
Data Augmentation for Learning to Play in Text-Based Games

Jinhyeon Kim1,2 and Kee-Eung Kim1

1 Kim Jaechul Graduate School of AI, KAIST
2 Skelter Labs

jhkim@ai.kaist.ac.kr, kekim@kaist.ac.kr

Abstract
Improving generalization in text-based games
serves as a useful stepping-stone towards reinforce-
ment learning (RL) agents with generic linguis-
tic ability. Data augmentation for generalization
in RL has shown to be very successful in clas-
sic control and visual tasks, but there is no prior
work for text-based games. We propose Transition-
Matching Permutation, a novel data augmentation
technique for text-based games, where we identify
phrase permutations that match as many transitions
in the trajectory data. We show that applying this
technique results in state-of-the-art performance in
the Cooking Game benchmark suite for text-based
games.

1 Introduction
The text-based game, a game played through a text-based
user interface, serves as a promising testbed towards build-
ing an intelligent agent that learns how to interact with the
environment through natural language. In order to play text-
based games, the agent needs to understand the state of
the game via natural language processing (NLP), as well as
make appropriate action choices via reinforcement learning
(RL) [Hausknecht et al., 2020]. An example gameplay from
a text-based game is shown in Figure 1.

In order to ultimately build RL agents with generic linguis-
tic ability, one must tackle the problem of generalizability. In
this context, Côté et al. [2018] proposed a procedurally gener-
ated text-based game framework called TextWorld to help the
research on generalization for text-based games. Using this
framework, a number of techniques have been proposed to
integrate the observations into more generalizable represen-
tations; Adhikari et al. [2020] construct a belief graph from
the observations using pre-trained graph neural networks and
Chaudhury et al. [2020] devised a pruning method that cap-
tures essential features.

On the other hand, data augmentation is a highly effective
technique for improving generalizability when training ma-
chine learning models. Cobbe et al. [2019] report that data
augmentation is one of the crucial regularization techniques
required for generalizing well via extensive experiments con-
ducted on procedurally generated RL environments. How-

Obser-
vation

-= Kitchen =-
You've just shown up in a kitchen.

You make out a closed fridge in the
corner. You make out a counter. The
counter is vast. On the counter you can
see a cookbook and a knife. [...]

Action > open fridge
Obser-
vation

You open the fridge, revealing a carrot.

Action > take carrot
Obser-
vation

You take the carrot from the fridge.
Your score has just gone up by one point.

Figure 1: An example gameplay from the text-based game, Cooking
Game. Both the observation and action are in the form of natural
language.

ever, to the best of our knowledge, no prior work exists for
data augmentation in text-based games.

In this paper, we propose a novel data augmentation tech-
nique for text-based games, Transition-Matching Permuta-
tion, which permutes the actions and observations while pre-
serving equivalence to the original game dynamics. Utilizing
a set of pre-collected trajectory data, the method does not re-
quire any other extra information or instrumentation of the
game engine. The method first discovers phrase pairs that ex-
hibit similarity in the transitions with the respective phrases
from trajectory data. We regard the permutations of such
phrase pairs as capturing the symmetry in the environment.
Once the permutations are identified, we randomly sample
a permutation at the beginning of every episode in the RL
loop as the data augmentation. This permutation is used to
transform observations and actions, effectively creating a ran-
domly modified, yet equivalent game instance from the orig-
inal environment.

We experiment on top of the state-of-the-art RL algo-
rithms for text-based games, and show that our data aug-
mentation techniques further improve their generalization
performance. Moreover, we observe that even the simple
DQN with a straightforward pre-processing of observations
can achieve state-of-the-art performance in the TextWorld’s
Cooking Game benchmark [Côté et al., 2018; Adhikari et al.,
2020]. The code is publicly available at https://github.com/
KAIST-AILab/transition-matching-permutation.

https://github.com/KAIST-AILab/transition-matching-permutation
https://github.com/KAIST-AILab/transition-matching-permutation

2 Background
2.1 Partially Observable Markov Decision Process

(POMDP)
In many real-world environments for RL, including text-
based games, the agent can access only a portion of the en-
vironment state. Partially observable Markov decision pro-
cesses (POMDP) are an extension of MDPs for these partially
observable environments. Formally, a POMDP is a 7-tuple
(S,A, T,R,Ω, O, γ), where

• S is a set of states,
• A is a set of actions,
• T (s′|s, a) is a transition probability distribution,
• R : S ×A → R is the reward function,
• Ω is a set of observations,
• O(o|s, a) is an observation probability distribution,
• γ ∈ [0, 1] is the discount factor.

