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Abstract

While Partially Observable Markov Decision Processes (POMDPs) and their multi-
agent extension Partially Observable Stochastic Games (POSGs) provide a natural and
systematic approach to modeling sequential decision making problems under uncer-
tainty, the computational complexity with which the solutions are computed is known
to be prohibitively expensive.

In this paper, we show how such high computational resource requirements can be
alleviated through the use of symmetries present in the problem. The problem of find-
ing the symmetries can be cast as a graph automorphism (GA) problem on a graphical
representation of the problem. We demonstrate how such symmetries can be exploited
in order to speed up the solution computation and provide computational complexity
results.
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1. Introduction

Markov Decision Processes (MDPs) have been a classical mathematical frame-
work for sequential decision making problems, in which the agent must make action
decisions based on environment states. The number of steps at which the agent can
make decisions can either be finite or infinite, leading to finite-horizon and infinite
horizon problems, respectively. However, although computationally tractable, MDPs
have often been shown inadequate to successfully model the agent’s noisy perception
of the environment state. In order to incorporate the uncertainty about the state per-
ception inherent in the agent, an extended formalism calledpartially observable MDPs
(POMDPs) has emerged [12, 34, 31].
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POMDPs provide a model for single-agent sequential decision making under state
uncertainty thus turning the decision making problem into one of planning ([12]). Dif-
ferent from MDPs, POMDPs do not provide the agent with full observability of the
states. Instead, the agent must infer which state it is in based on the noisy observations.
This results in defining a probability distribution over thestates, defined as abelief
state, to represent the uncertainty of the states. With this single extra assumption,
the computational complexity of solving a POMDP problem jumps from P-complete
(MDP) to PSPACE-complete even for finite-horizon POMDPs [23]. Solving infinite-
horizon POMDPs is known to be undecidable [17].

There has been a lot of work on alleviating this intractability by means of comput-
ing approximate solutions. One of the most well-known worksthat shows both practi-
cality and theoretical guarantees is Point-Based Value Iteration (PBVI) by Pineau et al.
[25]. PBVI proceeds by sampling reachable belief states according to various heuris-
tics in order to avoid the curse of dimensionality induced bythe continuous nature of
the belief states. The value backups are performed only on those sampled belief states
before collecting additional belief states. The main factor that determines the perfor-
mance of PBVI is the belief point selection heuristic. The heuristics used are intended
to capture the reachability of the belief points, thereby avoiding unnecessary computa-
tion on unreachable beliefs. One popular heuristic used is the Greedy Error Reduction
heuristic, which samples belief points that result in the largest error bound. PBVI be-
longs to a class of algorithms calledpoint-basedmethods, because value computation
is performed on a finite set of belief states, often calledbelief points.1

Heuristic Search Value Iteration (HSVI) by Smith and Simmons [30] is another
point-based method that approximates the value function via heuristic exploration of
belief states. It maintains an upper- and a lower-bound for the true value function, and
decreases the bound gaps by recursively selecting belief states. The upper bound is
initialized at the corners of the belief simplex and is maintained as a point set. Update
to this bound is performed by adding a new belief point, whosevalue is computed as
a projection onto a convex hull formed by belief-value pairs. The lower bound is a
vector set, meaning that the value is updated at the newly added belief, much like the
updates performed in PBVI. The belief point to be added is selected by a depth-first
search from the initial belief.

Another approach by which the intractability of the POMDP solution can be eased
(in a practical manner) is to take advantage of the structural regularities present in
POMDPs. One popular method uses the concept ofhomomorphismto reduce the state
space itself, thereby forming an equivalent model with a potentially much smaller size.
This technique, often calledmodel minimization, has been extensively studied in the
MDP domain, making use ofstochastic bisimulationof the states. Informally, bisimilar
states can be grouped together to form a smaller state space than the original MDP, yet
the optimal policies of the original and the reduced MDP are directly related with each
other. The structural characteristics that allow for stategrouping are reward equiva-
lence and block transition equivalence. The former property states that the states in a
group should yield the same reward for any given action, and the latter that grouped

1In the sequel, we use the terms “belief points” and “belief states” interchangeably.
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states should have the same transition probability into thegroup of original destination
states. It is known that the optimal policy of the reduced MDPcan belifted to be con-
verted into the optimal policy of the original MDP, hence model reduction results in
less computation [8, 10].

A different structural feature that is of interest to us isautomorphism. An auto-
morphism of a model is a homomorphism to itself. By finding theautomorphisms, or
symmetries, present in the model, one may expect to reduce possibly redundant compu-
tation performed on the symmetric portion of the solution space. It is this feature that
we propose to use on POMDPs in order to reduce computational resources needed for
computing optimal solutions. In particular, we are interested in the POMDP symmetry
that is not related to reducing the size of the model, but can nonetheless be exploited to
speed up conventional point-based POMDP algorithms introduced above.

The subject of symmetry in sequential decision making has not been carried out
actively, with a few exceptions: Ravindran and Barto [26] were the first to extend the
model minimization method to cover symmetries in MDPs. Morerecently, Narayana-
murthy and Ravindran [20] constructively proved that the problem of finding sym-
metries in MDPs belongs to the complexity class graph isomorphism-complete (GI-
complete). In this latter work, the authors use a graph-based encoding of the MDP
to cast the problem of finding MDP symmetries to that of graph automorphism (GA).
Our work is similar to this, in that we also reduce the problemto discovering GA, but
provides a simpler and more intuitive approach along with a practical guide to applying
symmetries to existing algorithms. We also extend the domain to multi-agent settings.

Another work similar to ours is that of permutable POMDPs by Doshi and Roy
[9]. This work was presented in the context of preference elicitation where the belief
states have permutable state distribution. Similarly to the approach we present, this
permutable POMDP framework is based on the idea that the value functions of certain
classes of POMDPs are permutable with respect to the state permutation. That is,
the components of the value function can be permuted according to the permutation
of their corresponding states while maintaining value invariance. While the overall
idea is in league with our approach, there are two important differences. First, the
permutable POMDP only considers a specific type of symmetry that can be found in
preference elicitation problems and models similar to them. More specifically, they
show how certain preference elicitation problems can be setup to exhibit symmetric
properties. That is, they first provide certain conditions astate permutation should
satisfy and show how a preference elicitation POMDP can haveits parameters set in
order to satisfy the stated conditions. As opposed to such setting, our research aims
to provide an algorithmic framework with which symmetries can be discovered and
exploited in general POMDP problems. Second, their symmetry definition requires
that the equality condition hold for alln! permutations, wheren is the number of states.
This is a very strict condition, and is therefore suitable for only a very limited set of
problems. On the other hand, our formulation relaxes this restriction by considering
the state, action, and observation permutations ingroups.

Partially Observable Stochastic Games (POSGs) are a multi-agent extension to
the POMDPs, where the actions and observations now take a collective form of all
agents. This change induces another leap in the complexity hierarchy: planning in
finite-horizon Decentralized POMDPs (DEC-POMDPs), which is a special class of
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POSGs with common payoffs, is known to be NEXP-complete [3].Planning in infinite-
horizon DEC-POMDP is again undecidable since DEC-POMDPs isa generalization
of POMDPs. Hansen et al. [11] give an exact algorithm for solving POSGs, by means
of Multi-Agent Dynamic Programming (MADP). MADP performs dynamic program-
ming backups over an extended,multi-agent belief space, which is a distribution over
both the latent state and the policies of other agents. In order to keep memory usage in
check, the notion ofdominanceis used to prune unnecessary intermediate solutions at
each iteration.

In this paper, as an extended version of our previous work [13], we extend the
algorithm to that of exploiting symmetries for POSGs as well. In particular, we will
show how the notion of symmetries can be extended to a multi-agent case and how it
affects some of the game-theoretic concepts in POSGs.

2. Formal Models: POMDPs and POSGs

Before we present our main results and algorithms in detail,we first review the
preliminaries of formal models for the single and multi-agent sequential decision mak-
ing problems in partially observable environments used in this paper. We also define
optimal solutions for the models and representations for these solutions.

2.1. POMDPs

The partially observable Markov decision process (POMDP)[12] is a model for
sequential decision making problems in single agent settings. It is a generalization of
the MDP model that relaxes the assumption that the agent has complete information
about the environment states.

Formally, a POMDP is defined as a tuple〈S,A,Z, T,O,R, b0〉, where

• S is the set of environment states,

• A is the set of actions available to the agent,

• Z is the set of all possible observations,

• T : S × A × S → [0, 1] is the transition function withT (s, a, s′) = P (s′|s, a)
denoting the probability of changing to states′ from states by executing action
a,

• O : S ×A× Z → [0, 1] is the observation function withO(s, a, z) = P (z|s, a)
denoting the probability of making observationz when executing actiona and
arriving in states,

• R : S × A → ℜ is the reward function whereR(s, a) denotes the immediate
reward received by the agent when executing actiona in states,

• b0 is the initial state distribution withb0(s) denoting the probability that the
environment starts in states.
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Since the agent cannot directly observe the states, it has toconsider the history of
its past actions and observations to decide the current action. Thehistoryat timet is
defined as

ht = {a0, z1, a1, z2, . . . , at−1, zt}

The action is determined by a policyπ, which is a function that maps from the
histories to actions. For finite-horizon problems, where weassume that the agent can
execute actions for a finite time steps, the policy can be represented using apolicy tree,
where each node is labeled with the action to execute, and each edge is labeled with the
observation that the agent can receive at each time step. Following an observation edge,
the agent faces the next level subtree, whose root node specifies the action to execute
at the next time step. The sequence of action nodes and observation edges traversed
while executing the policy naturally becomes the history.

The history leads to the definition of abelief state, which is the probability distri-
bution on the states given the history of actions and observations:

bt(s) = P (st = s|ht, b0)

Upon executing actionat and receiving observationzt+1, the belief statebt+1 =
τ(bt, at, zt+1) at the next time step is computed by the Bayes rule:

bt+1(s
′) =

O(s′, at, zt+1)
∑

s∈S T (s, at, s
′)bt(s)

P (zt+1|bt, at)
,

where
P (zt+1|bt, at) =

∑

s′∈S

O(s′, at, zt+1)
∑

s∈S

T (s, at, s
′)bt(s).

The belief statebt constitutes a sufficient statistic for historyht, and can be represented
as an|S|-dimensional vector. We can thus re-define the policy as a mapping from belief
states to actions.

Thevalueof a policy is the expected discounted sum of rewards by following the
policy starting from a certain belief state. The optimal value function is the one ob-
tained by following an optimal policy, and can be defined recursively: given thet-1
step optimal value function, thet-step optimal value function is defined as

V ∗
t (b) = max

a

[

R(b, a) + γ
∑

z∈Z

P (z|b, a)V ∗
t−1(τ(b, a, z))

]

(1)

whereR(b, a) =
∑

s b(s)R(s, a) andγ ∈ [0, 1) is the discount factor.

2.2. POSGs

The partially observable stochastic game (POSG)[3, 11] is an extension of the
POMDP framework to multi-agent settings. More formally, a POSG withn agents is
defined as a tuple〈I, S, b0, {Ai}, {Zi}, T, O, {Ri}〉, where

• I is the finite set of agents indexed1, . . . , n.

• S is the finite set of environment states.
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• b0 is the initial state distribution whereb0(s) is the probability that the environ-
ment starts in states.

• Ai is the finite set of actions available to agenti. Also, the set ofjoint actionsis
specified as~A =

∏

i∈I Ai.

• Zi is the finite set of observations available to agenti. Similarly, the set ofjoint
observationsis defined as~Z =

∏

i∈I Zi.

• T is the transition function whereT (s,~a, s′) = P (s′|s,~a), the probability of
resulting in states′ when executing joint action~a in states.

• O is the observation function whereO(s,~a, ~z) = P (~z|~a, s), the probability of
making joint observation~z when executing joint action~a and arriving in states.

• Ri is the individual reward function whereRi(s,~a) denotes the reward (payoff)
received by agenti when joint action~a is executed in states.

If we restrict every agent to share the same individual reward function, the model be-
comes the Decentralized POMDP (DEC-POMDP) [3].

In POSGs, each agent independently makes its own decision based on the local
information available to the agent. The local information at time t for agenti can be
represented as the local history

hi,t = {ai,0, zi,1, ai,1, zi,2, . . . , ai,t−1, zi,t}

where actionsai,∗ and observationszi,∗ are from the setAi andZi, respectively. The
local policy (i.e., strategy)πi executed by agenti is then essentially a mapping from
the local histories to local actions. A joint policy is a set of local policies for each
agent. Algorithms for POSGs find the joint policy, which is the set of local policies
~π = {π1, . . . , πn} for each agent, for solution concepts such as Nash equilibrium or
correlated equilibrium. In the case of DEC-POMDPs where theagents have to cooper-
ate, the algorithms search for the optimal joint policy thatmaximizes the expected sum
of rewards over the planning horizon.

