vertex. There is only one observatigreading to an identical observation proba-
bility function of 1 to all(s, a) pairs. ThatisO(v, a, z) = 1,Vv € V. This assignment
is done inO(|V]) time. For the reward component, we assign the reward aauptdi
the color of the vertex at which the action is taken. Thati&, a) = N (¢ (v)), where

N : C — Ris taken to be any bijection that maps colors to real numbers.

Definition 4. Given a vertex-colored undirected graph= (V. E, C, ¢), M denotes
the POSG representation 6f via construction steps described above.

Lemma 2. An automorphism af/ corresponds to a unique symmetryldf and vice
versa.

Proof. First, we show that there is a unique symmetrgf M for an automorphism
¢ of G. Because the vertices constitute the state spadd©f only the states are
permuted. By the edge-preserving propertypef, deg(v) = deg(éc(v)) for all ver-
tices inG. It follows thatT'(v,a,u) = T(¢c(v),a, pa(u)),¥(v,u) € E. By the
color-preserving property abg, R(v,a) = ¢ (v) = ¢¥(éc(v)) = R(¢da(v),a) holds.
Lastly, the observation probability remains invariant toy automorphism since it is
constant for all states. Therefore, we can constyulsy permuting the states the way
they were permuted by:. Notice that becauseq(v) # ¢ (v), Vo # ¢, ¢ is
unique.

To prove the other direction, we assume the symmetigf My is given. By
definition of ¢, T'(s,a,s") = T(¢s(s),a,ps(s")) andR(s,a) = R($s(s),a) holds.
The equivalence of the transition probabilities implieatitleg(vs) = deg(vy(s)) for
the vertexv; corresponding to state This equality holds for alb € V. To this end,
we can seta(vs) « vg(s) as our uniquepg. To see that thighc supports edge-
preservation, take anfp,u) € E. Lets, ands, be the states mapped toandw,
respectively. The'(s,,a,5u) = g7 = daswy = L(@(s0).a,¢(s4)). The
fact that the last term is non-zero indicates tf&t (v), ¢c(u)) € E as well. Also, for
any (v,u) ¢ E,T(sv,a,s4) = T(dc(v),a, pa(u)) = 0, hence(pa(v), pa(u)) ¢ E
as well. O

We now state the main theorem regarding the computatiomaptxity of finding
symmetries of POSGs. We denote the problem of finding thergere of automor-
phism groups of a grapty by AGEN(G), and the problem of finding the symme-
tries of a given POS@/ by PSYMM(M). It is known that AGENG) belongs to the
class Gl-complete [6]. We use this fact to prove that the agatfpnal complexity of
PSYMM(M) is Gl-complete as well.

To prove that PSYMMY/) is Gl-complete, we need to show that PSYMMJ <,,
AGEN(Gy) and AGENG) <, PSYMM(M¢), whereA <,, B denotes polynomial
reducibility of problemA to problemB.

Theorem 5. PSYMM({W/) belongs to the class Gl-complete.

2Simply put, anautomorphism generatoof a graph is a set of permutations on the vertices such that
when applied, yields permuted graphs.
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Proof. We first show that PSYMMY/) <, AGEN(Gxs). The number of vertices in
G is O(|I|S12T1, |As|1Zi), which is polynomial in the number of agents, states,
individual actions, and observations. Since the compfexfitconstructing any undi-
rected graph fromm vertices is at mos©(n?) (in the case of a complete graph), it
takes polynomial time to convert the POSG to the correspanaertex colored undi-
rected graph. By Lemma 1, the symmetries\éfand the automorphisms 6f,, are
equivalent.

The second part of the proof aims to show that AGENK,, PSYMM(M¢). For
the purpose of parallel argument, we assume that the givaghgs vertex-colored, al-
though the argument can be specialized to non-colored gr&pikien a vertex-colored
undirected graplt = (V, E, C,v), we will construct the corresponding POS\&.
Note that it also takes polynomial time to convert the grdptio the POSGM¢.
By Lemma 2, the automorphisms 6fand the symmetries d¥/ are equivalent. O

By setting|/| = 1, a POSG becomes a POMDP and all of the arguments presented
in the proof of Theorem 5 carries over without modificatiorertde, we can state the
same result for an arbitrary POMDP regarding its computaticomplexity.

Corollary 2. The problem of finding the symmetries of a POMDP belongs tol&ss
Gl-complete.

Although the class Gl-complete belongs to NP, it is neithrenvin to be P nor NP-
complete. It is however known to be in the low hierarchy oksl&P, and there are a
number of implementations that can solve Gl problems efittye

6. Exploiting Symmetries in the Solution Methods

In this section, we present algorithms for POMDPs and PO&fdad advantage
of symmetries present in the model. We first show how we caenekPBVI using
the characteristics of POMDP symmetries discussed in @edt2. We then present
an extended version of MADP for POSGs using the propertid3@$G symmetries
discussed in Section 4.4.