At each time step t = 0, 1, 2, . . ., the agent takes an ac-
tion at ∈ A in the environment state st ∈ S, which tran-
sitions the environment state to st+1 with probability dis-
tribution T (st+1|st, at) and yields a reward rt = R(st, at)
and an observation ot+1 ∈ Ω with probability distribution
O(ot|st, at−1). The goal is to maximize the expected cumu-
lative reward E [

∑
t γ

trt].
Unlike in an MDP, the information of the underlying state

in a POMDP is partially and indirectly provided through ob-
servations. Hence, the agent must accumulate the history of
observations for inferring an estimate of the state or the belief
state.

2.2 Permutable POMDP
Doshi and Roy [2008] recognized that a POMDP environ-
ment with an inherent symmetry can reduce its computational
complexity. The symmetry is described by state permuta-
tions ρ : S → S such that there exist their corresponding
action permutation σact

ρ : A → A and observation permuta-
tion σobs

ρ : Ω → Ω satisfying the following conditions,

T (s′|s, a) = T (ρ(s′)|ρ(s), σact
ρ (a)),

O(o|s, a) = O(σobs
ρ (o)|ρ(s), σact

ρ (a)), and

R(s, a) = R(ρ(s), σact
ρ (a)),

for all s, s′ ∈ S, a ∈ A, o ∈ Ω.
In the era of deep reinforcement learning, it is often un-

clear how to incorporate the symmetry into the deep neural
networks. Therefore, based on this formulation, we will uti-
lize the permutations that describe the environment symmetry
for data augmentation. Unfortunately, the set of states S and
the models T , O, and R are not directly accessible under the
RL setting. Hence, we will address this restriction by lever-
aging the trajectory data, as we will explain in Section 5.2.

3 Related Works
3.1 Generalization in Text-Based Games
The text-based game is a game that is played through a text-
based user interface. Many popular classic computer games,

such as Zork and Rogue, are examples of text-based games.
Learning how to play in text-based games lends an insight
on how to interact with the environment through the use of
natural language.

Traditional RL settings assume that the agent is trained and
tested in the same environment. In a more realistic scenario,
however, one must expect to encounter unseen circumstances.
To this end, we consider the setting where an agent is trained
in one set of games and evaluated in another unseen set of
games. Without a proper treatment, the agent is tempted to
memorize the best-performing strategies specific to each par-
ticular training game instances rather than learning a general
policy that explores for such information.

Adhikari et al. [2020] and Chaudhury et al. [2020] tackle
the generalizability problem of text-based games by building
a more generalizable representation of the belief state from
the observations, discouraging the agent from identifying the
training game instance. On top of these pioneering works,
we will take an orthogonal approach of data augmentation to
further boost their generalization capabilities.

Graph-Aided Transformer Agent
Adhikari et al. [2020] criticized the use of heuristics of prior
works for building belief states and proposed Graph-Aided
Transformer Agent (GATA), which infers the belief state in
an unsupervised manner. Specifically, GATA models the be-
lief state as a graph representing the inferred attributes of the
entities as well as their relationships. The agent uses this be-
lief graph as the input.

Updating the belief graph from text observations is done
by a pre-trained relational graph convolutional network (R-
GCN) [Schlichtkrull et al., 2018]. They use the following
pre-training schemes:

• Observation generation (OG), trained to minimize the
reconstruction loss between the original observation and
the observation reconstructed from the predicted belief
graph and the previous action.

• Contrastive Observation Classification (COC), trained to
minimize the contrastive loss by differentiating the orig-
inal observation from random observations, given the
predicted belief graph and the previous action.

Context Relevant Episodic State Truncation
Chaudhury et al. [2020], on the other hand, propose Context
Relevant Episodic State Truncation (CREST), which prunes
the observation so that it only contains information relevant
to the gameplay. The main motivation for CREST is that the
presence of irrelevant information facilitates the identification
of the training game instance, leading to the overfitting.