The agents in POSGs have to reason about other agents’ policies as well as the true
state, since they collectively affect the rewards and the state transitions, and hence the
value. This leads to the definition ofmulti-agent belief state, which is a probability dis-
tribution over the hidden states and other agents’ policies[19]. Hence, while dynamic
programming methods for POMDPs involve belief states and value vectors defined
only over the system states, methods for POSGs involve multi-agent belief states and
value vectors defined over the joint space of the states and other agents’ policies. Thus,
for each policyπ ∈ Πi of agenti, there exists a value vectorV π

i of dimension|S||~Π−i|,
where~Π−i is the set of policies for all other agents except agenti. In this paper, we fo-
cus on finite-horizon problems, and assume the local policy is represented as a decision
tree.

6



Formally, agenti’s t-step value function of executing policyπ while others are
executing policy~π−i can be defined as

V π
i,t(s, ~π−i) = Ri(s,~a~π) + γ

∑

~z∈~Z

O(s,~a~π, ~z)
∑

s′∈S

T (s,~a~π, s
′)V

π(zi)
i,t−1 (s′, ~π−i(~z−i))

(2)
where~π = {π, ~π−i} is the joint policy formed byπ for agenti and~π−i for other
agents,~a~π is the joint action for the current time step prescribed by the policy~π, π(zi)
is the (t-1)-step local policy for agenti after observation ofzi, and~π−i(~z−i) is the
(t-1)-step joint policy for other agents after observation of~z−i. For a given multi-agent
belief statebi, the agenti’s value of executing local policyπ is defined as

V π
i,t(bi) =

∑

s∈S

∑

~π−i∈~Π−i

bi(s, ~π−i)V
π
i,t(s, ~π−i) (3)

3. Solution Methods

In this section, we briefly review some important solution techniques for POMDPs
and POSGs. There exists a wealth of literature presenting various algorithms on this
matter, but in this paper, we only discuss point-based valueiteration (PBVI) [25] for
POMDPs and multi-agent dynamic programming (MADP) [11] forPOSGs, which will
be discussed in the later sections.

3.1. PBVI for POMDPs

The definition of the optimal value function in Equation 1 leads to a dynamic pro-
gramming update to obtain thet-step optimal value functionV ∗

t from the (t− 1)-step
optimal value functionV ∗

t−1. The dynamic programming update could be represented
as abackup operatorH on the value functions, such that given a belief stateb,

Vt(b) = HVt−1(b) = max
a

[

R(b, a) + γ
∑

z∈Z

P (z|a, b)Vt−1(τ(b, a, z))

]

.

Since belief states provide a sufficient statistic for the histories, they can be treated as
states in a continuous MDP, namely the belief state MDP. One shortcoming of this
approach is that the belief state is continuous, and so we cannot simply use tabu-
lar representation for value functions as in discrete statespace MDPs, hence naively
performing the backup operation for every possible belief state becomes intractable.
However, Sondik [31] pointed out that the value function foreach horizont can be
represented by a setΓt = {α0, · · · , αm} of α-vectors, so that the value at a particular
belief stateb is calculated as:

Vt(b) = max
α∈Γt

∑

s∈S

α(s)b(s).
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The construction ofΓt is carried out via a series of intermediateΓ generation:

Γa,∗
t = {αa,∗|αa,∗(s) = R(s, a)}

Γa,z
t = {αa,z

i |α
a,z
i (s) = γ

∑

s′∈S T (s, a, s′)O(s′, a, z)αi(s
′), ∀αi ∈ Γt−1}

Γa
t = Γa,∗

t +⊕z∈ZΓa,z
t

Γt = ∪a∈AΓa
t ,

where thecross-sumoperator⊕ on setsA andB is defined as:

A⊕B = {a+ b|∀a ∈ A, b ∈ B}.

However,|Γt| can be in the order ofO(|A| |Γt−1|
|Z|) in the worst case, leading to

a very high computational cost. The doubly exponential growth of |Γt| in t can be
alleviated by pruning dominatedα-vectors for all possible belief states, but the effect
of pruning is limited in practice. This is mainly due to the fact that the backup is done
over all possible belief states. Point-based value iteration (PBVI) [25] attempts to limit
this growth by performing backups only on a finite setB of reachable belief states.
Hence, in findingΓt for Vt, PBVI constructsΓa,b

t , ∀a ∈ A, ∀b ∈ B, whose elements
are calculated by

Γa,b
t =

{

αa
b |α

a
b (s) = R(s, a) +

∑

z∈Z

[

argmaxα∈Γa,z
t

(α · b)
]

(s)
}

and finally compute the best action for each belief state

ΓB
t = {α|α = argmax

a∈A,αa
b
∈Γa,b

t
(αa

b · b), ∀b ∈ B}

Using Γt (or ΓB
t as an approximation) forVt, the policy simply takes the form of

choosing the action associated withargmaxα∈Γt
(α · b). Table 1 outlines PBVI. The

BACKUP routine refers to the process of creatingΓB
t , described above. The EXPAND

routine characterizes the heuristic aspect of PBVI, whose task is to collect reachable
belief states from the given setB of beliefs. Heuristics for EXPAND include:greedy
error reduction, where the belief states that reduce the expected error bound are greed-
ily chosen, andstochastic simulation with explorative action, where the belief states
that mostly reduce the maximum distance among sampled belief states are greedily
chosen. In later sections, we will modify the BACKUP routinein order to exploit the
symmetries in POMDPs.

3.2. MADP for POSGs

Hansen et al. [11] propose a multi-agent dynamic programming (MADP) algorithm
for POSGs. The dynamic programming update in MADP consists of two stages, first
enumeratingt-step policies from (t-1)-step policies and evaluating these policies to
obtain value functions, and then eliminating policies thatare not useful for any multi-
agent belief state.

Note that the multi-agent value function in Equation 3 was represented as the
set of |S||~Π−i|-dimensional vectors. While the dynamic programming methods for
POMDPs, such as PBVI, involve belief states and value vectors defined only over the
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Require: Binit (initial set of belief states),K (maximum number of belief state ex-
pansions), andT (maximum number of backups)
B = Binit

Γ = {}
for k = 1, . . . ,K do

for t = 1, . . . , T do
Γ = BACKUP(B,Γ)

end for
Bnew = EXPAND(B,Γ)
B = B ∪Bnew

end for
ReturnΓ

Table 1: The PBVI algorithm

environment states, the methods for POSGs involve multi-agent belief states and value
vectors defined over the joint space of environment states and other agents’ policies.
Hence the dimension of value vectors will vary whenever a policy is eliminated in the
second stage of dynamic programming update. A more convenient way to represent
the value is to prepare a value vector for each joint policy~π ∈ ~Πt, so that the state
value vectors and belief vectors be of a fixed dimension|S|:

V ~π
i,t(s) = Ri(s,~a~π) + γ

∑

~z∈~Z
O(s,~a~π , ~z)

∑

s′∈S T (s,~a~π, s
′)V

~π(~z)
i,t−1(s

′) (4)

The corresponding value function for a specific beliefb ∈ [0, 1]|S| is:

V ~π
i,t(b) =

∑

s∈S

b(s)V ~π
i,t(s). (5)

Notice that given Equation 2, we can convert it into Equation4 by concatenating~π−i

andπ to construct the joint policy~π. Also, given a joint policy, a state belief vector
of dimension|S| can be computed for any horizont based on the given initial state
distributionb0 and the action/observation history up to timet. Thus, Equation 3 can be
represented as Equation 5. We will use Equation 5 to represent the value for the rest of
the section, for ease of exposition.

Given the set~Πt−1 = Π1,t−1 × · · · × Πi,t−1 × · · · × Πn,t−1 of (t-1)-step joint
policies and the value vectorsV ~π

i,t−1 for all ~π ∈ ~Πt−1, the first stage of the dynamic
programming update exhaustively generatesΠi,t usingΠi,t−1 for each agenti, which
is the set oft-step local policies for agenti. Assuming tree representations for policies,
the t-step local policy for agenti can be created by preparing|Ai| root action nodes,
and appending all possible combinations of (t-1)-step local policies to the observation
edges of the root action node. The number of exhaustively generatedt-step local poli-
cies will be|Πi,t| = |Ai||Πi,t−1|

|Zi|. CombiningΠi,t for all the agents yields the set
of t-step joint policies~Πt with size |Π1,t||Π2,t| · · · |Πi,t| · · · |Πn,t|. The first stage of
dynamic programming update is concluded by computing the values of joint policies,
V ~π

i,t for all ~π ∈ ~Πt and agenti, using Equation 5.
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Require: Πi,0 = ∅ andVi,0 = {~0} (initial value function) for each agenti.
for t = 1, . . . , T do

# The first stage of dynamic programming backup
for i = 1, . . . , n do

Perform backup on (t-1)-step local policiesΠi,t−1 to produce the exhaustive
set oft-step local policiesΠi,t.

end for
Let ~Πt = Π1,t × · · · ×Πi,t × · · · ×Πn,t.
for all ~π ∈ ~Πt do

ComputeV ~π
i,t (Equation 5) and add the value vector toVi,t.

end for
# The second stage of dynamic programming backup
repeat

for i = 1, . . . , n do
for all π ∈ Πi,t do

Pruneπ if very weakly dominated (Equation 6)
end for

end for
until no local policy was pruned in the loop

end for
return Sets ofT -step policiesΠi,T and corresponding value vectorsVi,T for each
agenti

Table 2: The MADP algorithm

With all the necessary policy backup and value computation completed, the update
continues to the second stage, where thevery weakly dominated policiesare pruned.
A local policy π of agenti is said to beweakly dominatedif the agent does not de-
crease its value by switching to some other local policy while all others maintain their
own local policies, and there exists at least one~π−i ∈ ~Π−i,t such that switching away
from π strictly increases agenti’s value. Avery weakly dominatedpolicy is one where
the weak dominance relation holds without the existence requirement of the strict im-
provement in the value. The test for very weak dominance of a local policyπ of agent
i can be determined by checking the existence of a probabilitydistributionp on other
policiesΠi,t\π such that

∑

π′∈Πi,t\π p(π
′)V

{π′,~π−i}
i,t (s) ≥ V

{π,~π−i}
i,t (s), ∀s ∈ S, ∀~π−i ∈ ~Π−i,t , (6)

whereV {π,~π−i}
i,t is the value vector of the joint policy formed byπ for agenti and~π−i

for other agents. If there exists such a distribution, thenπ is prunable since it is possible
for agenti to take astochastic policydetermined byp, while achieving the value no
worse than that ofπ. This test for dominance is carried out by linear programming
(LP). A very weakly dominated policy can thus be safely pruned without any concern
for the loss in value. The pruning proceeds in an iterated fashion where each agent
alternately tests for dominance and prunes accordingly. This iteration stops when no
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agent can prune any more local policies.
Table 2 outlines the MADP algorithm for computing the set ofT -step joint poli-

cies. Note that this algorithm requires additional computation to select the joint policy
depending on the solution concept such as Nash equilibrium.For DEC-POMDPs that
assume cooperative settings, a joint policy with the maximum value for the initial state
distributionb0 is selected as an optimal joint policy.

4. Symmetries in POMDPs and POSGs

In this section, we show how symmetries are defined in POMDPs and POSGs.
We show that finding symmetries for botch cases is a graph isomorphism complete
(GI-complete) problem - the complexity class of finding automorphisms in general
graphs. We present the graph encoding of a given POMDP and POSG in order to
apply algorithms for finding graph automorphisms. We also describe how POMDP
and POSG algorithms can be extended to exploit the symmetries discovered in the
models.

4.1. Definition of Symmetries in POMDPs

There have been a number of works in the past to take advantageof the underlying
structure in decision theoretic planning models. Perhaps one of the most extensively
studied types of structural regularities would be that of homomorphism. It is directly
related to abstraction and model minimization techniques that try to reduce the size of
the model.

A homomorphismφ of a POMDP is defined as〈φS , φA, φZ〉 whereφS : S → S′

is the function that maps the states,φA : A→ A′ maps the actions, andφZ : Z → Z ′

maps the observations. Note that the mapped POMDPM ′ = 〈S′, A′, Z ′, T ′, O′, R′〉 is
a reduced modelofM if any of the mappings ismany-to-one. Because of this property,
model minimization methods for POMDPs search for a homomorphismφ that mapsM
to an equivalent POMDPM ′ with the minimal model size. Depending on the definition
of homomorphismφ, we obtain different definitions of the minimal model.

A simple extension of MDP model minimization [10] to POMDPs leads to a ho-
momorphismφ of form 〈φS , 1, 1〉, where1 denotes the identity mapping. In order to
hold equivalence betweenM andM ′, φS should satisfy the following constraints:

T ′(φS(s), a, φS(s′)) =
∑

s′′∈φ
−1
S (s′) T (s, a, s′′)

R′(φS(s), a) = R(s, a)

O′(φS(s), a, z) = O(s, a, z)

Pineau et al. [24] extend the approach to the case when a task hierarchy is given by an
expert, and they achieve a further reduction in the state space since some of the actions
become irrelevant under the task hierarchy.