6.1. Extending PBVI for Symmetry Exploitation in POMDPs

With the set of automorphismb that represents the set of all symmetries present
in the model, we can modify PBVI to take advantage of the sytrigsein belief states
and a-vectors: First, when we sample the set of belief states,afrtbe heuristics
used by PBVI is to select the belief state with the farthjest|; distance from any
belief state already iB. Since we readily know the values at symmetric images of
any belief state, we modify thé - ||; distance computation to handle symmetries:
b —b'||? = minggea ||¢(b) — ¢/ (b)]1. We then select the belief state with the
farthest| - ||T distance. This also allows us to exclusienmetrically identicabelief
states. Second, sindg will exclude symmetrically identical belief states, we ahb
modify the backup operation to include symmetric images-@éctors intd'{. Table 3
shows the pseudo-code for performing the symmetric baclepation.

We also added a small but important improvement for the syimcrigackup ofa-
vectors: some of the belief states will have the same synitrietage,i.e,, b = ¢(b).
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Require: T'; = backugB,I';_1, ®)
for eacha € A,z € Z,a; € T'y—; do
for eachs € S do
087 (5) = X yeg T(s,a,8)0(s',a, 2)ai(s')
end for
Iy =Ua)®
end for
I ={}
for eachb € B do
for eacha € A, s € S do
ag(s) = R(s,a) + ¥, argmax,era= (o - b)
end for
a* = argmax,(ay - b)
ap = ozg*
if ap, ¢ Ty then
Ft = Pt U ayp
for eachg = (f,g,h) € ® do
if f(aw) & Tt then
Ft = Ft U f(Oéb)
end if
end for
end if
end for

Table 3: The backup operation of PBVI taking into accoimthe set of all symmetries.

For these belief states, it is often unnecessary to@dd) into I';, since¢(ay) is
relevant to the belief staté(b) butb and¢(b) are the same! We thus identified which
automorphisms yield # ¢(b) for each belief staté, and included the symmetric
images ofw-vectors only for these automorphisms.

6.2. Extending MADP for Symmetry Exploitation in POSGs

We now show how to apply our approach to POSGs. Using thetsesulSec-
tion 4.4, we can expect certain leverages in performancewbsag MADP. In partic-
ular, we make use of the symmetries in the two stages of theadet

e Value computation stage: The first major speed bottleneckirscduring the
value computation, where we evaluate all the joint poligeserated from the
exhaustive backup. However, Theorem 3 states that for amgngoint policy,
its value vector is merely a permutation of the value vectoitsymmetric
image. Thus, the value computation for such policies carvbaead — we can
simply permute the symmetric value vector whenever we nie@tbite that in the
case of inter-agent symmetries, all the value vectors ofgamtacan be obtained
by permuting value vectors of its symmetric agent. The totahber of value
vectors decreases by a factor|@f.
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Require: Sets oft-step policiedl; ;, corresponding value vectovs ; for each agent
1, and set of symmetries.
# The first stage of dynamic programming backup
Perform exhaustive backups to dét;; for eachi.
forall 7 € I, do
if A € @, Vﬂ(ﬂ has been computeten
Compute Z{Ll (Eqgn 5) and add the value vectorn®; 4.
end if
end for
# The second stage of dynamic programming backup
while any agent has a prunable policgo
NOPRUNEj, «— {},Vk € I.
forall = € II; 441 do
if 7 ¢ NOPRUNE; andx can be pruned (Egn @hen
Hi,tJrl — Hz‘,t+1\7f-
for V¢ € ® do
g, (iy,e1 = g, i),041\D().
end for
else ifr cannot be prunethen
NOPRUNE; <+ NOPRUNE; U {}.
for V¢ € ¢ do
NOPRUNE, (5 +— NOPRUNE, ;) U {#(m)}.
end for
end if
end for
end while
return Sets oft+1-step policiedl; ;+; and corresponding value vectars,; for
each agent

Table 4: Dynamic programming for POSG with symmetrie®RRUNE; for each agent maintains the list
of policy trees that are found not prunable by the symmetry.

e Pruning stage: An even greater slowdown is due to LP rouforgsruning. The
existence of symmetries allows us to reduce the number ofitdtations. First,
when a local policyr of agent; is pruned, Corollary 1 states that the local policy
¢(m) of agentp; (i) can be pruned for alh. Second, whem is not to be pruned,
then allg(r)’s are not to be pruned as well. Therefore, LP need not be peed
on those local policies.

The procedure for the multi-agent dynamic programming afmerthat exploits sym-
metry is outlined in Table 4.

7. Experiments

In this section, we empirically show how symmetries in POMRd POSGs can
help reduce burdens on computational resources requiredrtgpute solutions. The
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experiments are conducted on a number of standard bencltoar&ins in POMDPs
and POSGs.