To identify which tokens are relevant to the gameplay,
CREST first trains an agent with raw observation. This agent
is expected to generate a well-performing trajectory specific
to each training game instance but may not generalize to other
game instances. Let K denote the number of training game
instances and Tk denote the trajectory of this agent for k-th
game, k = 1, . . . ,K. Let V denote the vocabulary set and
Vk ⊂ V denote the tokens used in the actions of Tk. Note that
the tokens in Vk are essential for playing k-th game. Hence,

any words that are similar to these tokens can be considered
relevant to the gameplay.

Given a word similarity function D : V ×V → R, CREST
defines Token Relevance of words w ∈ V ,

C(w;Vk)
.
= max

v∈Vk
D(w, v).

They prune an observation of k-th training game by remov-
ing tokens w with token relevance C(w;Vk) below a certain
threshold θCREST . The final agent is trained on this pruned
observation, encouraging generalization by curating only the
relevant information. For evaluation, they prune the tokens
according to the global token relevance C(w;

⋃
k Vk). For

our purpose, we use the global token relevance for training
as well to reduce the train-test distribution shift and simplify
implementation.

3.2 Data Augmentation
Data augmentation is a generic technique that applies a set
of modifications to generate more training instances from
the original data to increase the size and the diversity of the
dataset. It is one of the most popular and effective approaches
for improving generalization when training machine learning
models.

Cobbe et al. [2019] report that data augmentation is one of
the crucial regularization techniques required for generaliz-
ing well in RL. RAD [Laskin et al., 2020] and DrQ [Yarats
et al., 2020] devise sample-efficient methods to incorporate
data augmentation techniques into RL training loop. How-
ever, all these works have focused on classical control and
visual tasks, and to the best of our knowledge, no prior works
exist for data augmentation in RL for text-based games.

Data augmentation is also actively explored in building di-
alogue systems, where the dialogue corpus is enriched with
synthesized data to improve generalization. Hou et al. [2018]
proposed paraphrasing delexicalized sentences to generate
synthesized utterances. Campagna et al. [2020] designed
a dialogue synthesis scheme for domain transfer using on-
tology. These works have shown improvement in general-
ization performance under limited training data. Compared
to our work in this paper, these data augmentation methods
deal with more complex and diverse utterances in human dia-
logues, while relying on manually tagged annotations to syn-
thesize semantically coherent utterances. Our data augmen-
tation approach deals with more regular sentences generated
by the game script, while being agnostic to the game engine
and working with raw text.

4 Tasks
TextWorld [Côté et al., 2018] is a framework, based on Jeri-
cho [Hausknecht et al., 2020], that allows procedural gener-
ation of text-based games of varying difficulty and features.
It serves as a useful tool for studying generalization in text-
based games.

In particular, we use the Cooking Game suite, which is one
of the standard sets of games provided by TextWorld. The
goal of the Cooking Game is to collect and process all the
necessary objects, called ingredients, placed across different
rooms. The player should discover a cookbook that contains

Level 1 Level 2 Level 3 Level 4

Recipe Size 1 1 1 3
#Locations 1 1 9 6
Max Score 4 5 3 11
Need Cut Yes Yes No Yes
Need Cook No Yes No Yes

Table 1: Configuration of the Cooking Game benchmark.

Level 1 Level 2 Level 3 Level 4

66.2 36.0 58.3 27.7

Table 2: A summary of the best normalized test scores on the Cook-
ing Game, reported by Adhikari et al. [2020].

the recipe describing the necessary ingredients and the ex-
act methods for processing them. A reward of +1 is given
for gathering each necessary ingredient and for each step of
correctly processing the ingredients; in all other cases, the
reward is zero. The game ends either when the recipe is
completed or when any ingredients are processed incorrectly.
Note that inspecting the cookbook does not earn a reward
directly. Below are some of the actions in the game:

• examine <obj> provides information related to the ob-
ject. Especially, the content of the recipe is retrieved by
the action examine cookbook.

• go north (and so on) navigate in the specified direction.

• take <obj> (from <obj>) lets the player carry it.