Wolfe [36] extends the minimization method to compute homomorphism of a more
general form〈φS , φA, φZ〉 where the observation mappingφZ can change depending

11



T (s, a,LISTEN, s
′) T (s, aLEFT, s

′) T (s, aRIGHT, s
′)

s′ = sLEFT sRIGHT sLEFT sRIGHT sLEFT sRIGHT

s = sLEFT 1.0 0.0 0.5 0.5 0.5 0.5

s = sRIGHT 0.0 1.0 0.5 0.5 0.5 0.5

Figure 1: Transition probabilities of the tiger domain

on the action. The constraints for the equivalence are givenby:

T ′(φS(s), φA(a), φS(s′)) =
∑

s′′∈φ
−1
S (s′) T (s, a, s′′)

R′(φS(s), φA(a)) = R(s, a)

O′(φS(s), φA(a), φa
Z(z)) = O(s, a, z)

Note that the above methods are interested in finding many-to-one mappings in
order to find a model with reduced size. Hence, they focus on computingpartitions
of the state, action, and observation spaces of which blocksrepresent aggregates of
equivalent states, actions, and observations, respectively. Once the partitions are found,
we can employ conventional POMDP algorithms on the abstractPOMDP with reduced
number of states, actions, or observations, which in effectreduces the computational
complexities of algorithms.

In this paper, we are interested in automorphism, which is a special class of homo-
morphism:

Definition 1. Anautomorphismφ is defined as〈φS , φA, φZ〉 where the state mapping
φS : S → S, the action mappingφA : A → A, and the observation mappingφZ :
Z → Z are all one-to-one mappings satisfying:

T (s, a, s′) = T (φS(s), φA(a), φS(s′))

O(s, a, z) = O(φS(s), φA(a), φZ (z))

R(s, a) = R(φS(s), φA(a))

Hence,φ maps the original POMDP to itself, and there is no assumptionregarding
the reduction in the size of the model.

The classic tiger domain [12] is perhaps one of the best examples to describe
automorphisms in POMDPs. The state spaceS of the tiger domain is defined as
{sLEFT, sRIGHT}, representing the state of the world when the tiger is behindthe left
door or the right door, respectively. The action spaceA is defined as{aLEFT, aRIGHT, aLISTEN},
representing actions for opening the left door, opening theright door, or listening, re-
spectively. The observation spaceZ is defined as{zLEFT, zRIGHT} representing hearing
the sound of the tiger from the left door or the right door, respectively. The speci-
fications of transition probabilities, observation probabilities, and the rewards are as
given in Figure 1, Figure 2, and Figure 3. The initial belief is given asb0(sLEFT) =
b0(sRIGHT) = 0.5.

Note that the tiger domain is already compact in the sense that minimization meth-
ods previously mentioned cannot reduce the size of the model: examining the reward

12



O(s, aLISTEN, z) O(s, aLEFT, z) O(s, aRIGHT, z)

z = zLEFT zRIGHT zLEFT zRIGHT zLEFT zRIGHT

s = sLEFT 0.85 0.15 0.5 0.5 0.5 0.5

s = sRIGHT 0.15 0.85 0.5 0.5 0.5 0.5

Figure 2: Observation probabilities of the tiger domain

R(s, a)

a = aLISTEN aLEFT aRIGHT

s = sLEFT -1 -100 10

s = sRIGHT -1 10 -100

Figure 3: Reward function of the tiger domain

function alone, we cannot aggregateaLEFT andaRIGHT since the rewards are different
depending on the current state being eithersLEFT or sRIGHT. By a similar argument, we
cannot reduce the state space nor the observation space.

However,sLEFT andsRIGHT can be interchanged to yield an equivalent POMDP,
while simultaneously changing the corresponding actions and observations:

φS(s) =







sRIGHT if s = sLEFT

sLEFT if s = sRIGHT

φA(a) =















aLISTEN if a = aLISTEN

aRIGHT if a = aLEFT

aLEFT if a = aRIGHT

φZ(z) =







zRIGHT if z = zLEFT

zLEFT if z = zRIGHT

Furthermore, this property yields symmetries in the beliefstates andα-vectors in
the tiger domain, as can be seen in Figure 4.

The automorphism in POMDPs is the type of regularity we intend to discover and
exploit in this paper: the symmetry in the model that does notnecessarily help the
model minimization algorithm further reduce the size of themodel. Hence, rather
than computing partitions, we focus on computing all possible automorphisms of the
original POMDP.

Note that if the original POMDP can be reduced in size, we can have exponentially
many automorphisms in the number of blocks in the partition.For example, if the
model minimization yields a state partition withK blocks of 2 states each, the number
of automorphisms becomes2K . Hence, it is advisable to compute automorphism after
we compute the minimal model of POMDP.
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0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

b1 b2 b3 b4 b5

α1 = [−86.5, 23.5]

α2 = [3.38, 19.4]

α3 = [15.0, 15.0]

α4 = [19.4, 3.38]

α5 = [23.5,−86.5]

Figure 4: Value function of tiger domain obtained by PBVI with 5 belief states.b1 andb5 are symmetric,
hence the correspondingα-vectorsα1 andα5 are symmetric. The same argument applies tob2 andb4.
Although the illustration uses an approximate value function computed by PBVI, the value function from
exact methods will show the same phenomenon.

4.2. Properties of Symmetries in POMDPs

As shown in the tiger domain, the automorphisms of POMDPs reveal the symme-
tries present in belief states andα-vectors; Given a POMDPM with automorphism
φ = 〈φS , φA, φZ〉, let Γ∗ be the set ofα-vectors for the optimal value function. In this
setting, we provide the following two theorems that can be exploited when computing
a solution to a given POMDP.

By a slight abuse of notation, for a vectorv of dimension|S|, we letφS(v) be the
transformed vector whose elements are permuted byφS .

Theorem 1. If b is a reachable belief state, thenφS(b) is also a reachable belief state.

Proof. First, givenφ = 〈φS , φA, φZ〉, note that

baz(s) = b
φA(a)
φZ(z)(φS(s)),

because the automorphism ensures thatT (s, a, s′) = T (φS(s), φA(a), φS(s′)) and
O(s, a, z) = O(φS(s), φA(a), φZ (z)). This means that the symmetric image of a
reachable belief vectorb, that is,φS(b), is also reachable from the initial beliefb0 by
executing a “symmetric policy”, where the actiona is mapped toφA(a).

In other words, ifb is reachable from initial belief stateb0 by executing a policy
tree,φS(b) can also be reached by executing the policy tree where actionnodes are
relabeled usingφA(a) and the observation edges are relabeled usingφZ(z).

14



Theorem 2. If α ∈ Γ∗, thenφS(α) ∈ Γ∗.

Proof. We prove by induction on horizont in Γt. By the definition of automorphism,
R(s, a) = R(φS(s), φA(a)). Hence, ifα ∈ Γ0 thenφS(α) ∈ Γ0.

Suppose that the argument holds forΓt−1. This implies that∀α ∈ Γa,z
t , φS(α) ∈

Γ
φA(a),φZ(z)
t by the definition ofΓa,z

t . If α ∈ Γt, then by definition, for somea andb,

α(s) = αa
b (s) = R(s, a) +

∑

z∈Z

argmax
α′∈Γa,z

t

(α′ · b)

Consider its symmetric image defined as

α(φS(s)) = R(φS(s), φA(a)) +
∑

φZ(z)∈Z

argmax
α′′∈Γ

φA(a),φZ (z)
t

(α′′ · φS(b)).

For each observationφZ(z), the argmax will selectα′′ which is the symmetric image
of α′ selected in theargmaxα′∈Γa,z

t
(α′ · b). Hence we haveφS(α) ∈ Γt.

In this work, we specialize the PBVI algorithm to exploit symmetries, as will be
shown in later sections. However, the theorems we provide are general enough to be ap-
plied to a variety of different value function-based algorithms. We argue so, because the
unifying theme of all value function-based algorithms is the dependence onα-vectors
and/or belief points, and the two theorems we presented indicate that the symmetric
images of the sampled belief points andα-vectors contribute equivalently to the over-
all value. For example, the randomized point-based backup of Perseus [32] can benefit
from our results by not having to perform redundant backup operation on symmetric
beliefs. Symmetries can be exploited in search based methods such as HSVI or For-
ward Search Value Iteration (FSVI) [29] in a similar manner.In particular, multiple
backups can be performed for a single sampled belief point bytaking the symmetric
image of that sampled belief. The gist is that, while different value function-based
methods provide different sampling approaches, our framework can be universally ap-
plied to enhance the sampling procedure.

4.3. Definition of Symmetries in POSGs

Extending the definition to POSGs introduces agent-to-agent mappings, where the
local actions and observations of an agent are mapped to those of another agent. For-
mally, the automorphism for POSGs is defined as follows:

Definition 2. An automorphismφ for agenti on a POSG is a tuple〈φI , φS , φ ~A
, φ~Z
〉

with φ ~A
= {φAi

|i ∈ I} andφ~Z
= {φZi

|i ∈ I}, where agent mappingφI : I → I,
state mappingφS : S → S, action mappingsφAi

: Ai → AφI(i), and observation
mappingsφZi

: Zi → ZφI(i) are all bijections satisfying

T (s,~a, s′) = T (φS(s), φ ~A
(~a), φS(s′))

O(s,~a, ~z) = O(φS(s), φ ~A
(~a), φ~Z

(~z))

Ri(s,~a) = RφI(i)(φS(s), φ ~A
(~a))

for all s, s′, ~a, and~z.
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Joint Action sLEFT→ sRIGHT sLEFT→ sLEFT sRIGHT→ sLEFT sRIGHT→ sRIGHT

{a1,LISTEN, a2,LISTEN} 0 1 0 1

Other 0.5 0.5 0.5 0.5

Figure 5: State transition probabilities of the Dec-Tiger domain. The second row shows the transition prob-
abilities of all joint actions composed of at least one non-listen individual action.

A special case when agent mappingφI is an identity mapping,φ is said to be an
intra-agent automorphism. On the other hand, ifφI is a non-identity mapping, it is
said to be aninter-agent automorphism. Informally speaking, inter-agent automor-
phism allows interchanging agents as long as the local actions and observations are
interchanged accordingly. On the other hand, intra-agent automorphism is confined to
interchanging the local actions and observations within anagent. It can be thought that
intra-agent automorphism captures the symmetry present inthe single-agent POMDP
level, while the inter-agent automorphism extends the symmetry to the multi-agent
level.

To illustrate, we present the decentralized tiger (Dec-Tiger) domain [19]. Dec-Tiger
is a multi-agent extension to the classical tiger domain. There are now two agents,
setting the agent setI = {1, 2}, that must make a sequence of decisions as to whether
they should open the door (jointly or separately) or listen.The states are the same as
the tiger domain:sLEFT andsRIGHT. Each agent has the same set of actions that are
equivalent to the single agent case:{ai,LISTEN , ai,RIGHT, ai,LEFT |i = 1 or 2}, where
ai,X indicates the actionX of agenti. The observation space is duplicated from the
single-agent case as well:{zi,LEFT, zi,RIGHT| i = 1 or 2}, with the notations defined
similarly.

If at least one agent performs an open action, the state resets to either one with 0.5
probability. If both continue with a listen action, then there is no change of state.

Each agent individually observes the tiger from the correctroom with probability
0.85 when performing a listen action. When both agents perform a joint listen action,
then the resulting joint observation probability is computed as a product of the individ-
ual probabilities. All other joint actions where at least one agent performs a non-listen
action result in a uniform distribution over the joint observations.

Rewards are given equally to both agents, and are designed toencourage coop-
eration. The maximum reward can be attained by cooperatively opening the tiger-free
room. If each agent chooses a different room, then a high penalty is given. If they coop-
eratively open the tiger room, then they still suffer a penalty, but at a much lesser cost.
Jointly listening costs a small penalty, whereas opening the tiger-free room while the
other agent listens will result in a small reward. If, on the other hand, one agent opens
the tiger room while the other is listening, then they incur the worst possible penalty.
The transition probabilities, observation probabilities, and rewards are summarized in
Figure 5, Figure 6, and Figure 7, respectively.

One possible symmetry that exhibits an inter-agent mappingis presented in Fig-
ure 8. For the complete list of symmetries in Dec-Tiger, we invite the reader to consult
Figure 15 in Section 7 where we report experimental results.
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Joint Observation sLEFT sRIGHT

{z1,LEFT, z2,LEFT} 0.7225 0.0225

{z1,LEFT, z2,RIGHT} 0.1275 0.1275

{z1,RIGHT, z2,LEFT} 0.1275 0.1275

{z1,RIGHT, z2,RIGHT} 0.0225 0.7225

Figure 6: Observation probabilities of the Dec-Tiger domain for joint action{a1,LISTEN,a2,LISTEN}. The
probabilities for other joint actions are uniform, and are omitted.