7.1. POMDP Experiments

Before we demonstrate the performance gain of the PBVI dlgarby using the
symmetric backup operator, we first report test results tier éxistence of automor-
phisms in standard POMDP benchmark domains. Most of thehmeark domains are
already compact in the sense that the model minimizatioorihgn was not able to
further reduce the size in most of the domains. For the tigiei-domain [16], we were
able to reduce the size and find symmetries. For the tiger dofha], we were not
able to reduce the size, but still find symmetries.

We further tested for automorphism existence on larger diosnaln the spoken
dialogue management domain by Williams et al. [35], the is#ying to buy a ticket
to travel from one city to another city, and the machine hastpest or confirm in-
formation from the user in order to issue the correct tickdtese dialog management
problems are denoted ascity-ticketing In this domain, there are cities, and a hu-
man user is trying to book a flight between two cities. The &gas an automated
response system, needs to take one of the following actigreet ask-from/ask-tp
conf-to-x/conf-from-xsubmit-x-y wherex andy are two of then cities. The user’s
response is treated as an observation for the agefiim-x to-x, from-x-to-y yes, no
null, wherex andy again refer to the cities. The observation function is dejeai
on how well the speech recognition model performs. The state factored into three
components:

e Whether thdrom has been specified,
e Whether the destinatiotn, has been specified,
e Whether the current turn is the first turn or not.

We instantiated the domain far= 2 andn = 3 possible cities, and for two different
rates of speech recognition errqrs,, wherepe = 0 assumes no speech recognition
error andper = 0.1 assumes an error rate of 10%. Note that even in the case where
perr = 0, the domain is still a POMDP since the user may provide gdartfarmation
about the requese(g, origin city only).

All of these problems could not be reduced in size, but stlil symmetries. Re-
gardless of the value ¢k, the graphs encoding the POMDP models were exactly the
same. The small differences in the nauty execution times leagiue to the differ-
ences in the orderings of the vertices of the graph. FigureubOmarizes the result of
automorphism finding experiments.

Next, we experimented with the PBVI algorithms on the ab@mdhmark domains
using the discovered automorphisms. First, we sampled d fixsenber of symmetric
belief states€.g, 300 for the tiger-grid) and ran the symmetric version of PB¥e
then checked the number of unique belief states if the symmietlief states were to be
expanded by the automorphisms. We set this nurmégr 690 for the tiger-grid) as the
number of belief states to be used by the non-symmetricaeisi PBVI, and ran the
algorithm in the same setting without automorphisms. Nbg& bur implementation
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Domain |S] | Min |S| |[V| | nauty exec time| ||

Tiger 2 2 39 0.004 s 2

Tiger-grid 36 35 9814 0.061s| 4

2-city-ticketing perr = 0) | 397 397 | 1624545 31.872s| 4
2-city-ticketing perr = 0.1) 397 397 | 1624545 23.873s| 4
3-city-ticketing fper = 0) | 1945 1945 | 61123604 2585.770s| 12
3-city-ticketing per = 0.1) | 1945 1945 | 61123604 2601.543s| 12

Figure 10: Model minimization and graph automorphism rssoih benchmark domaingS| is the number
of states in the original model, Mif5| is the number of states in the minimized mod&| is the number
of vertices in the graph encoding of the model, add is the number of automorphisms found by nauty
including the identity mapping.

Domain Algorithm | |B] IT'| | Iter | Exectime| V(bo) €

Tiger PBVI 19 5 89 0.07s 6.40 0.01
Symm-PBVI 10 5 89 0.05s 6.40

Tiger-grid PBVI | 590 | 532 | 88 359.69 s 0.80 | 403
Symm-PBVI | 300 | 529 | 85 196.09 s 0.80

2-city-ticketing err = 0) PBVI 51 5| 167 157.80s 8.74 0.02
Symm-PBVI 17 5| 168 57.60s 8.74

2-city-ticketing perr = 0.1) PBVI | 1041 9 1671 546045} 7.76 ) 4,

Symm-PBVI 30 10 | 167 201.97 s 7.73

a-city-ticketing ber — 0) PBVI | 261 | 37| 91| 43094.32s| 808,
Symm-PBVI | 36 | 42| 91| 9395.06s| 8.08

3-city-ticketing perr — 0.1) PBVI | 275 | 39| o1 | 43286.92s| 6.95| ,

Symm-PBVI | 30 | 133 91 | 16791.17s 6.94
Figure 11: Performance comparisons of the PBVI algorithihautomorphisms. Symm-PBVI is the PBVI
algorithm exploiting the automorphismse., symmetric belief collection and symmetric backujB]| is
the number of belief states given to the algorithifig, is the number ofx-vectors comprising the policy,
Iter is the number of iterations until convergendé(bo) is the average return of the policy starting from
initial belief by, ande is the convergence criteria of each algorithm for runninglunax,c g |V (") (b) —
V(=1 (p)| < e All V(bg)'s are within the 95% confidence interval of the optimal.

of PBVI slightly differs from the original version in thatéhoriginal PBVlinterleaves

the belief state exploration and the value iteration, nathan fixing the belief states
in the onset of execution. We also gathered the belief stteply using breadth-
first traversal instead of stochastic simulation. This wasnalyze the efficiency of
the symmetric backup isolated from the effects of symmdteiief state exploration.
Figure 11 shows the results of the experiments. In summangnaorphisms help
significantly improve the performance of PBVI in running &without sacrificing the
quality of policy.