• chop/dice/slice/cook <obj> with <obj> process
the ingredient in the respective manner.

The Cooking Game can be configured for the procedural
generation via specifying the following settings:

• The number of ingredients in the recipe (Recipe size)

• The number of locations in the game (#Locations)

• Whether some ingredients require cutting (Need cut)

• Whether some ingredients require cooking (Need cook)

Defined on top of the Cooking Game suite, the First
TextWorld Problems (FTWP) competition [Trischler et al.,
2019] encouraged generalization over unseen set of games.
They split the processing methods (i.e. cooking and cutting)
for each ingredient into training, validation, and test set. For
instance, a training game instance may require carrot to be
sliced or chopped but never diced, which may appear in
the validation or test game instance.

Adhikari et al. [2020] proposed another benchmark from
the Cooking Game suite. They procedurally generated four
sets of game instances of varying difficulty levels, indepen-
dent from the FTWP setup, as described by Table 1. It is
notable that, when generating the new benchmark, they used
only the FTWP’s training split of the processing methods
for all of training, validation, and test set games. There-
fore, in this configuration, a suboptimal policy that memo-
rizes the processing methods for each ingredient from the

“Transition-matching”
Permutations

e.g.

Augmented EnvOriginal Env
You open the
fridge, revealing
a carrot.

>take carrot
σ -1

Trajectory
Data

Sample permutation σ

carrot banana

σ You open the
fridge, revealing
a banana.

>take banana

Figure 2: An illustration of our data augmentation technique,
Transition-Matching Permutation.

training set may perform well in the validation and the test
game instances, although it is more appropriate to consult
the cookbook before processing the ingredients. Indeed, we
observed that the baseline methods often converged to this
suboptimal policy, which we discuss more in the experiments
section. Despite the issue, we will use this particular con-
figuration as the Cooking Game benchmark for the sake of
reproducing the results from the baseline methods.

Table 2 summarizes the best of the test scores from Ad-
hikari et al. [2020]. We regard these scores as the previous
state-of-the-art on the Cooking Game benchmark.

5 Data Augmentation via
Transition-Matching Permutation

We consider data augmentations of the following form. Given
an observation and a set of admissible actions, we perform
certain transformation on them before presenting them to the
agent. When the agent selects one of the transformed actions,
we perform the original action that is associated with it on the
original environment. To ensure the soundness, we restrict
the transformation to be injective. Otherwise, we may have
two actions a1 and a2 that are mapped to a single augmented
action a′. When the agent chooses to act a′, it becomes un-
clear whether a1 or a2 should be performed on the original
environment.

To this end, we adopt the Permutable POMDP formulation.
We consider the case where the difference in two states can be
identified via the differences of certain phrases in the textual
observations and actions. In such cases, the observation and
action permutation corresponding to the state permutation are
text replacement of such phrases. For example, if one game
has a “carrot” and another game has a “banana” with other
things being equal, the observation and action permutation
are text replacement operation from “carrot” to “banana” and
vice versa, as shown in Figure 2.

Before delving into details, we remark that the following
information is available, as in Adhikari et al. [2020]:

• The trajectory data T , obtained by issuing 10 random
actions on each step of ground-truth trajectories of the
First TextWorld Problems games. It was utilized to pre-
train GATA.

• The admissible actions for both the First TextWorld
Problems games and the Cooking Game benchmark.

5.1 Candidate Phrase Extraction
First, we extract candidate phrases that will be used as build-
ing blocks for permutations. The key idea here is that we gen-
erate symmetric versions of the game by replacing phrases of
the observations and the actions by candidate phrases, e.g.
replace carrot by banana, front door by plain door,
etc. Without access to the game engine, we need to identify
these candidate phrases from the observations and the actions.
However, we found that the observations may contain many
phrases not relevant to the gameplay. For instance, the sen-
tence The counter is vast. in Figure 1 is not useful for
playing the game. The actions, on the contrary, are always
relevant to the gameplay. Therefore, we search for candidate
phrases from the actions.