Joint Action sLEFT sRIGHT

{a1,RIGHT, a2,RIGHT} 20,20 0,0

{a1,LEFT, a2,LEFT} 0,0 20,20

{a1,RIGHT, a2,LEFT} -100,-100 -100,-100

{a1,LEFT, a2,RIGHT} -100,-100 -100,-100

{a1,LISTEN, a2,LISTEN} -2,-2 -2,-2

{a1,LISTEN, a2,RIGHT} 9,9 -101,-101

{a1,RIGHT, a2,LISTEN} 9,9 -101,-101

{a1,LISTEN, a2,LEFT} -101,-101 9,9

{a1,LEFT, a2,LISTEN} -101,-101 9,9

Figure 7: Individual rewards of the Dec-Tiger domain

4.4. Properties of Symmetries in POSGs

As with the case with POMDPs, the symmetries in POSGs reveal useful regularities
present in the model. In this section, we formally state the properties of symmetries
in POSGs, which will be used to extend MADP in the later sections. Again, with a
slight abuse of notation, we extend the domain ofφ to local and joint policy trees, the
output of which is another policy tree with all the actions and observations permuted
accordingly. That is,φ(π) for any policy treeπ is a permuted policy tree whose action
nodes have been mapped byπA and the observation edges have been permuted byπZ .

Theorem 3. Given an automorphismφ = 〈φI , φS , φ ~A
, φ~Z
〉,

V ~π
i,t(s) = V

φ(~π)
φI(i),t(φS(s))

for all s at all time steps1 ≤ t ≤ T .

Proof. We prove by induction ont. Fort = 1, only the immediate reward matters:

V ~π
i,1(s) = Ri(s,~a) = RφI (i)(φS(s), φ ~A

(~a)) = V
φ(~π)
φI (i),1(φS(s)).

The first and last equalities follow from the fact that a 1-step policy tree is simply a
single action node. The second equality holds by the definition of automorphism.
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φI(i) =







Agent 2 if i is Agent 1

Agent 1 if i is Agent 2

φS(s) = Identity mapping

φA1(a) =















a2,LISTEN if a = a1,LISTEN

a2,RIGHT if a = a1,RIGHT

a2,LEFT if a = a1,LEFT

φA2(a) =















a1,LISTEN if a = a2,LISTEN

a1,RIGHT if a = a2,RIGHT

a1,LEFT if a = a2,LEFT

φZ1(z) =







z2,RIGHT if z = z1,LEFT

z2,LEFT if z = z1,RIGHT

φZ2(z) =







z1,RIGHT if z = z2,LEFT

z1,LEFT if z = z2,RIGHT

Figure 8: An example of an inter-agent symmetry for Dec-Tiger

Assume that the theorem holds for allt’s up to t = k-1 (i.e. for policy trees of
depthk − 1). Fort = k, the Bellman equation unfolds as

Ri(s,~a) + γ
∑

s′∈S,~z∈~Z

T (s,~a, s′)O(s′,~a, ~z)V
~π(~z)
i,k−1(s

′)

= RφI(i)(φS(s), φ ~A
(~a)) + γ

∑

φS(s′)∈S

φ~Z
(~z)∈~Z







T (φS(s), φ ~A
(~a), φS(s′))

·O(φS(s′), φ ~A
(~a), φ~Z

(~z))

·V
φ(~π(φ~Z

(~z)))

φI (i),k−1 (φS(s′))






.

All the terms except theV (·) can be shown equal by the definition of automorphism.
The equality of the next-step value term is established by the inductive hypothesis,
since the subtrees (all of which are (k − 1)-level subtrees) encountered by following
~z in ~π are symmetric to the ones encountered by followingφ~Z

(~z) in φ(~π). Therefore,
the equality holds for allt ≥ 1.

Because Theorem 3 holds for all values oft, we will henceforth drop the horizon
superscriptt whenever possible. Based on the above theorem, we can make the follow-
ing statement regarding very weak dominance under the presence of symmetries:

Theorem 4. If the local policyπ of agenti is very weakly dominated, then the local
policyφ(π) of agentφI(i) is also very weakly dominated for any automorphismφ.
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Proof. From Equation 6, the local policyπ of agenti is very weakly dominated if there
exists a probability distributionp on other local policiesΠi\π such that

∑

π′∈Πi\π

p(π′)V
{π′,~π−i}
i (s) ≥ V

{π,~π−i}
i (s), ∀s, ∀~π−i ∈ ~Π−i.

Consider the local policyφ(π) of agentφI(i). In order to prove thatφ(π) is very
weakly dominated, we have to show that there exists a probability distribution p′ on
agentφI(i)’s other local policiesΠφI(i)\φ(π) such that

∑

π′′∈ΠφI (i)\φ(π)

p′(π′′)V
{π′′,~π−φI (i)}

φI (i) (s) ≥ V
{φ(π),~π−φI (i)}

φI (i) (s), ∀s, ∀~π−φI (i) ∈ ~Π−φI (i).

Note that the local policyπ′ of agenti corresponds to the local policyφ(π′) of agent
φI(i). Hence for eachπ′′ ∈ ΠφI (i)\φ(π), we can always findπ′ ∈ Πi\π such that
π′′ = φ(π′) sinceφ is bijective. If we setp′(π′′) = p(π′) whereπ′′ = φ(π′), we have
found a probability distributionp′ that satisfies the above inequality.

From Theorem 4, it follows that a policy tree and all of its symmetric images can be
pruned without loss in the value if any of them is known to be very weakly dominated:

Corollary 1. If a policyπ can be pruned, thenφ(π) can be pruned as well.

As in the case of POMDPs, we adopt MADP to demonstrate the usefulness of
symmetries in POSGs. While this approach may seem algorithm-specific, we argue
that the theoretical basis on which such exploitations are made is general enough to be
applied to other algorithms as well.

For example, there has been much significant work on solving DEC-POMDPs in
recent years, including Bounded Policy Iteration (BPI) [4], Memory-Bounded Dy-
namic Programming (MBDP) [28], Heuristic Policy Iteration(HPI) [2], Point-Based
Bounded Policy Iteration (PB-BPI) [14], Point-Based Policy Generation (PBPG) [37],
Constraint Based Policy Backup (CBPB) and Team Decision problem based Policy It-
eration (TDPI) [15]. These algorithms often share common computational steps, such
as exhaustive or partial dynamic programming backup of policies, pruning dominated
policies and improving policies using mathematical programming. The theoretical re-
sults above can be used to reduce the number of policies generated by the dynamic
programming backup, as well as the number of mathematical programs to solve. We
can also apply recent results on exploiting symmetries to reduce the sizes of mathemat-
ical programs themselves [5], but the details are left for future work.

The symmetries also have various impacts on the game theoretic analysis of the
given POSG. To facilitate our discussion, we will convert the given POSG to a normal
form game. We will also adhere to the term “policy” for the sake of consistency, al-
though “strategy” is more widely adopted in game theory. As pointed out by Hansen
et al. [11], a POSG at time horizont can be converted to a normal form game by enlist-
ing all the policy trees as possible actions. We also includethe initial state distribution
in order to have scalar payoffs rather than|S|-dimensional vector payoffs. This is done
by taking the inner product of each value vectorV ~π

i and the initial state distributionb0.
This inner product will become the payoff entry into our converted game.
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We denote the payoff of a joint policy~π for agenti as ui(~π), or equivalently,
ui({πi, ~π−i}). It follows thatui(~π) = uφI(i)(φ(~π)), due to Equation 7.

∑

s

b0(s)V
~π
i (s) =

∑

s

b0(φS(s))V
φ(~π)
φI (i)(φS(s)) (7)

For our discussion on symmetries for game theoretic solution concepts, we begin
with theNash equilibrium. A (pure-strategy) Nash equilibrium is a joint policy such
that for any fixed agent, that agent has no incentive to unilaterally switch its policy
provided that others do not change theirs.

Proposition 1. If a joint policy~π is a Nash equilibrium in a normal form representation
of the given POSG, then its symmetric imageφ(~π) also constitutes a Nash equilibrium.

Proof. Given a Nash equilibrium~π∗, the following inequality holds by the definition:

ui({π
∗
i , ~π

∗
−i}) ≥ ui({πi, ~π

∗
−i}), ∀i, πi 6= π∗

i .

The automorphism guaranteesui(~π) = uφI(i)(φ(~π)), for any joint policy~π. Therefore,
uφI(i)(φ(~π∗)) ≥ uφI(i)({φ(πi), φ(~π∗

−i)}), ∀i, πi 6= π∗
i , which establishes the fact that

φ(~π∗) is a Nash equilibrium as well.

Proposition 1 easily generalizes to mixed-strategy Nash equilibrium. Note that
our notion of symmetries generalize the definition used in classicalsymmetric games,
which requires that there exists an invariant action mapping φA and observation map-
pingφZ for all possible permutations of agents. Our theoretical results could be used
in making game solvers more scalable, widening the applicability of the techniques
by Cheng et al. [7]. The facts presented in this section lead to a more efficient pro-
cedure for finding the equilibria of symmetric POSGs. Instead of searching for every
single equilibrium present in POSGs, we can speed up the process by applying the
symmetries of the POSGs to the equilibria that have already been discovered.

Thecorrelated equilibrium(CE) [21] generalizes the mixed-strategy Nash equilib-
rium. Whereas the mixed-strategy Nash equilibrium is defined to be an independent
probability over the local policies, the CE is a probabilityover the joint policies allow-
ing for the dependencies among agents’ local policies. Thatis, the probabilityp over
the joint policies is a CE if

∑

~π−i
p(~π)ui(~π) ≥

∑

~π−i
p(~π)ui({π

′
i, ~π−i}), ∀i and∀π′

i 6= πi. (8)

With symmetries present in the normal form game representation of the POSG, we can
prove a symmetric property of a CE.

Proposition 2. Letp be a CE of the normal form representation of a given POSG. Then
there exists a (possibly same) CEp′ such thatp′(φ(~π)) = p(~π) for any automorphism
φ of the given POSG, and any joint policy~π.

Proof. Given a CEp, we can re-write Equation 8 as

∑

~π−φI (i)
p(~π)uφI(i)(φ(~π))

≥
∑

~π−φI (i)
p(~π)uφI(i)({φ(π′

i), φ(~π−i)}), ∀i, ∀π
′
i 6= πi.
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Note that sinceπ′
i 6= πi, φ(π′

i) 6= φ(πi) due toφ being bijective. This modified form
states thatp(~π) can also be used as a probability with whichφ(~π) is chosen. Therefore,
there exists a CE that assigns probabilityp(~π) to φ(~π).

5. Symmetry Discovery in the Models

In this section, we show that finding the symmetries present in POMDPs and
POSGs is a graph isomorphism (GI) complete problem, the computational complex-
ity class of finding the automorphism groups of general graphs. We thus present the
graph encoding of a given POMDP and POSG in order to use a graphautomorphism
algorithm for finding symmetries in the model.

5.1. Graph Encoding of a POMDP
We first describe how we can cast the problem of finding automorphisms in POMDPs

as that of finding automorphisms in graphs. Specifically, we will show how we can en-
code a given POMDP as a vertex-colored graph, so that the automorphism found in
the graph corresponds to the automorphism in the POMDP. Our approach here will
prove useful when we discuss the computational complexity of discovering POMDP
automorphisms in the later part of this section.

A vertex-colored graphG is specified by〈V,E,C, ψ〉, whereV denotes the set of
vertices,E denotes the set of edges〈vi, vj〉, C is the set of colors, andψ : V → C
denotes the color associated with each vertex. An automorphism φ : V → V is a
permutation ofV with the property that for any edge〈vi, vj〉 ∈ E, 〈φ(vi), φ(vj)〉 is
also inE, and for any vertexvi ∈ V , ψ(vi) = ψ(φ(vi)).

We can encode a POMDP as a vertex-colored graph in order to apply graph au-
tomorphism algorithms. The encoded graph is composed of thefollowing classes of
vertices and edges, their counts being presented in parentheses:

• States (|S| vertices): for every states, we prepare vertexvs and make every
vertex share the same unique color:∀s ∈ S, ψ(vs) = cstate.

• Actions (|A| vertices): for every actiona, we prepare vertexva and make every
vertex share the same unique color:∀a ∈ A, ψ(va) = caction.

• Next states (|S| vertices and|S| edges): for every states′, we prepare vertexvs′

and make every vertex share the same unique color:∀s′ ∈ S, ψ(vs′ ) = cstate’.
We connect the next-state vertexvs′ to the state vertexvs if and only if s′ = s.

• Observations (|Z| vertices): for every observationz, we prepare vertexvz and
make every vertex share the same unique color:∀z ∈ Z, ψ(vz) = cobs.

• Transition probabilities (|S|2|A| vertices and3|S|2|A| edges): for every triplet
(s, a, s′), we prepare vertexvT (s,a,s′) that represents the transition probabil-
ity T (s, a, s′) and assign colors so that two vertices share the same color if
and only if the transition probabilities are the same:∀(s, a, s′), ∀(s′′, a′, s′′′),
ψ(vT (s,a,s′)) = ψ(vT (s′′,a′,s′′)) iff T (s, a, s′) = T (s′′, a′, s′′′). We connect the
the transition probability vertexvT (s,a,s′) to the corresponding state, action, and
next-state vertices,vs, va andvs′ .
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• Observation probabilities (|S||A||Z| vertices and3|S||A||Z| edges): for every
triplet (s, a, z), we prepare vertexvO(s,a,z) that represents the observation prob-
ability O(s, a, z) and assign colors so that two vertices share the same color if
and only if the observation probabilities are the same:∀(s, a, z), ∀(s′, a′, z′),
ψ(vO(s,a,z)) = ψ(vO(s′,a′,z′)) iff O(s, a, z) = O(s′, a′, z′). We connect the
observation probability vertexvO(s,a,z) to the corresponding state, action, and
observation vertices,vs, va andvz .

