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Abstract: In this work, we introduce a model of an aerial system based on a physics-based simulation engine. We
investigate some basic properties of the proposed model, showing its potential benefit for autonomous control.
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1. INTRODUCTION
Building an accurate aerial system simulator requires

considerable expert knowledge on the related fields (e.g.
aerodynamics [3]), and sometimes significant amount of
computation time (e.g. Computational Fluid Dynamics).
In this work, we propose a simple aerial system simu-
lation environment, which is built on top of a computa-
tionally efficient 3D physics engine called MuJoCo [1].
We introduce some basic properties of our proposed en-
vironment, which renders our environment as a testbed
for simulation-based optimization of control, such as re-
inforcement learning [2].

2. ENVIRONMENT
We adopt a simple phenomenological model of fluid

dyanmics implemented in MuJoCo physics engine [1].
According to the model, the aerodynamic force and
torque exerted on i-th component of the body frame are:

Fi ∝ −ρsjsk|vi| vi (1)

Ti ∝ −ρsi
(
s4j + s4k

)
|ωi|ωi, (2)

where vi is the velocity of the system in the i-th compo-
nent of the body frame (local frame) axes, si is the area
of the surface of the equivalent inertia box (the right side
of Figure 1) corresponding to the i-th component of the
body frame axes. Note that, in the model, the magnitude
of the aerodynamic force is proportional to the square of
the velocity, highly dissipating the energy of a fast mov-
ing aerial system. This simple phenomenological model
is fit for the case when inertial effects are dominant over
viscous effects [1] (e.g. a high speed aerial system mov-
ing across the air with high Reynolds number). At every
simulation time step, the physics engine computes the ac-
celeration of the rigid body based on various forces act-
ing on it, including external control forces, gravitational
and aerodynamics forces. The simulator then generates
the trajectory of the system by numerically integrating
(e.g. via RK4) the forward dynamics of the system over
time. The resulting trajectory (data) of the system can
then be fed as trajectory samples into data-driven con-
trol optimization methods such as reinforcement learn-

Fig. 1 The aerial system model with static fins at-
tached at the bottom for self-stability. The longitudi-
nal length of it is 5.2 m, and the mass is 81 kg, with a
gravitational acceleration of 9.8m/s2 and air density
of 1.0 kg/m3 being applied. An equivalent inertia
box (right) is shown as red boxes with the center of
mass (COM) indicated as a white sphere. The trans-
parent black rods represent three axes for thrusts (one
for axial thrust and the other two for lateral thrusts
which additionally induce torques due to the moment
arms). Our work rather focuses on the topology of
the model rather than its physical specifications.

ing. The MuJoCo physics engine also allows one to de-
fine a callback function through which customized pas-
sive forces (e.g. aerodynamic forces) can be applied to
the target system at every simulation time step. Note that
the data-driven control methods, which rely on forward-
trajectory samples from the physics-based simulator, are
different to classical control methods for aerial system
where originally nonlinear aerial system dynamics mod-
els (e.g. ODE) are linearized around equilibrium points,
rather than integrated over time [5].

2.1 Stability under feed-forward control
In many cases it is desirable for a physical system to
have some degree of damping mechanism which dissi-
pates the energy of the system over time [4]. This dis-
sipative behavior could be highly desirable especially for
an RL (reinforcement learning) agent where boundedness
of the trajectories could be important for the stability of
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Fig. 2 A nominal trajectory of the aerial system only
under feed-forward thrusts. A stable parabolic tra-
jectory is maintained over a long flight time (50 sec-
onds). The arrows along the trajectory indicate the
axes of the body frame (local frame) of the aerial sys-
tem, with the solid black curve being the position tra-
jectory.

optimization process. While excessive damping forces
can prevent an agent from exploring the state space suf-
ficiently, we argue that at least some degree of damping
mechanism should be equipped in a physical system to
make the trajectories bounded in some sense, thus secur-
ing some degree of learning stability for the RL agent.

While there exist various types of stability [4], we focus
on the statistics of angle of attacks along a trajectory as
a measure of open-loop stability. We apply feed-forward
control (i.e. open-loop control) signals to the aerial sys-
tem through the axial (i.e. longitudinal) thrust channel
along with small magnitude of lateral thrusts for 50 sec-
onds. The axial control signal is equivalent to the longi-
tudinal thrust of 15,000 N, while the lateral thrust is of
75 N which results in a slight yaw rate (a slight turn).
The aerial system is launched in a straight upright atti-
tude, resulting in a parabolic trajectory (Figure 2). Note
that even under the open-loop control (no feedback), the
attitude of the aerial system is well aligned with the ve-
locity direction (i.e. low angle of attack) in overall. More
specifically, the longitudinal axes of the system are al-
most in consistence with the tangent vectors of the posi-
tion trajectory (Figure 2). This self-stabilizing character-
istic could be highly desirable especially in simulation-
based control optimization such as reinforcement learn-
ing, where radical trajectory changes due to controls
can significantly deteriorate the stability of optimization.
Considering the fact that the aerial systems move across
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Fig. 3 A trajectory of the aerial system under control
disturbances. The trajectory is kept stable overall due
to the stabilizing characteristics of the attached fins
even under the disturbances.

larger spaces compared to ground systems, unbounded-
ness of the trajectories would be more severe if no self-
stabilizing mechanism is equipped in the system.