7.2. POSG Experiments

There are no well-known benchmark domains for general POB@sthere is a
wealth of benchmark domains for DEC-POMDPs. Hence, we teperresults on
our symmetry exploitation in MADP for DEC-POMDPSs only: D&wger [19], Grid-
Small [1], and Box-Pushing [27]. By focusing on DEC-POMDWs,can also rule out
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Figure 12: Grid-Small environment.
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Figure 13: Grid-Small3x3 environment.

issues such as equilibrium selection problem in genenal-games.

The Dec-Tiger domain is a multi-agent extension of the Wwalbwn Tiger domain,
which has been introduced in Section 4.3. The main diffezémthat the agents suffer
less (gain more) by coordinating their actiores.g, the penalty is more severe for one
agent unilaterally opening the door that leads to the titiem for both opening the
door to the tiger.

The standard Grid-Small domain is set in a 2-by-2 grid wosldere the two agents,
1+ = 1 andi = 2, have to spend as much time as possible on the same grid belte T
are a total of 16 states (each grid cell either has an agerdtprfive actions per agent
(ai,ur, @i,powN, &; RIGHT: & LEFT, &;,sTAY), and two observations per agent, denoted
z 1 erT andz; riguT, that indicate whether the agent senses a wall to its lefighit,r
respectively. The 16 states are encodedas, whereX andY can take any one of
{4, B,C, D} given in Figure 12. TheX indicates the cell in which agent 1 resides,
andY foragent 2e.9, sap is given in Figure 12. An extended version of Grid-Small
is played in a 3-by-3 grid world. There are a total of 81 statdsere the grid cells can
take any one of A, B,C, D, E, F,G, H,I}. The action set remains the same as the
2-by-2 case. There is an additional observation for notiegres wall on either side,
and is denoted a5 notHing for agenti. A visual representation of the statac is
given in Figure 13.
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Figure 14: Initial configuration of the Box-Pushing domaimmediately above the robots are the left and
right small gray boxes, next to the black large box. The hedategion in the grid is the goal region.

The Box-Pushing domain requires the two agefts, 1 or 2, to push two small
boxes and one large box to a goal state. The large box is tocy lieaa single agent
to move, so the two must coordinate their actions in ordeoitatly push the large box.
There are four actions per roba;( e, &; ricHT, 8, MoVE, &;,sTAY), five observations
per robot & smaLL, Zi LARGE, Zi,WALL » Zi EMPTY; Z;,0THER), and 100 states, four of which
are goal states. The robots can either choose to place themat boxes individu-
ally into the goal state and receive a small reward, or ccatpely push the large box
and receive a greater reward. The initial state of the Bogkifig domain is depicted
in Figure 14. In this domain, two robots R1 and R2 start fagagh other in a 3-by-4
grid. Notice that the location of R1 is always left to that &. R his is because, in order
for R1 to be left to R2, it must first move upwards. But sincehbatbots have boxes
above them, moving upward will cause the box to be positianetie goal region,
terminating the domain. This also accounts for the fact thatcolumn coordinates,
labeled 0 to 3, suffice to describe the positions of R1 and R2gst is impossible
for either robot to be in the above two rows of the grid withdwatving the domain
terminated. Thus, we adopt an alpha-numeric encoding totdenparticular non-goal
state. All non-goal states will be of the forax xyy, where the first twaX's will be
the column coordinates for R1 and R2 in that order, and thetdas Y's take values
from {r, [, u, d} indicating the robot is facing right, left, up, or down, resgively.e.g,
so3r; depicts the initial state given in Figure 14. The four goatess correspond to: the
left small box being in the goal regiosgox), and the right small box being in the goal
region (sreox), and both small boxes being in the goal regierkbox), and the large
box being in the goal regiors(argeroy -

Prior to executing the symmetric MADP algorithm, we ran yaart the graph en-

coding of each DEC-POMDP domain. The automorphisms in Cigef Bre presented
in Figure 15. The automorphisms discovered included or@trautomorphism - the
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Symm. Type State Action Obs.