• Reward function (|S||A| vertices and2|S||A| edges): for every pair(s, a), we
prepare vertexvR(s,a) that represents the rewardR(s, a) and assign colors so
that two vertices share the same color if and only if the rewards are the same:
∀(s, a), ∀(s′, a′), ψ(vR(s,a)) = ψ(vR(s′,a′)) iff R(s, a) = R(s′, a′). We connect
the reward vertexvR(s,a) to the corresponding state and action vertices,vs and
va.

• Initial state distribution (|S| vertices and|S| edges): for every states, we prepare
vertexvb0(s) that represents the initial state probabilityb0(s) and assign colors so
that two vertices share the same color if and only if the initial state probabilities
are the same:∀s, ∀s′, ψ(vb0(s)) = ψ(vb0(s′)) iff b0(s) = b0(s

′). We connect the
initial state probability vertexvb0(s) to the corresponding state vertexvs.

The graph encoding process is mechanical, and the colors andedges are carefully pre-
pared in order to preserve the equivalence of the model underany graph automorphism.
Figure 9 shows the result of the graph encoding process for the tiger domain.

The encoded graph is sparse, consisting ofO(|S|2|A||Z|) vertices andO(|S|2|A||Z|)
edges, hence the number of edges is linear in the number of vertices. Despite super-
polynomial running time in the worst case, typical graph automorphism solvers are
efficient for sparse graphs. As we report in Section 7, we usednauty [18] for the graph
automorphism solver, and it quickly found automorphisms inthe encoded graphs of
benchmark POMDP domains with up to 6×107 vertices.

As a minor remark, note that we choose the colors such thatψ(vT (s,a,s′)) 6=
ψ(vO(s,a,z)) even ifT (s, a, s′) = O(s, a, z). This is to prevent the transition prob-
ability being permuted with observation probability vertices. Similar restrictions apply
to all other vertices of different classes.

5.2. Graph Encoding of a POSG

Similar to the POMDP case, the problem of finding POSG automorphisms can be
reduced to finding the automorphism group of a properly encoded graph. The graph
encoding we use here is not so much different from the POMDP approach, with the
exception of the vertices that reflect the multi-agent aspects.

The encoded graph is composed of the following classes of vertices and their edges:

• Agents (|I| vertices): we prepare one vertex per agent, assigning the same unique
color.

• States (|S| vertices): we prepare one vertex per state, assigning the same unique
color.
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Figure 9: Encoding the tiger domain as a vertex-colored graph. Two vertices have the same color if and only
if their shapes and fillings are the same.

• Next states (|S| vertices and|S| edges): we prepare another vertex per state,
assigning the same unique color, however different from thecolor of state ver-
tices. We connect each next-state vertex to the corresponding state vertex, so that
permuting state vertices yields permuting next-state vertices in the same order.

• Actions (
∑

i |Ai| vertices and
∑

i |Ai| edges): we prepare one vertex per action,
assigning the same unique color. We connect each action vertex to the corre-
sponding agent vertex to represent to which agent the actionis available.

• Observations (
∑

i |Zi| vertices and
∑

i |Zi| edges): we prepare one vertex per
observation, assigning the same unique color. We connect each observation ver-
tex to the corresponding agent vertex to represent to which agent the observation
is available.

• Transition probabilities (|S|2
∏

i |Ai| vertices and(|I| + 2)|S|2
∏

i |Ai| edges):
we prepare one vertex per transition probability, assigning the same unique color
if and only if they have the same probability. We connect eachtransition proba-
bility vertex to the corresponding state, next-state, and action vertices.

• Observation probabilities (|S|
∏

i |Ai||Zi| vertices and(2|I|+ 1)|S|
∏

i |Ai||Zi|
edges): we prepare one vertex per observation probability,assigning the same
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color if and only if they have the same probability. We connect each observation
probability vertex to the corresponding state, action, andobservation vertices.

• Individual reward functions (|I||S|
∏

i |Ai| vertices and(|I| + 2)|I||S|
∏

i |Ai|
edges): we prepare one vertex per individual reward, assigning the same color
if and only if they have the same reward. We connect each reward vertex to the
corresponding agent, state, and action vertices.

• Initial state distribution (|S| vertices and|S| edges): we prepare the vertices
corresponding tovb0(s) the same way as they are for POMDPs.

The resulting graph hasO(|I||S|2
∏

i |Ai||Zi|) vertices andO(|I|2|S|2
∏

i |Ai||Zi|)
edges. For DEC-POMDPs where the agents share the same rewardfunction, there will
beO(|I||S|2

∏

i |Ai||Zi|) edges so that the number of edges is linear in the number of
vertices.

5.3. Computational Complexity

A recent study on the computational complexity of finding MDPsymmetries [20]
showed that the problem of finding the symmetries of a given MDP can be polynomi-
ally reduced to the problem of finding the automorphisms of the corresponding graph
encoding. Hence, it is known that the computational complexity of finding the symme-
tries of an MDP belongs to the graph isomorphism-complete (GI-complete) class. In
this section, we extend the result on MDPs to POMDPs and POSGs, taking a similar
but slightly different approach.

For ease of exposition, we provide two lemmas that will be useful in proving the
main theorem regarding the results for POSGs. We will use thefollowing definitions
for the proof in the first lemma:

Definition 3. Given POSGM , GM denotes the vertex-colored undirected graph rep-
resentation ofM . Themodel verticesof GM are the vertices corresponding to the
state, action, observation, and agents ofM . Theparameter verticesof GM are the
ones corresponding to transition, observation, and rewardfunctions ofM .

We also adjust notations regarding symmetries in order to prevent confusion: Sym-
metries pertaining to graphs will be denoted asφG with aG subscript, whereas sym-
metries of POSGs will retain the notations introduced in Definitions 1 and 2.

Lemma 1. A symmetry ofM corresponds to a unique automorphism ofGM , and vice
versa.

Proof. First, assume that a symmetryφ of M is given. From this, we can prove the
existence of a unique automorphismφG of GM . To construct a uniqueφG from φ,
proceed by first mapping the model vertices according toφ. For example, given an
action vertexvai

, we setφG(vai
) ← vφAφ(i)

(aφ(i)). Note that mapping the agent ver-
tices simultaneously still maintains the edge connectivity because their corresponding
action and observation vertices are mapped accordingly. Next, we permute the param-
eter vertices that are connected to the model vertices. Thislatter permutation must
be possible becauseφ preserves the probabilities and rewards (whose corresponding
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vertex colors are the same). To specify the permutations of the parameter vertices, con-
sider a pair of tuplest1 = 〈s,~a, ~z, s′〉 andt2 = 〈φS(s), φ ~A

(~a), φ~Z
(~z), φS(s′)〉. By

construction ofGM , the verticesvT (s,~a,s′) andvT (φS(s),φ ~A
(~a),φS(s′)), corresponding to

T (s,~a, s′) andT (φS(s), φ ~A
(~a), φS(s′)), respectively, share the same color since the

two probabilities are equal underφ. This assertion holds for any arbitrary choice of
t1, by definition of POSG symmetry. The only components connected to the relevant
parameter vertices are the participating model vertices. Therefore,φG(vT (s,~a,s′)) ←
vT (φS(s),φ ~A

(~a),φS(s′)) preserves the color and edge constraints of graph automorphism.
The same argument applies to the observation probability and reward vertices, com-
pleting the construction ofφG. The construction ofφG is tailored to a specificφ, and
is different for some otherφ′ 6= φ, since the POSG symmetries are bijections. Thus,
there is only oneφG for a specificφ.

To show the other direction, assume we are given aφG ofGM . Consider two tuples
t1 = 〈vs, {vai

}, {vzi
}, vs′〉 andt2 = 〈φG(vs), {φG(vai

)}, {φG(vzi
)}, φG(vs′)〉. The

set of vertices for both tuples run over all agentsi ∈ I. The verticesvs, vs′ , {vai
}

of t1 are connected to a transition probability vertexvT (s,~a,s′) that corresponds to
T (s,~a, s′), where~a is the joint action formed by concatenating the actions correspond-
ing to the vertices{vai

}. The analogue holds for another transition probability vertex
vT (φS(s),φ ~A

(~a),φS(s′)) of t2. Because there can be only onevT (s,~a,s′) for the triple
(s,~a, s′), only the vertices int2 are connected tovT (φS(s),φ ~A

(~a),φS(s′)), and no other.
It follows that the following two equalities hold:

φG(vT (s,~a,s′)) = vT (φS(s),φ ~A
(~a),φS(s′))

ψ(φG(vT (s,~a,s′))) = ψ(vT (φS(s),φ ~A
(~a),φS(s′)))

If this were not true, there must exist another vertexvT ′′ that is mapped tovT (s,~a,s′).
Then, by the property of graph automorphism, the corresponding vertices int2 should
also be connected tovT ′′ - otherwise, vertices int1 cannot be mapped to those of
t2. However, this is a contradiction to the wayGM is constructed, since the vertices
in t2 are connected to two transition probability vertices. Therefore, there exists an
automorphismφ such thatT (s,~a, s′) = T (φS(s), φ ~A

(~a), φS(s′)), whereφG(vs) =
vφS(s), φG(vai

) = vφ ~A
(aφI (i)), ∀i ∈ I, ai ∈ Ai, s ∈ S. The analogous equalities for

the observation and reward functions can be proved similarly. Furthermore, similar
to the proof of the reverse direction,φ is unique to the givenφG becauseφG is a
bijection.

We also show that, given any vertex-colored undirected graphG, we can construct
POSG so that an automorphism ofG corresponds to a unique symmetry of the POSG,
and vice versa. The constructed POSG consists of a single agent, action, and obser-
vation. Each state of the POSG corresponds to each vertex ofG. In more detail, the
construction is as follows: Prepare a POSG state per eachv ∈ V . With a slight abuse
of notation, we will use the notations for states and vertices interchangeably. We take
the agent set to be a singleton set. There is only a single action,a, for this POSG, and
the transition probabilities are determined as follows: Let deg(v) denote the degree of
vertexv. ThenT (v, a, u) = 1

deg(v) , ∀(v, u) ∈ E. A self-transition of probability 1 is
implicitly assigned to zero-degree vertices. Therefore, the transition probability assign-
ment will needO(|V |D) time, whereD = maxv∈V deg(v). This complexity is again
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upper-bounded byO(|V |2), since there can be at most|V | − 1 edges connected to any
given vertex. There is only one observationz, leading to an identical observation proba-
bility function of 1 to all(s, a) pairs. That is,O(v, a, z) = 1, ∀v ∈ V . This assignment
is done inO(|V |) time. For the reward component, we assign the reward according to
the color of the vertex at which the action is taken. That is,R(v, a) = N(ψ(v)), where
N : C → ℜ is taken to be any bijection that maps colors to real numbers.

Definition 4. Given a vertex-colored undirected graphG = 〈V,E,C, ψ〉,MG denotes
the POSG representation ofG via construction steps described above.

Lemma 2. An automorphism ofMG corresponds to a unique symmetry ofM , and vice
versa.

Proof. First, we show that there is a unique symmetryφ of MG for an automorphism
φG of G. Because the vertices constitute the state space ofMG, only the states are
permuted. By the edge-preserving property ofφG, deg(v) = deg(φG(v)) for all ver-
tices inG. It follows thatT (v, a, u) = T (φG(v), a, φG(u)), ∀(v, u) ∈ E. By the
color-preserving property ofφG, R(v, a) = ψ(v) = ψ(φG(v)) = R(φG(v), a) holds.
Lastly, the observation probability remains invariant to any automorphism since it is
constant for all states. Therefore, we can constructφ by permuting the states the way
they were permuted byφG. Notice that becauseφG(v) 6= φ′G(v), ∀φ′G 6= φG, φ is
unique.

To prove the other direction, we assume the symmetryφ of MG is given. By
definition ofφ, T (s, a, s′) = T (φS(s), a, φS(s′)) andR(s, a) = R(φS(s), a) holds.
The equivalence of the transition probabilities implies that deg(vs) = deg(vφ(s)) for
the vertexvs corresponding to states. This equality holds for allv ∈ V . To this end,
we can setφG(vs) ← vφ(s) as our uniqueφG. To see that thisφG supports edge-
preservation, take any(v, u) ∈ E. Let sv andsu be the states mapped tov andu,
respectively. ThenT (sv, a, su) = 1

deg(v) = 1
deg(φG(v)) = T (φ(sv), a, φ(su)). The

fact that the last term is non-zero indicates that(φG(v), φG(u)) ∈ E as well. Also, for
any(v, u) /∈ E, T (sv, a, su) = T (φG(v), a, φG(u)) = 0, hence(φG(v), φG(u)) /∈ E
as well.