Let V denote the vocabulary set and V∗ the set of all word
sequences in V . Let Ã ⊂ V∗ denote the set of all the actions
in the trajectory data T . For instance, Ã may contain actions
such as go south and take knife from table. We ex-
tract all the noun phrases E ⊂ V∗ found in the actions of
Ã using SpaCy [Honnibal et al., 2020]. For the action take
knife from table, the phrases knife and table are ex-
tracted. We use the extracted phrases E as the candidate
phrases for the remaining steps.

5.2 Filtering from Trajectory Data
Next, we use the extracted phrases to define permutations.
Specifically, for candidate phrases x, y ∈ E and a word se-
quence z ∈ V ∗, let σx,y(z) denote the operation that replaces
all the occurences of x found in z with y and vice versa. For
example, σcarrot,banana maps an observation “The fridge con-
tains a carrot and a banana” to “The fridge contains a banana
and a carrot.” For every candidate phrase pairs x, y ∈ E, we
want to verify if the mapping σx,y reflects the symmetry in
the environment.

If the trajectory data T contained all the possible tra-
jectories, then it would suffice to check if each trajectory
in τ = {(ai, oi, ri)}i ∈ T is mapped to some trajectory
τ ′ = {(σx,y(ai), σx,y(oi), ri)}i ∈ T , according the per-
mutable POMDP formulation. However, since only a subset
of trajectories is available, we relax the criterion to find as
many matching transitions as possible.

This boils down to measuring how many transitions are
matched by σx,y over all the transitions relevant to any of
x, y ∈ E. We consider the following sets of transitions:

T
.
= {(a, o, r) : ∃τ ∈ T s.t. (a, o, r) ∈ τ}

Tx
.
= {(a, o, r) ∈ T : a contains x}

Ty
.
= {(a, o, r) ∈ T : a contains y}

Tx,y
.
= {(a, o, r) ∈ Tx : (σx,y(a), σx,y(o), r) ∈ Ty}

Here, T is the set of all transitions found in T and Tx and Ty

are the sets of transitions whose action contains the phrase x

Figure 3: Clusters of the extracted phrases for the Cooking Game.
The color of the edge represents the matching score.

and y, respectively. Tx,y denotes the set of transitions of Tx

and Ty that are matched by σx,y . For example, σcarrot,banana
may match the transition (dice carrot with knife, You
dice the carrot with knife, 0) with (dice banana
with knife, You dice the banana with knife, 0).

We define the matching score f(x, y) similarly to the Jac-
card similarity,

f(x, y)
.
=

|Tx,y|
|Tx|+ |Ty| − |Tx,y|

,

where higher matching score indicates that the mapping σx,y

matches more transitions associated with phrases x, y, and
thus is more likely to represent the symmetry of the environ-
ments.

Using the matching score, we build a graph G of phrases
where two phrases have an edge when their matching score is
above threshold. We discard phrases with no edges. We also
remove phrases containing any other phrase in G to avoid am-
biguity in mapping the word sequences. The matching scores
of the pairs of extracted phrases for the Cooking Game are
illustrated in Figure 3.

5.3 Training Procedure
We will perform permutation both on the observation and the
actions to ensure coherence between them. Let N denote the
number of connected components of G and Ci denote each
connected component, i = 1, . . . , N . For each phrase cluster
Ci, let Pi denote the set of all permutations on Ci. We will
use P

.
= {ρ1 ◦ . . . ◦ ρN : ρi ∈ Pi} as our permutation set.

For a word sequence x ∈ V ∗ and a phrase permutation
ρ ∈ P , let σρ(x) denote the operation that replaces any oc-
curences of each entity e ∈ E found in x with ρ(e). For
example, if ρ swaps carrot with banana and table with
counter, σρ(take carrot from table) =take banana
from counter. Algorithm 1 describes the pseudo-code for
applying relabeling as data augmentation for learning to play
text-based games.

Algorithm 1 Applying relabeling for text-based games

for each episode do
Reset the environment.
Randomly sample a permutation ρ ∈ P .
for each time step t do

Let o′t
.
= σρ(ot) denote the permuted observation.