a1 LISTEN <> a2 LISTEN
Identity mapping|  a;,ierr < @z LeFT

a1 RIGHT < a2 RIGHT

20,LEFT < Z1,LEFT

Z) RIGHT <= Z2 RIGHT

Inter-Agent
a1 LISTEN <> a2 LISTEN
Z) LEFT <= Z2,RIGHT
SLEFT <= SRIGHT A1, LEFT < A2,RIGHT
Z) RIGHT <= 22 LEFT
a1 RIGHT <> a2 ,LEFT

a1 LEFT <~ a1,RIGHT

Q2 LEFT <~ Q2 RIGHT z — 7,
Intra-Agent SEFT <> SRIGHT , , 1,LEFT 1,RIGHT
Ay LISTEN < a1 LISTEN 22 LEFT <> Z2 RIGHT

a2 LISTEN < @2 LISTEN

Figure 15: Non-trivial automorphisms in Dec-Tiger. Theat@n X « Y indicates thatX is symmetric to
Y.

identity mapping. There are three non-trivial automorpigstwo of them being inter-
agent. The inter-agent and intra-agent automorphismsidft&mnall domain are shown
in Figure 17 and Figure 18, respectively in the Appendix.sidomain contains eight
automorphismes, including the identity mapping. Of the sewen-trivial automor-
phisms, four are inter-agent. Similarly for Grid-Small3xBere are seven non-trivial
automorphisms. These are shown in Figure 19 and Figure 2eiAppendix as well.
For the Box-Pushing domain, the only non-trivial automasphis an inter-agent au-
tomorphism, as shown in Figure 23 in the Appendix. One netagmmetry of this
domain is the interchange of the two states indicating titealed right small boxes
being in the goal regions(sox andsrpox)- IN addition, the two agents and their corre-
sponding actions and observations are swapped as well.

After computing the symmetries, we compared our proposgatiéhm to the MADP
algorithm on each domain. We measured the memory usage Inficguhe number
of value vectors created at the end of each iteration. Wecalsoted the number of LP
invocations at each horizon. As can be seen in Figure 16, dgtirithms were able
to complete three and two horizons for the former two domaimd the Box-pushing
domain, respectively. For the Grid-Small3x3 domain, MAQHRid not complete hori-
zon three, whereas Symm-MADP could. The running time fosyathmetry-exploiting
algorithms include the time taken to compute the symmetrgéisg nauty, which ex-
plains why Symm-MADP takes slightly longer to complete thetftime horizon in
some cases. A separate field for nauty execution time is edpiets it was negligible
(less than 2.5 seconds) compared to the overall running tiNatice that even with
the exploitation of symmetries, proceeding beyond thezworiattained by MADP is
still spatially constrained. For the Dec-Tiger domain,ueal/ectors alone take 70GB
of memory by the end of value computation for horizon 4, evéth ull symmetry
exploitation. Such a tendency is due to the fact that memsage experiences expo-
nential increase while symmetry only helps by a linear faatobest. However, this
issue can be addressed by various approximate algoritrahbdlund the memory us-
age, and experimenting with their symmetric versions wélléft as a future work.

Earlier horizons do not exhibit much of the benefit of the syeinies because very
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) ) T=1 T=2 T=3
Domain Algorithm . . .
#LP  Time |V| | #LP Time 4 #LP Time 4
Dec-Tiger Symm-MADP 4 1s 4 42 1s 207 | 1022 326s 86175
MADP 6 0s 9 84 1s 810 | 2371 1215s 344250
Grid-Small Symm-MADP 2 1s 1 6 Os 11 124 24s 2631
MADP 8 0s 1 10 1s 50| 410 65s 20000
Grid-Small3x3 Symm-MADP 1 3s 1 5 1s 25 189  172800s 99809
MADP 4 1s 1 5 1s 50 N.A.
Box-Pushing Symm-MADP 10 2s 8| 156 1271s 768 NA.
MADP 12 1s 16| 290 3505s 1536

Figure 16: Performance comparisons on domains with ancbwitelymmetry exploitation. #LP is the num-
ber of LP invocations and is the set of value vectors produced at the end of each eraiihe first row

of each domain shows the results with symmetry exploitatind the second row shows the results without
symmetry. All time records are rounded up to the nearestrskco

few policy trees are generated. However, towards the lagtdm, we can see the effect
of symmetry exploitation. While the number of value vect@duced is approximately
proportional to that of the symmetries present in the domiai@ number of LP invo-
cations and the execution time do not necessarily follow tlénd. This is due to (1)
the existence of many self-symmetric policy trees that dacoatribute to multiple re-
moval and LP avoidance, and (2) differing LP sizes, by whighltP solver’s execution
time varies.

The size of LP is an important factor that influences the ettecuime. The size
is governed by how many policy trees were created from exhausackup and the
domain size itself. For example, the Box-Pushing domailizas relatively larger LPs
up to 12800 constraints, thereby amplifying the effect ofhisyetries. Since LP solvers
usually take a high-order polynomial amount of time, redgca linear number of
variables or constraints in LPs will attain super-lineapmavementin time.