We now state the main theorem regarding the computational complexity of finding
symmetries of POSGs. We denote the problem of finding the generators2 of automor-
phism groups of a graphG by AGEN(G), and the problem of finding the symme-
tries of a given POSGM by PSYMM(M ). It is known that AGEN(G) belongs to the
class GI-complete [6]. We use this fact to prove that the computational complexity of
PSYMM(M ) is GI-complete as well.

To prove that PSYMM(M ) is GI-complete, we need to show that PSYMM(M )≤p

AGEN(GM ) and AGEN(G) ≤p PSYMM(MG), whereA ≤p B denotes polynomial
reducibility of problemA to problemB.

Theorem 5. PSYMM(M ) belongs to the class GI-complete.

2Simply put, anautomorphism generatorof a graph is a set of permutations on the vertices such that
when applied, yields permuted graphs.
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Proof. We first show that PSYMM(M ) ≤p AGEN(GM ). The number of vertices in
GM is O(|I|2|S|2

∏

i |Ai||Zi|), which is polynomial in the number of agents, states,
individual actions, and observations. Since the complexity of constructing any undi-
rected graph fromn vertices is at mostO(n2) (in the case of a complete graph), it
takes polynomial time to convert the POSG to the corresponding vertex colored undi-
rected graph. By Lemma 1, the symmetries ofM and the automorphisms ofGM are
equivalent.

The second part of the proof aims to show that AGEN(G) ≤p PSYMM(MG). For
the purpose of parallel argument, we assume that the given graph is vertex-colored, al-
though the argument can be specialized to non-colored graphs. Given a vertex-colored
undirected graphG = 〈V,E,C, ψ〉, we will construct the corresponding POSGMG.
Note that it also takes polynomial time to convert the graphG to the POSGMG.
By Lemma 2, the automorphisms ofG and the symmetries ofMG are equivalent.

By setting|I| = 1, a POSG becomes a POMDP and all of the arguments presented
in the proof of Theorem 5 carries over without modification. Hence, we can state the
same result for an arbitrary POMDP regarding its computational complexity.

Corollary 2. The problem of finding the symmetries of a POMDP belongs to theclass
GI-complete.

Although the class GI-complete belongs to NP, it is neither known to be P nor NP-
complete. It is however known to be in the low hierarchy of class NP, and there are a
number of implementations that can solve GI problems efficiently.

6. Exploiting Symmetries in the Solution Methods

In this section, we present algorithms for POMDPs and POSGs taking advantage
of symmetries present in the model. We first show how we can extend PBVI using
the characteristics of POMDP symmetries discussed in Section 4.2. We then present
an extended version of MADP for POSGs using the properties ofPOSG symmetries
discussed in Section 4.4.

6.1. Extending PBVI for Symmetry Exploitation in POMDPs

With the set of automorphismsΦ that represents the set of all symmetries present
in the model, we can modify PBVI to take advantage of the symmetries in belief states
andα-vectors: First, when we sample the set of belief states, oneof the heuristics
used by PBVI is to select the belief state with the farthest‖ · ‖1 distance from any
belief state already inB. Since we readily know the values at symmetric images of
any belief state, we modify the‖ · ‖1 distance computation to handle symmetries:
‖b − b′‖Φ1 = minφ,φ′∈Φ ‖φ(b) − φ′(b′)‖1. We then select the belief state with the
farthest‖ · ‖Φ1 distance. This also allows us to excludesymmetrically identicalbelief
states. Second, sinceB will exclude symmetrically identical belief states, we should
modify the backup operation to include symmetric images ofα-vectors intoΓa

t . Table 3
shows the pseudo-code for performing the symmetric backup operation.

We also added a small but important improvement for the symmetric backup ofα-
vectors: some of the belief states will have the same symmetric image,i.e., b = φ(b).
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Require: Γt = backup(B,Γt−1,Φ)
for eacha ∈ A, z ∈ Z,αi ∈ Γt−1 do

for eachs ∈ S do
αa,z

i (s) = γ
∑

s′∈S T (s, a, s′)O(s′, a, z)αi(s
′)

end for
Γa,z

t = ∪iα
a,z
i

end for
Γt = {}
for eachb ∈ B do

for eacha ∈ A, s ∈ S do
αa

b (s) = R(s, a) +
∑

z∈Z argmaxα∈Γa,z
t

(α · b)
end for
a∗ = argmaxa(αa

b · b)
αb = αa∗

b

if αb 6∈ Γt then
Γt = Γt ∪ αb

for eachφ = 〈f, g, h〉 ∈ Φ do
if f(αb) 6∈ Γt then
Γt = Γt ∪ f(αb)

end if
end for

end if
end for

Table 3: The backup operation of PBVI taking into accountΦ, the set of all symmetries.

For these belief states, it is often unnecessary to addφ(αb) into Γt, sinceφ(αb) is
relevant to the belief stateφ(b) but b andφ(b) are the same! We thus identified which
automorphisms yieldb 6= φ(b) for each belief stateb, and included the symmetric
images ofα-vectors only for these automorphisms.

6.2. Extending MADP for Symmetry Exploitation in POSGs

We now show how to apply our approach to POSGs. Using the results in Sec-
tion 4.4, we can expect certain leverages in performance when using MADP. In partic-
ular, we make use of the symmetries in the two stages of the method:

• Value computation stage: The first major speed bottleneck occurs during the
value computation, where we evaluate all the joint policiesgenerated from the
exhaustive backup. However, Theorem 3 states that for any given joint policy,
its value vector is merely a permutation of the value vector of its symmetric
image. Thus, the value computation for such policies can be avoided – we can
simply permute the symmetric value vector whenever we need it. Note that in the
case of inter-agent symmetries, all the value vectors of an agent can be obtained
by permuting value vectors of its symmetric agent. The totalnumber of value
vectors decreases by a factor of|Φ|.
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Require: Sets oft-step policiesΠi,t, corresponding value vectorsVi,t for each agent
i, and set of symmetriesΦ.
# The first stage of dynamic programming backup
Perform exhaustive backups to getΠi,t+1 for eachi.
for all ~π ∈ ~Πt+1 do

if ∄φ ∈ Φ, V
φ(~π)
i,t+1 has been computedthen

ComputeV ~π
i,t+1 (Eqn 5) and add the value vector toVi,t+1.

end if
end for
# The second stage of dynamic programming backup
while any agenti has a prunable policydo

NOPRUNEk ← {}, ∀k ∈ I.
for all π ∈ Πi,t+1 do

if π /∈ NOPRUNEi andπ can be pruned (Eqn 6)then
Πi,t+1 ← Πi,t+1\π.
for ∀φ ∈ Φ do
ΠφI (i),t+1 ← ΠφI (i),t+1\φ(π).

end for
else ifπ cannot be prunedthen

NOPRUNEi ← NOPRUNEi ∪ {π}.
for ∀φ ∈ Φ do

NOPRUNEφI (i) ← NOPRUNEφI(i) ∪ {φ(π)}.
end for

end if
end for

end while
return Sets oft+1-step policiesΠi,t+1 and corresponding value vectorsVi,t+1 for
each agenti

Table 4: Dynamic programming for POSG with symmetries. NOPRUNEi for each agenti maintains the list
of policy trees that are found not prunable by the symmetry.

• Pruning stage: An even greater slowdown is due to LP routinesfor pruning. The
existence of symmetries allows us to reduce the number of LP invocations. First,
when a local policyπ of agenti is pruned, Corollary 1 states that the local policy
φ(π) of agentφI(i) can be pruned for allφ. Second, whenπ is not to be pruned,
then allφ(π)’s are not to be pruned as well. Therefore, LP need not be performed
on those local policies.

The procedure for the multi-agent dynamic programming operator that exploits sym-
metry is outlined in Table 4.

7. Experiments

In this section, we empirically show how symmetries in POMDPs and POSGs can
help reduce burdens on computational resources required tocompute solutions. The
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experiments are conducted on a number of standard benchmarkdomains in POMDPs
and POSGs.

7.1. POMDP Experiments

Before we demonstrate the performance gain of the PBVI algorithm by using the
symmetric backup operator, we first report test results for the existence of automor-
phisms in standard POMDP benchmark domains. Most of the benchmark domains are
already compact in the sense that the model minimization algorithm was not able to
further reduce the size in most of the domains. For the tiger-grid domain [16], we were
able to reduce the size and find symmetries. For the tiger domain [12], we were not
able to reduce the size, but still find symmetries.

We further tested for automorphism existence on larger domains. In the spoken
dialogue management domain by Williams et al. [35], the useris trying to buy a ticket
to travel from one city to another city, and the machine has torequest or confirm in-
formation from the user in order to issue the correct ticket.These dialog management
problems are denoted asn-city-ticketing. In this domain, there aren cities, and a hu-
man user is trying to book a flight between two cities. The agent, as an automated
response system, needs to take one of the following actions:greet, ask-from/ask-to,
conf-to-x/conf-from-x, submit-x-y, wherex andy are two of then cities. The user’s
response is treated as an observation for the agent:x, from-x, to-x, from-x-to-y, yes, no,
null, wherex andy again refer to the cities. The observation function is dependent
on how well the speech recognition model performs. The states are factored into three
components:

• Whether thefrom has been specified,

• Whether the destination,to, has been specified,

• Whether the current turn is the first turn or not.

We instantiated the domain forn = 2 andn = 3 possible cities, and for two different
rates of speech recognition errorsperr, whereperr = 0 assumes no speech recognition
error andperr = 0.1 assumes an error rate of 10%. Note that even in the case where
perr = 0, the domain is still a POMDP since the user may provide partial information
about the request (e.g., origin city only).

All of these problems could not be reduced in size, but still had symmetries. Re-
gardless of the value ofperr, the graphs encoding the POMDP models were exactly the
same. The small differences in the nauty execution times maybe due to the differ-
ences in the orderings of the vertices of the graph. Figure 10summarizes the result of
automorphism finding experiments.

Next, we experimented with the PBVI algorithms on the above benchmark domains
using the discovered automorphisms. First, we sampled a fixed number of symmetric
belief states (e.g., 300 for the tiger-grid) and ran the symmetric version of PBVI. We
then checked the number of unique belief states if the symmetric belief states were to be
expanded by the automorphisms. We set this number (e.g., 590 for the tiger-grid) as the
number of belief states to be used by the non-symmetric version of PBVI, and ran the
algorithm in the same setting without automorphisms. Note that our implementation
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Domain |S| Min |S| |V | nauty exec time |Φ|

Tiger 2 2 39 0.004 s 2

Tiger-grid 36 35 9814 0.061 s 4

2-city-ticketing (perr = 0) 397 397 1624545 31.872 s 4

2-city-ticketing (perr = 0.1) 397 397 1624545 23.873 s 4

3-city-ticketing (perr = 0) 1945 1945 61123604 2585.770 s 12

3-city-ticketing (perr = 0.1) 1945 1945 61123604 2601.543 s 12

Figure 10: Model minimization and graph automorphism results on benchmark domains.|S| is the number
of states in the original model, Min|S| is the number of states in the minimized model,|V | is the number
of vertices in the graph encoding of the model, and|Φ| is the number of automorphisms found by nauty
including the identity mapping.

Domain Algorithm |B| |Γ| Iter Exec time V (b0) ǫ

Tiger
PBVI 19 5 89 0.07 s 6.40

0.01
Symm-PBVI 10 5 89 0.05 s 6.40

Tiger-grid
PBVI 590 532 88 359.69 s 0.80

0.03
Symm-PBVI 300 529 85 196.09 s 0.80

2-city-ticketing (perr = 0)
PBVI 51 5 167 157.80 s 8.74

0.02
Symm-PBVI 17 5 168 57.60 s 8.74

2-city-ticketing (perr = 0.1)
PBVI 104 9 167 546.04 s 7.76

0.02
Symm-PBVI 30 10 167 201.97 s 7.73

3-city-ticketing (perr = 0)
PBVI 261 37 91 43094.32 s 8.08

1.00
Symm-PBVI 36 42 91 9395.06 s 8.08

3-city-ticketing (perr = 0.1)
PBVI 275 39 91 43286.92 s 6.95

1.00
Symm-PBVI 30 133 91 16791.17 s 6.94

Figure 11: Performance comparisons of the PBVI algorithm with automorphisms. Symm-PBVI is the PBVI
algorithm exploiting the automorphisms,i.e., symmetric belief collection and symmetric backup.|B| is
the number of belief states given to the algorithms,|Γ| is the number ofα-vectors comprising the policy,
Iter is the number of iterations until convergence,V (b0) is the average return of the policy starting from
initial belief b0, andǫ is the convergence criteria of each algorithm for running until maxb∈B |V (n)(b) −
V (n−1)(b)| ≤ ǫ. All V (b0)’s are within the 95% confidence interval of the optimal.

of PBVI slightly differs from the original version in that the original PBVIinterleaves
the belief state exploration and the value iteration, rather than fixing the belief states
in the onset of execution. We also gathered the belief statessimply using breadth-
first traversal instead of stochastic simulation. This was to analyze the efficiency of
the symmetric backup isolated from the effects of symmetricbelief state exploration.
Figure 11 shows the results of the experiments. In summary, automorphisms help
significantly improve the performance of PBVI in running time without sacrificing the
quality of policy.