2.2 Stability under disturbances

We further investigate the stability (in the sense of
AOAs) characteristics of the aerial system by injecting
disturbances (i.e. forces) into the thrust channels (i.e.
control channels). An additive axial disturbance is sam-
pled from a normal distribution N

(
0, 15002

)
N, and it is

applied to the axial thrust channel every time step. Lateral
thrust disturbances are sampled from N

(
0, 1502

)
N and

applied to the lateral thrust channels every time step. The
resultant trajectory is represented in Figure 3. It shows
that the system still maintains a stable (i.e. low AOAs)
parabolic trajectory even under the disturbances, with a
slight deviation from the nominal one (i.e. disturbance-
free trajectory) in Figure 2.

Furthermore, to see the effect of the static fins as a stabi-
lizer, we conduct an additional experiment with an aerial
system with the fins removed. Figure 5 shows the resul-
tant trajectory of the system with no fins under the same
disturbance setting. The trajectory certainly indicates that
the system is quite unstable, meaning that it cannot main-
tain a consistent parabolic trajectory. The system quickly
falls down and wanders around the ground. The results
seemingly imply that the fins attached at the bottom of
the aerial system serve as a trajectory stabilizer.
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Fig. 4 A statistics of angle of attacks along the trajectory
of an aerial system with fins. The mean is 5.5 deg.
and the standard deviation is 2.2 deg. The AOAs are
maintained at a low level indicating some degree of
stability of trajectory.
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Fig. 5 A trajectory of an aerial system with the fins
removed with the other settings unchanged. The lon-
gitudinal axis of the system is not aligned well with
the tangent vector of the position trajectory (the black
solid curve). The aerial system hits the ground at
some point and then wanders around it.

To show the result more quantitatively, we measure the
angle of attacks along trajectories. The angle of attack, a
bit informally, is the angle between the velocity direction
and the longitudinal direction of a system (refer [3][5] for
a more formal definition). While a large discrepancy be-
tween the two vectors (i.e. high angle of attack) could be
desirable in some cases, this quantity is usually kept in
a small bounded range (< 90 deg.) [3][5]. The two his-
tograms (Figure 4, Figure 6) show the statistics of angle
of attacks measured along each trajectory of the system
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Fig. 6 A statistics of angle of attacks along the trajectory
of an aerial system without fins. The mean is 79 deg.
and the standard deviation is 24 deg. The AOAs are
spread over a wide range with the high mean value,
indicating an instability of the trajectory.

with fins and without fins respectively. Overall, the angle
of attack is maintained at a desirable low level in case the
fins are attached. In case the fins are removed, however,
the angle of attacks are spread over a more wider range
with a higher mean value indicating that the system has
some degree of instability (Figure 5).

Especially for data-driven control optimization methods
such as reinforcement learning whose optimization per-
formance highly relies on the quality of the trajectories,
the seemingly unpredictable and unstable trajectory (Fig-
ure 5) could make the optimization procedure quite un-
stable. Even worse, since an RL agent interacts with the
environment with a stochastic policy during the learning
process, where random thrusts (actions) sampled from the
policy are exerted on the system, the trajectory can be
more unpredictable and can change radically resulting in
high degree of learning instability.

2.3 Trajectories under Varying Air Densities
Eqs. (1) ∼ (2) imply that the trajectory of an aerial

system might depend on the density of the medium (i.e.
air density, ρ) the system travels across. To see the ef-
fect of varying air densities on trajectories, we collect
trajectories under various air density settings (Figure 7).
Note that, since an aerial system under high air density
experiences high damping forces according to eqs. (1) ∼
(2), the overall travel distance of the system is short com-
pared to the one under low air density (Figure 7). In other
words, these resultant trajectories are consistent with our
intuition based on the phenomenological model.

3. CONCLUSION AND FUTURE WORK
In this work, we proposed a simple aerial system agent

simulated in an environment built on top of an efficient
physics-based engine where a simple phenomenological
aerodynamics model was adopted. We investigated some
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Fig. 7 Trajectories of an aerial system under different
air densities (unit in kg/m3). The travel distances of
systems in dense medium are short due to the dissi-
pative aerodynamic forces which depend on density
of medium.

basic properties of the proposed model such as self sta-
bility which is exhibited in most aerial systems. We leave
simulation-based control optimization of the aerial sys-
tem as a future work.
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