8. Conclusion

We have presented a graph-theoretical framework for comguwnd exploiting
symmetries for POMDPs and POSGs. In addition, we have shownreiexperiments
that the actual running time and space are significantlyeediy exploiting symme-
tries.

The computation of the symmetries were done by first encattiegroblems into
appropriate graph structures. The automorphisms of suagphgrare then mapped back
to the problem domain to represent the symmetries of thelgmobln doing so, we
have also provided a theoretical result that relates thepooational complexity of
symmetry computation to that of graph isomorphism compantat.e., the class Gl-
complete. Additionally, we have extended the concept ofraginy to a multi-agent
setting, introducing POSG symmetries. Because of its ragiint nature, symmetries
in POSGs yield various implications in the area of game thebve presented some
game-theoretic properties that are exhibited in the presehsymmetries.

Our algorithms that exploit the symmetries are presentadedis These algorithms
are modifications of previous well-known algorithms PBVidaADP for POMDPs
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and POSGs, respectively. Although we have demonstrateefficeency of symmetry
exploitation only using PBVI and MADP, the idea can be readittended to other al-
gorithms. For example, symmetries can have an impact otieolechniques that use
heuristic search such as MAA* [33], or Q-value functionsiC-POMDPs [22]. An-
other interesting area of application would be to apply satries to a finite controller
representation of policies [1].

While symmetry exploitation greatly reduces computati@mal spatial burden on
solving POMDPs and POSGs, it is limited by the fact that nigbrablems come with
symmetries. One promising direction of research would beaimpute approximate
symmetries, along with the theoretical error bound.
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Appendix

The figures in this appendix show the automorphisms in Gniddg Grid-Small3x3,

and Box-Pushing, accompanying the results in the expetsrssttion.

Symm. Type

State

Action

Obs.

Inter-Agent

SAB <> SBA
SAc < Sca
SAD <> Spa
SBC <> ScB
SBD <> SpDB

Scp < Spc

ai,up <> az,uP
a1, DOWN <> a2,DOWN
a1 LEFT <> a2 LEFT
a1, RIGHT <~ A2 RIGHT

ai,STAY <> a2 STAY

Z1,LEFT <7 22 LEFT

Z1,RIGHT <~ Z2,RIGHT

SAaA < Scc
SAB <> Spc
SAD < SBC
SBA < SCcD
SBB < SDD
ScB <> Spa

ai,up < A2, DOWN

a1, DOWN < a2, up

ai LEFT < a2,LEFT
a1 RIGHT < a2 RIGHT

aj STAY <= a2,STAY

Z1,LEFT < 22 LEFT

Z1,RIGHT < 22 RIGHT

SAA < SBB
Sac < SpB
SAD < ScB
SBC <> Spa
SBD < ScA

Scc < Spp

ai up < az,up
a1,DOWN <~ 82,DOWN
a1 LEFT < a2 RIGHT
a1 RIGHT <> a2 ,LEFT

aj STAY <= a2,STAY

Z1,LEFT < 22 RIGHT

Z1,RIGHT < 22 LEFT

SAA < SDD
SAB < SCcD
SAc < SBD
SBA < SpcC
SBB > Scc
ScA < SpB

aj,up <~ a2, DOWN
a1, DOWN < a2 up
a1 LEFT < a2 RIGHT
a1 ,RIGHT <> A2 LEFT

ai,STAY <> a2, STAY

Z1,LEFT < 22 RIGHT

Z1,RIGHT <= 22 LEFT

Figure 17: Non-trivial inter-agent automorphisms in G8daall.
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Symm. Type State

Action

Obs.

SAA < Scc
SAB < SCcD
SAc < Sca
SAD < ScB
SBA <> Spc
SBB <> SDD
SBC < Spa

SBD < SpB

ai,up <> ai,DOWN

az uP <> A2,DOWN

Identity mapping

SAA < SBB
SAB <> SBA
SAc < SBD
SAD <> SBC
Sca < SpB
ScB <> Spa
Scc < Spp

Scp < Spc

Intra-Agent

a1 ,LEFT <> a1,RIGHT

Q2 LEFT <~ A2 RIGHT

Z1,LEFT <> Z1,RIGHT

22 LEFT <~ Z2 RIGHT

SAA <= SDD
SAB < SpcC
Sac < SpB
SAD <> Spa
SBA < SCcD
SBB < Scc
SBc <> ScB

SBD <> ScA

aj up <> ai1,DOWN
az up < a2,DOWN
a1, LEFT <~ a1,RIGHT

a2 LEFT <~ A2 RIGHT

Z) LEFT < Z1,RIGHT

22 LEFT <~ Z2,RIGHT

Figure 18: Non-trivial intra-agent automorphisms in G8dall.
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Symm. Type

State

Action

Obs.