7.2. POSG Experiments

There are no well-known benchmark domains for general POSGs, but there is a
wealth of benchmark domains for DEC-POMDPs. Hence, we report the results on
our symmetry exploitation in MADP for DEC-POMDPs only: Dec-Tiger [19], Grid-
Small [1], and Box-Pushing [27]. By focusing on DEC-POMDPs,we can also rule out
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Figure 12: Grid-Small environment.

Figure 13: Grid-Small3x3 environment.

issues such as equilibrium selection problem in general-sum games.
The Dec-Tiger domain is a multi-agent extension of the well-known Tiger domain,

which has been introduced in Section 4.3. The main difference is that the agents suffer
less (gain more) by coordinating their actions -e.g., the penalty is more severe for one
agent unilaterally opening the door that leads to the tiger,than for both opening the
door to the tiger.

The standard Grid-Small domain is set in a 2-by-2 grid world,where the two agents,
i = 1 andi = 2, have to spend as much time as possible on the same grid cell. There
are a total of 16 states (each grid cell either has an agent or not), five actions per agent
(ai,UP, ai,DOWN, ai,RIGHT, ai,LEFT, ai,STAY), and two observations per agent, denoted
zi,LEFT andzi,RIGHT, that indicate whether the agent senses a wall to its left or right,
respectively. The 16 states are encoded assXY , whereX andY can take any one of
{A,B,C,D} given in Figure 12. TheX indicates the cell in which agent 1 resides,
andY for agent 2,e.g., sAD is given in Figure 12. An extended version of Grid-Small
is played in a 3-by-3 grid world. There are a total of 81 states, where the grid cells can
take any one of{A,B,C,D,E, F,G,H, I}. The action set remains the same as the
2-by-2 case. There is an additional observation for not sensing a wall on either side,
and is denoted aszi,NOTHING for agenti. A visual representation of the statesAC is
given in Figure 13.
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Figure 14: Initial configuration of the Box-Pushing domain.Immediately above the robots are the left and
right small gray boxes, next to the black large box. The hatched region in the grid is the goal region.

The Box-Pushing domain requires the two agents,i = 1 or 2, to push two small
boxes and one large box to a goal state. The large box is too heavy for a single agent
to move, so the two must coordinate their actions in order to jointly push the large box.
There are four actions per robot (ai,LEFT, ai,RIGHT, ai,MOVE, ai,STAY), five observations
per robot (zi,SMALL , zi,LARGE, zi,WALL , zi,EMPTY, zi,OTHER), and 100 states, four of which
are goal states. The robots can either choose to place the twosmall boxes individu-
ally into the goal state and receive a small reward, or cooperatively push the large box
and receive a greater reward. The initial state of the Box-Pushing domain is depicted
in Figure 14. In this domain, two robots R1 and R2 start facingeach other in a 3-by-4
grid. Notice that the location of R1 is always left to that of R2. This is because, in order
for R1 to be left to R2, it must first move upwards. But since both robots have boxes
above them, moving upward will cause the box to be positionedin the goal region,
terminating the domain. This also accounts for the fact thatthe column coordinates,
labeled 0 to 3, suffice to describe the positions of R1 and R2, since it is impossible
for either robot to be in the above two rows of the grid withouthaving the domain
terminated. Thus, we adopt an alpha-numeric encoding to denote a particular non-goal
state. All non-goal states will be of the formsXXY Y , where the first twoXs will be
the column coordinates for R1 and R2 in that order, and the last two Y s take values
from {r, l, u, d} indicating the robot is facing right, left, up, or down, respectively.e.g.,
s03rl depicts the initial state given in Figure 14. The four goal states correspond to: the
left small box being in the goal region (sLBox), and the right small box being in the goal
region (sRBox), and both small boxes being in the goal region (sLRBox), and the large
box being in the goal region (sLargeBox).

Prior to executing the symmetric MADP algorithm, we ran nauty on the graph en-
coding of each DEC-POMDP domain. The automorphisms in Dec-Tiger are presented
in Figure 15. The automorphisms discovered included one trivial automorphism - the
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Symm. Type State Action Obs.

Inter-Agent

Identity mapping
a1,LISTEN ↔ a2,LISTEN

z0,LEFT ↔ z1,LEFT

z1,RIGHT ↔ z2,RIGHT
a1,LEFT ↔ a2,LEFT

a1,RIGHT ↔ a2,RIGHT

sLEFT ↔ sRIGHT

a1,LISTEN ↔ a2,LISTEN
z1,LEFT ↔ z2,RIGHT

z1,RIGHT ↔ z2,LEFT
a1,LEFT ↔ a2,RIGHT

a1,RIGHT ↔ a2,LEFT

Intra-Agent sLEFT ↔ sRIGHT

a1,LEFT ↔ a1,RIGHT

z1,LEFT ↔ z1,RIGHT

z2,LEFT ↔ z2,RIGHT

a2,LEFT ↔ a2,RIGHT

a1,LISTEN ↔ a1,LISTEN

a2,LISTEN ↔ a2,LISTEN

Figure 15: Non-trivial automorphisms in Dec-Tiger. The notationX ↔ Y indicates thatX is symmetric to
Y .

identity mapping. There are three non-trivial automorphisms, two of them being inter-
agent. The inter-agent and intra-agent automorphisms of Grid-Small domain are shown
in Figure 17 and Figure 18, respectively in the Appendix. This domain contains eight
automorphisms, including the identity mapping. Of the seven non-trivial automor-
phisms, four are inter-agent. Similarly for Grid-Small3x3, there are seven non-trivial
automorphisms. These are shown in Figure 19 and Figure 21 in the Appendix as well.
For the Box-Pushing domain, the only non-trivial automorphism is an inter-agent au-
tomorphism, as shown in Figure 23 in the Appendix. One notable symmetry of this
domain is the interchange of the two states indicating the left and right small boxes
being in the goal region (sLBox andsRbox). In addition, the two agents and their corre-
sponding actions and observations are swapped as well.

After computing the symmetries, we compared our proposed algorithm to the MADP
algorithm on each domain. We measured the memory usage by counting the number
of value vectors created at the end of each iteration. We alsocounted the number of LP
invocations at each horizon. As can be seen in Figure 16, bothalgorithms were able
to complete three and two horizons for the former two domainsand the Box-pushing
domain, respectively. For the Grid-Small3x3 domain, MADP could not complete hori-
zon three, whereas Symm-MADP could. The running time for allsymmetry-exploiting
algorithms include the time taken to compute the symmetriesusing nauty, which ex-
plains why Symm-MADP takes slightly longer to complete the first time horizon in
some cases. A separate field for nauty execution time is omitted, as it was negligible
(less than 2.5 seconds) compared to the overall running time. Notice that even with
the exploitation of symmetries, proceeding beyond the horizon attained by MADP is
still spatially constrained. For the Dec-Tiger domain, value vectors alone take 70GB
of memory by the end of value computation for horizon 4, even with full symmetry
exploitation. Such a tendency is due to the fact that memory usage experiences expo-
nential increase while symmetry only helps by a linear factor at best. However, this
issue can be addressed by various approximate algorithms that bound the memory us-
age, and experimenting with their symmetric versions will be left as a future work.

Earlier horizons do not exhibit much of the benefit of the symmetries because very
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Domain Algorithm
T = 1 T = 2 T = 3

#LP Time |V| #LP Time |V| #LP Time |V|

Dec-Tiger
Symm-MADP 4 1s 4 42 1s 207 1022 326s 86175

MADP 6 0s 9 84 1s 810 2371 1215s 344250

Grid-Small
Symm-MADP 2 1s 1 6 0s 11 124 24s 2631

MADP 8 0s 1 10 1s 50 410 65s 20000

Grid-Small3x3
Symm-MADP 1 3s 1 5 1s 25 189 172800s 99809

MADP 4 1s 1 5 1s 50 N.A.

Box-Pushing
Symm-MADP 10 2s 8 156 1271s 768

N.A.
MADP 12 1s 16 290 3505s 1536

Figure 16: Performance comparisons on domains with and without symmetry exploitation. #LP is the num-
ber of LP invocations andV is the set of value vectors produced at the end of each iteration. The first row
of each domain shows the results with symmetry exploitationand the second row shows the results without
symmetry. All time records are rounded up to the nearest second.

few policy trees are generated. However, towards the last horizon, we can see the effect
of symmetry exploitation. While the number of value vectorsreduced is approximately
proportional to that of the symmetries present in the domain, the number of LP invo-
cations and the execution time do not necessarily follow this trend. This is due to (1)
the existence of many self-symmetric policy trees that do not contribute to multiple re-
moval and LP avoidance, and (2) differing LP sizes, by which the LP solver’s execution
time varies.

The size of LP is an important factor that influences the execution time. The size
is governed by how many policy trees were created from exhaustive backup and the
domain size itself. For example, the Box-Pushing domain utilizes relatively larger LPs
up to 12800 constraints, thereby amplifying the effect of symmetries. Since LP solvers
usually take a high-order polynomial amount of time, reducing a linear number of
variables or constraints in LPs will attain super-linear improvement in time.

8. Conclusion

We have presented a graph-theoretical framework for computing and exploiting
symmetries for POMDPs and POSGs. In addition, we have shown in the experiments
that the actual running time and space are significantly reduced by exploiting symme-
tries.

The computation of the symmetries were done by first encodingthe problems into
appropriate graph structures. The automorphisms of such graphs are then mapped back
to the problem domain to represent the symmetries of the problem. In doing so, we
have also provided a theoretical result that relates the computational complexity of
symmetry computation to that of graph isomorphism computation, i.e., the class GI-
complete. Additionally, we have extended the concept of symmetry to a multi-agent
setting, introducing POSG symmetries. Because of its multi-agent nature, symmetries
in POSGs yield various implications in the area of game theory. We presented some
game-theoretic properties that are exhibited in the presence of symmetries.

Our algorithms that exploit the symmetries are presented aswell. These algorithms
are modifications of previous well-known algorithms PBVI and MADP for POMDPs
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and POSGs, respectively. Although we have demonstrated theefficiency of symmetry
exploitation only using PBVI and MADP, the idea can be readily extended to other al-
gorithms. For example, symmetries can have an impact on solution techniques that use
heuristic search such as MAA* [33], or Q-value functions forDEC-POMDPs [22]. An-
other interesting area of application would be to apply symmetries to a finite controller
representation of policies [1].

While symmetry exploitation greatly reduces computational and spatial burden on
solving POMDPs and POSGs, it is limited by the fact that not all problems come with
symmetries. One promising direction of research would be tocompute approximate
symmetries, along with the theoretical error bound.
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Appendix

The figures in this appendix show the automorphisms in Grid-Small, Grid-Small3x3,
and Box-Pushing, accompanying the results in the experiments section.

Symm. Type State Action Obs.

Inter-Agent

sAB ↔ sBA
a1,UP ↔ a2,UP

a1,DOWN ↔ a2,DOWN

a1,LEFT ↔ a2,LEFT

a1,RIGHT ↔ a2,RIGHT

a1,STAY ↔ a2,STAY

z1,LEFT ↔ z2,LEFT

z1,RIGHT ↔ z2,RIGHT

sAC ↔ sCA

sAD ↔ sDA

sBC ↔ sCB

sBD ↔ sDB

sCD ↔ sDC

sAA ↔ sCC
a1,UP ↔ a2,DOWN

a1,DOWN ↔ a2,UP

a1,LEFT ↔ a2,LEFT

a1,RIGHT ↔ a2,RIGHT

a1,STAY ↔ a2,STAY

z1,LEFT ↔ z2,LEFT

z1,RIGHT ↔ z2,RIGHT

sAB ↔ sDC

sAD ↔ sBC

sBA ↔ sCD

sBB ↔ sDD

sCB ↔ sDA

sAA ↔ sBB
a1,UP ↔ a2,UP

a1,DOWN ↔ a2,DOWN

a1,LEFT ↔ a2,RIGHT

a1,RIGHT ↔ a2,LEFT

a1,STAY ↔ a2,STAY

z1,LEFT ↔ z2,RIGHT

z1,RIGHT ↔ z2,LEFT

sAC ↔ sDB

sAD ↔ sCB

sBC ↔ sDA

sBD ↔ sCA

sCC ↔ sDD

sAA ↔ sDD
a1,UP ↔ a2,DOWN

a1,DOWN ↔ a2,UP

a1,LEFT ↔ a2,RIGHT

a1,RIGHT ↔ a2,LEFT

a1,STAY ↔ a2,STAY

z1,LEFT ↔ z2,RIGHT

z1,RIGHT ↔ z2,LEFT

sAB ↔ sCD

sAC ↔ sBD

sBA ↔ sDC

sBB ↔ sCC

sCA ↔ sDB

Figure 17: Non-trivial inter-agent automorphisms in Grid-Small.
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Symm. Type State Action Obs.

Intra-Agent

sAA ↔ sCC

a1,UP ↔ a1,DOWN

a2,UP ↔ a2,DOWN

Identity mapping

sAB ↔ sCD

sAC ↔ sCA

sAD ↔ sCB

sBA ↔ sDC

sBB ↔ sDD

sBC ↔ sDA

sBD ↔ sDB

sAA ↔ sBB

a1,LEFT ↔ a1,RIGHT

a2,LEFT ↔ a2,RIGHT

z1,LEFT ↔ z1,RIGHT

z2,LEFT ↔ z2,RIGHT

sAB ↔ sBA

sAC ↔ sBD

sAD ↔ sBC

sCA ↔ sDB

sCB ↔ sDA

sCC ↔ sDD

sCD ↔ sDC

sAA ↔ sDD

a1,UP ↔ a1,DOWN

a2,UP ↔ a2,DOWN

a1,LEFT ↔ a1,RIGHT

a2,LEFT ↔ a2,RIGHT

z1,LEFT ↔ z1,RIGHT

z2,LEFT ↔ z2,RIGHT

sAB ↔ sDC

sAC ↔ sDB

sAD ↔ sDA

sBA ↔ sCD

sBB ↔ sCC

sBC ↔ sCB

sBD ↔ sCA

Figure 18: Non-trivial intra-agent automorphisms in Grid-Small.
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Symm. Type State Action Obs.

Inter-Agent

sAB ↔ sBA, sAC ↔ sCA

a1,UP ↔ a2,UP

a1,DOWN ↔ a2,DOWN

a1,LEFT ↔ a2,LEFT

a1,RIGHT ↔ a2,RIGHT

a1,STAY ↔ a2,STAY

z1,LEFT ↔ z2,LEFT

z1,RIGHT ↔ z2,RIGHT

z1,NOTHING ↔ z2,NOTHING

sAD ↔ sDA, sAE ↔ sEA

sAF ↔ sF A, sAG ↔ sGA

sAH ↔ sHA, sAI ↔ sIA

sBC ↔ sCB , sBD ↔ sDB

sBE ↔ sEB, sBF ↔ sF B

sBG ↔ sGB , sBH ↔ sHB

sBI ↔ sIB , sCD ↔ sDC

sCE ↔ sEC , sCF ↔ sF C

sCG ↔ sGC , sCH ↔ sHC

sCI ↔ sIC , sDE ↔ sED

sDF ↔ sF D , sDG ↔ sGD

sDH ↔ sHD, sDI ↔ sID

sEF ↔ sF E , sEG ↔ sGE

sEH ↔ sHE, sEI ↔ sIE

sF G ↔ sGF , sF H ↔ sHF

sF I ↔ sIF , sGH ↔ sHG

sGI ↔ sIG, sHI ↔ sIH

sAA ↔ sCC , sAB ↔ sBC

a1,UP ↔ a2,UP

a1,DOWN ↔ a2,DOWN

a1,LEFT ↔ a2,LEFT

a1,RIGHT ↔ a2,RIGHT

a1,STAY ↔ a2,STAY

z1,LEFT ↔ z2,RIGHT

z1,RIGHT ↔ z2,RIGHT

z1,NOTHING ↔ z2,NOTHING

sAD ↔ sF C , sAE ↔ sEC

sAF ↔ sDC , sAG ↔ sIC

sAH ↔ sHC , sAI ↔ sGC

sBA ↔ sCB , sBD ↔ sF B

sBE ↔ sEB, sBF ↔ sDB

sBG ↔ sIB , sBH ↔ sHB

sBI ↔ sGB , sCD ↔ sF A

sCE ↔ sEA, sCF ↔ sDA

sCG ↔ sIA, sCH ↔ sHA

sCI ↔ sGA, sDD ↔ sF F

sDE ↔ sEF , sDG ↔ sIF

sDH ↔ sHF , sDI ↔ sGF

sED ↔ sF E, sEG ↔ sIE

sEH ↔ sHE , sEI ↔ sGE

sF G ↔ sID, sF H ↔ sHD

sF I ↔ sGD , sGG ↔ sII

sGH ↔ sHI , sHG ↔ sIH

Figure 19: Non-trivial inter-agent automorphism in Grid-Small3x3.
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Symm. Type State Action Obs.

Inter (contd.)

sAA ↔ sGG, sAB ↔ sHG

a1,UP ↔ a2,DOWN

a1,DOWN ↔ a2,UP

a1,LEFT ↔ a2,LEFT

a1,RIGHT ↔ a2,RIGHT

a1,STAY ↔ a2,STAY

z1,LEFT ↔ z2,LEFT

z1,RIGHT ↔ z2,RIGHT

z1,NOTHING ↔ z2,NOTHING

sAC ↔ sIG, sAD ↔ sDG

sAE ↔ sEG, sAF ↔ sF G

sAH ↔ sBG, sAI ↔ sCG

sBA ↔ sGH , sBB ↔ sHH

sBC ↔ sIH , sBD ↔ sDH

sBE ↔ sEH , sBF ↔ sF H

sBI ↔ sCH , sCA ↔ sGI

sCB ↔ sHI , sCC ↔ sII

sCD ↔ sDI , sCE ↔ sEI

sCF ↔ sF I , sDA ↔ sGD

sDB ↔ sHD, sDC ↔ sID

sDE ↔ sED, sDF ↔ sF D

sEA ↔ sGE , sEB ↔ sHE

sEC ↔ sIE, sEF ↔ sF E

sF A ↔ sGF , sF B ↔ sHF

sF C ↔ sIF , sGB ↔ sHA

sGC ↔ sIA, sHC ↔ sIB

sAA ↔ sII , sAB ↔ sHI

a1,UP ↔ a2,DOWN

a1,DOWN ↔ a2,UP

a1,LEFT ↔ a2,RIGHT

a1,RIGHT ↔ a2,LEFT

a1,STAY ↔ a2,STAY

z1,LEFT ↔ z2,RIGHT

z1,RIGHT ↔ z2,LEFT

z1,NOTHING ↔ z2,NOTHING

sAC ↔ sGI , sAD ↔ sF I

sAE ↔ sEI , sAF ↔ sDI

sAG ↔ sCI , sAH ↔ sBI

sBA ↔ sIH , sBB ↔ sHH

sBC ↔ sGH , sBD ↔ sF H

sBE ↔ sEH , sBF ↔ sDH

sBG ↔ sCH , sCA ↔ sIG

sCB ↔ sHG, sCC ↔ sGG

sCD ↔ sF G, sCE ↔ sEG

sCF ↔ sDG, sDA ↔ sIF

sDB ↔ sHF , sDC ↔ sGF

sDD ↔ sF F , sDE ↔ sEF

sEA ↔ sIE, sEB ↔ sHE

sEC ↔ sGE , sED ↔ sF E

sF A ↔ sID, sF B ↔ sHD

sF C ↔ sGD , sGA ↔ sIC

sGB ↔ sHC , sHA ↔ sIB

Figure 20: Non-trivial inter-agent automorphism in Grid-Small3x3, continued.
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Symm. Type State Action Obs.

Intra-Agent

sAA ↔ sCC , sAB ↔ sCB

a1,LEFT ↔ a1,RIGHT

a2,LEFT ↔ a2,RIGHT

z1,LEFT ↔ z1,RIGHT

z2,LEFT ↔ z2,RIGHT

sAC ↔ sCA, sAD ↔ sCF

sAE ↔ sCE , sAF ↔ sCD

sAG ↔ sCI , sAH ↔ sCH

sAI ↔ sCG, sBA ↔ sBC

sBD ↔ sBF , sBG ↔ sBI

sDA ↔ sF C , sDB ↔ sF B

sDC ↔ sF A, sDD ↔ sF F

sDE ↔ sF E , sDF ↔ sF D

sDG ↔ sF I , sDH ↔ sF H

sDI ↔ sF G, sEA ↔ sEC

sED ↔ sEF , sEG ↔ sEI

sGA ↔ sIC , sGB ↔ sIB

sGC ↔ sIA, sGD ↔ sIF

sGE ↔ sIE , sGF ↔ sID

sGG ↔ sII , sGH ↔ sIH

sGI ↔ sIG, sHA ↔ sHC

sHD ↔ sHF , sHG ↔ sHI

sAA ↔ sGG, sAB ↔ sGH

a1,UP ↔ a1,DOWN

a2,UP ↔ a2,DOWN

Identity Mapping

sAC ↔ sGI , sAD ↔ sGD

sAE ↔ sGE , sAF ↔ sGF

sAG ↔ sGA, sAH ↔ sGB

sAI ↔ sGC , sBA ↔ sHG

sBB ↔ sHH , sBC ↔ sHI

sBD ↔ sHD, sBE ↔ sHE

sBF ↔ sHF , sBG ↔ sHA

sBH ↔ sHB, sBI ↔ sHC

sCA ↔ sIG, sCB ↔ sIH

sCC ↔ sII , sCD ↔ sID

sCE ↔ sIE , sCF ↔ sIF

sCG ↔ sIA, sCH ↔ sIB

sCI ↔ sIC , sDA ↔ sDG

sDB ↔ sDH , sDC ↔ sDI

sEA ↔ sEG, sEB ↔ sEH

sEC ↔ sEI , sF A ↔ sF G

sF B ↔ sF H , sF C ↔ sF I

Figure 21: Non-trivial intra-agent automorphism in Grid-Small3x3.
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Symm. Type State Action Obs.

Intra (contd.)

sAA ↔ sII , sAB ↔ sIH

a1,UP ↔ a1,DOWN

a2,UP ↔ a2,DOWN

a1,LEFT ↔ a1,RIGHT

a2,LEFT ↔ a2,RIGHT

z1,LEFT ↔ z1,RIGHT

z2,LEFT ↔ z2,RIGHT

sAC ↔ sIG, sAD ↔ sIF

sAE ↔ sIE , sAF ↔ sID

sAG ↔ sIC , sAH ↔ sIB

sAI ↔ sIA, sBA ↔ sHI

sBB ↔ sHH , sBC ↔ sHG

sBD ↔ sHF , sBE ↔ sHE

sBF ↔ sHD, sBG ↔ sHC

sBH ↔ sHB, sBI ↔ sHA

sCA ↔ sGI , sCB ↔ sGH

sCC ↔ sGG, sCD ↔ sGF

sCE ↔ sGE , sCF ↔ sGD

sCG ↔ sGC , sCH ↔ sGB

sCI ↔ sGA, sDA ↔ sF I

sDB ↔ sF H , sDC ↔ sF G

sDD ↔ sF F , sDE ↔ sF E

sDF ↔ sF D, sDG ↔ sF C

sDH ↔ sF B, sDI ↔ sF A

sEA ↔ sEI , sEB ↔ sEH

sEC ↔ sEG, sED ↔ sEF

Figure 22: Non-trivial intra-agent automorphism in Grid-Small3x3.
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State Action Obs.

sLBox ↔ sRBox, s01uu ↔ s23uu

a1,LEFT ↔ a2,LEFT

a1,RIGHT ↔ a2,RIGHT

a1,MOVE ↔ a2,MOVE

a1,STAY ↔ a2,STAY

z1,EMPTY ↔ z2,EMPTY

z1,WALL ↔ z2,WALL

z1,OTHER ↔ z2,OTHER

z1,SMALL ↔ z2,SMALL

z1,LARGE ↔ z2,LARGE

s01ud ↔ s23du, s01ul ↔ s23ru

s01ur ↔ s23lu, s01du ↔ s23ud

s01dd ↔ s23dd, s01dl ↔ s23rd

s01dr ↔ s23ld, s01lu ↔ s23ur

s01ld ↔ s23dr , s01ll ↔ s23rr

s01lr ↔ s23lr , s01ru ↔ s23ul

s01rd ↔ s23dl, s01rl ↔ s23rl

s01rr ↔ s23ll, s02uu ↔ s13uu

s02ud ↔ s13du, s02ul ↔ s13ru

s02ur ↔ s13lu, s02du ↔ s13ud

s02dd ↔ s13dd, s02dl ↔ s13rd

s02dr ↔ s13ld, s02lu ↔ s13ur

s02ld ↔ s13dr , s02ll ↔ s13rr

s02lr ↔ s13lr , s02ru ↔ s13ul

s02rd ↔ s13dl, s02rl ↔ s13rl

s02rr ↔ s13ll, s03ud ↔ s03du

s03ul ↔ s03ru, s03ur ↔ s03lu

s03dl ↔ s03rd, s03dr ↔ s03ld

s03ll ↔ s03rr, s12ud ↔ s12du

s12ul ↔ s12ru, s12ur ↔ s12lu

s12dl ↔ s12rd, s12dr ↔ s12ld

s12ll ↔ s12rr

Figure 23: Non-trivial automorphism in Box-Pushing. It is an inter-agent automorphism.
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