Inter-Agent

SAB <+ SBA, SAC <> Sca
SAD <= SDA, SAE <7 SEA
SAF <> SFA, SAG <~ SGA
SAH <= SHA, SAI <> SIA
SBC <+ SCB,SBD = SDB
SBE <~ SEB, SBF <> SFB
SBG <+ SGB; SBH <+ SHB
SBI <= SIB, SCD < SDC
ScE < SEC, SOF <> SFC
Scg <+ Sgc, SCH < SHC
Scr <> Sic, SpDE < SED
SpF <> SFD, SDG <> SGD
SpH <> SHD,SDI <> SID
SEF <> SFE, SEG <> SGE
SEH <> SHE, SEI <~ SIE
SFG < SGF,SFH < SHF
SF1 <> SIF,SGH < SHG

Sar1 < S1G, SHI <> SIH

ai,up <> az2,uP
a1,DOWN <~ 82,DOWN
a1, LEFT <~ Q2,LEFT
a1 ,RIGHT <> A2 RIGHT

ai,STAY <> a2 STAY

Z) LEFT <~ Z2,LEFT
Z1,RIGHT <~ Z2 RIGHT

Z1,NOTHING <~ Z2 NOTHING

SAA <> Scc, SAB < SBC
SAD <> SFC, SAE < SEC
SAF <> SpC, SAG < SIC
SAH <> SHC, SAI <> ScC
SBA < SCB, SBD <+ SFB
SBE <+ SEB, SBF <+ SDB
SBG <+ SIB,SBH <> SHB
SBI <> SGB,SCD < SFA
SCE <+ SEA, SCF <> SDA
ScG <+ SI1A,SCH <> SHA
Scr <= SGA,SDD < SFF
SDE <= SEF, SDG = SIF
SDH <= SHF,SDI <> SGF
SED < SFE, SEG < SIE
SEH < SHE, SEI < SGE
SFG < SID,SFH <> SHD
SFI <> SGD, SGG < SII
SGH < SHI,SHG < SIH

ai up <> az,up
a1 ,DOWN <~ a2 DOWN
a1, LEFT <> A2 LEFT
a1 RIGHT <~ a2 RIGHT

aj STAY <> a2,STAY

Z) LEFT <= Z2,RIGHT
Z) RIGHT <= Z2 RIGHT

Z) NOTHING <= Z2 NOTHING

Figure 19: Non-trivial inter-agent automorphism in Grica8lI3x3.
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Symm. Type

State

Action

Obs.

Inter (contd.)

SAA < SGG,SAB < SHG
Sac < S1G, SAD < Sp@
SAE < SEG, SAF < SF@
SAH <= SBG, SAI < ScG
SBA < SGH,SBB <> SHH
SBC <> SIH,SBD <> SDH
SBE <+ SEH,SBF > SFH
SBI <= SCH,ScA < SGI

ScB < SHI, Scc < SIT

Scp < Sp1,SCE < SEI

SCcF <> SFI,SDA <> SGD
SpB < SHD, SDC <> SID
SpE <> SED, SDF <> SFD
SEA < SGE, SEB < SHE
SEC <> SIE, SEF <> SFE
SFA <> SGF,SFB <> SHF
SFC <> SIF,SGB <> SHA

Sgc <> S1A, SHC <> SIB

ai,up < A2,DOWN

a1, DOWN < a2,up

a1, LEFT <~ A2 LEFT
a1 RIGHT <> A2 RIGHT

aj STAY <> a2 STAY

Z) LEFT <~ Z2,LEFT

Z1,RIGHT <~ Z2 RIGHT

Z1 NOTHING <~ Z2 NOTHING

SAA <> SI1,SAB <> SHI
SAC < SGI,SAD <> SFI
SAE < SEI, SAF <> SDI
SAG < SCI,SAH < SBI
SBA <> SIH,SBB <> SHH
SBC < SGH,SBD = SFH
SBE <~ SEH, SBF <7 SDH
SBG <> ScH,ScA < SIG
ScB <> SHG, Scc < Sga
Scp <= SFG, SCE < SEG
SCF < SDG,SDA < SIF
SpB <+ SHF, SDC <> SGF
SpD < SFF, SDE < SEF
SEA < SIE, SEB <+ SHE
SEC <+ SGE, SED <+ SFE
SFA <> SID, SFB <= SHD
Src <> SaD,SgA < SIC
SGB <> SHC,SHA < SIB

aj ,up < a2 DOWN

a1, DOWN < a2,up
aj LEFT <> a2 RIGHT
ai RIGHT <~ a2, LEFT

aj STAY < a2 STAY

Z) LEFT <= Z2,RIGHT

Z) RIGHT <= Z2 LEFT

Z] NOTHING <= Z2 NOTHING

Figure 20: Non-trivial inter-agent automorphism in Grich&8lI3x3, continued.
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Symm. Type

State

Action

Obs.

Intra-Agent

SaA <= Scc, SAB < ScB
SAC <> SCcA,SAD < SCF
SAE < SCE, SAF <+ SCD
SAG <7 SCI,SAH <~ SCH
SAI < ScG,SBA <~ SBC
SBD <= SBF, SBG <~ SBI
SpA < SFC, SDB <~ SFB
SpC <> SFA,SDD <= SFF
SpE <> SFE, SDF <> SFD
SpG < SFI,SDH <7 SFH
Spr <> SFG, SEA < SEC
SED <> SEF, SEG <> SEI
SgA < S1c,SGB < SIB
Sgc <+ S1A,SGD < SIF
SGE <> SIE, SGF <> SID
ScG < S11,SGH < SIH
SGI <> S1G, SHA < SHC

SHD <> SHF,SHG <> SHI

a1 LEFT <~ a1 RIGHT

A2 LEFT <~ A2 RIGHT

Z1,LEFT <> Z1,RIGHT

22 LEFT <> Z2 RIGHT

SAA < SGG,SAB <7 SGH
SAC <7 SGI,SAD <> SGD
SAE <> SGE, SAF <> SGF
SAG <> SGA,SAH < SGB
SAr <> Sgc, SBA < SHG
SBB <= SHH,SBC <+ SHI
SBD <7 SHD, SBE < SHE
SBF <+ SHF, SBG <~ SHA
SBH < SHB, SBI <~ SHC
ScA < S1G,ScB < SrH

Scc < S11,Scp < SID

SCcE < SIE, SCF < SIF

Scc < S1A,ScH <> SIB

Scr <= Sic, SpA < SpaG

SpB <> SDH,SDC > SDI
SEA < SEG, SEB <~ SEH
SEC <+ SEI,SFA < SFG

SFB <> SFH,SFC <> SFI

ai ,up < a1,DOWN

az up < a2 DOWN

Identity Mapping

Figure 21: Non-trivial intra-agent automorphism in Grich&lI3x3.
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Symm. Type

State

Action

Obs.

Intra (contd.)

SAA <> SI1,SAB <> SIH

SAC <> SIG,SAD < SIF

SAE <> SIE, SAF <> SID

SAG <> S1C,SAH <~ SIB

SAI <> S1A,SBA <> SHI
SBB <> SHH,SBC < SHG
SBD <> SHF,SBE <> SHE
SBF <> SHD, SBG <> SHC
SBH <> SHB, SBI <> SHA
ScA < Sa1,SCB < SGH
Scc < SgG,Scp < SGF
SCE < SGE,SCF <> SGD
Scg < Sgc,ScH < SGB
Scr1 <> SGA,SDA < SFI

SpB <> SFH, SDC = SFG
Spp < SFF, SDE < SFE
SpDF < SFD, SDG < SFC
SDH <~ SFB, SDI <~ SFA
SEA <> SEI, SEB <+ SEH

SEC < SEG,SED <> SEF

ai,up <> ai,DOWN
dz uP <> A2,DOWN
a1, LEFT <~ a1,RIGHT
Q2 LEFT <~ A2,RIGHT

Z1 LEFT < Z1,RIGHT
22 L EFT < Z2,RIGHT

Figure 22: Non-trivial intra-agent automorphism in Grich&lI3x3.
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State

Action

Obs.

SLBox < SRBoxs; SOluu <~ S23uu

S01ud <7 S23dus S01lul
S01ur € 5231w, S01du

S01dd < S$23dd, S01dl

< S23ru
> S23ud

> S823rd

S01dr € S231dy S0llu < S23ur

S01ld < S23dr, S0l < S23rr

S01lr < S231r, S01ru < S23ul

S01rd € S23dly S01rl < S23rl

S01rr < 82311, S02uu < S13uu

S02ud < S13dus S02ul
S02ur < S13luy S02du

502dd < S13dd, S02dl

<> S13ru
> S13ud

> S13rd

S02dr € S13ldy S02lu < S13ur

$021d < S13dr, S0211 < S13rr

S02lr < S131r, S02ru < S13ul

S02rd € S13dly S02rl < S13rl

§02rr <7 S1311) S03ud <7 S03du

S03ul <7 S03ru, S03ur

503dl <7 S03rds S03dr

< S03lu

< S03ld

$031l <7 S03rr, S12ud <7 S12du

S12ul <7 S12ru, S12ur
S12dl < S12rd, S12dr

S1211 < S12rr

< S12lu

< S12id

Ay LEFT <> A2 LEFT
a1, RIGHT <~ A2 RIGHT
a1,MOVE <~ a2,MOVE

Ay, STAY < a2 STAY

Z1,EMPTY <> Z2 EMPTY
Z WALL < Z2,WALL
Z1 ,0THER < Z2,0THER

Z1,SMALL < Z2,SMALL

Z1 LARGE <~ Z2 LARGE

Figure 23: Non-trivial automorphism in Box-Pushing. It isiater-agent automorphism.
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