Let A′ .
= {σρ(a) : a ∈ A} denote the permuted

action set.
Choose a′t ∈ A′ according to the behavior policy.
Act at

.
= σρ−1(a′t) on the environment and receive

a reward rt.
Update the model parameters of the agent.

end for
Collect the permuted transitions {(o′t, a′t, rt, o′t+1)}t

into the replay buffer.
end for

6 Experiments
6.1 Training Details
In reporting our experiment results, we used the mean of trials
with five different seeds. For each trial, we select the best
model in terms of the validation set performance and report its
test set performance. We used 100 training games instances
for each difficulty level.

We mostly follow the setup by Adhikari et al. [2020].
However, we found that our data augmentation allowed con-
vergence to higher performance. Therefore, to emphasize the
effect of our methods, we modified the setup as follows.

We train the agents for 300,000 episodes with a linear de-
cay on the learning rate from 10−3 to 10−6. We use ϵ-greedy
with the values of ϵ annealed from 1.0 to 0.1 over 200,000
episodes. We use the batch of size 256 for the parameter up-
date. The update takes place after each game step of the batch
environment interaction of size 64.

For training GATA models with our data augmentation, we
also applied our method in the pre-training process of the
graph encoders as well. Otherwise, the performance signif-
icantly degraded due to the data distribution shift on the input
to the graph encoders.

6.2 Models
We demonstrate the effectiveness of our approach by compar-
ing the test performance of various models with and without
our data augmentation techniques. We adopt the following
baseline methods of Adhikari et al. [2020],

• Tr-DQN [Adhikari et al., 2020]: A DQN baseline [Mnih
et al., 2015] with Transformer [Vaswani et al., 2017] en-
coder for the observation.

• Tr-DRQN [Adhikari et al., 2020]: A DRQN base-
line [Van Hasselt et al., 2016], which is a recurrent vari-
ant of Tr-DQN.

• GATA OG and GATA COC [Adhikari et al., 2020].
We additionally experiment on the following model,

• Tr-DQN-cat: Tr-DQN with the concatenation of the last
few observations observation as input. Specifically, we
use the last 256 tokens of the concatenated observations.

Level 1 Level 2 Level 3 Level 4

Score Rel.Imp. Read Score Rel.Imp. Read Score Rel.Imp. Read Score Rel.Imp. Read

Tr-DQN 63.8 -11.5% 30% 42.5 -2.6% 72% 42.4 -13.4% 10% 21.5 +3.7% 4%
+Ours 56.5 8% 41.4 34% 36.7 6% 22.3 0%

Tr-DRQN 64.0 -15.9% 4% 45.0 -21.5% 8% 42.0 -6.8% 10% 12.9 +51.6% 4%
+Ours 53.8 9% 35.3 19% 39.2 3% 19.6 21%

Tr-DQN-cat 63.3 -11.9% 3% 49.6 +29.0% 1% 31.7 +2.1% 5% 12.6 +2.2% 6%
+Ours 55.8 10% 64.0 50% 32.3 3% 12.8 4%

GATA OG 64.4 -22.2% 20% 33.9 -4.0% 38% 38.0 +1.7% 5% 11.4 +56.3% 1%
+Ours 50.1 15% 32.6 29% 38.6 1% 17.8 6%

GATA COC 66.4 -25.4% 1% 41.3 -20.2% 6% 32.1 +25.4% 1% 15.2 +23.6% 1%
+Ours 49.6 5% 32.9 1% 40.2 4% 18.8 7%

CREST 63.2 -25.3% 8% 34.2 +0.5% 21% 39.6 +3.4% 6% 18.8 -4.5% 0%
+Ours 47.2 5% 34.4 52% 41.0 14% 18.0 17%

CREST-cat 65.8 +28.3% 8% 40.4 +87.0% 6% 39.7 +9.1% 11% 18.2 +36.1% 1%
+Ours 84.4 59% 75.5 86% 43.3 10% 24.7 0%

Table 3: Normalized scores on the test set games with and without our data augmentation technique (Score) and the relative improvement
of the scores by the augmentation (Rel.Imp.). Bold indicates positive relative improvements. We also list the portion of test episodes that
contain the action examine cookbook (Read).

Lastly, we use the following two variants of CREST,
• CREST: Tr-DRQN with the pruning of CREST.
• CREST-cat: Tr-DQN-cat with the pruning of CREST.

We use the CREST threshold θCREST of 0.5 for Level 1 and
0.4 for Level 2, 3, and 4.

Tr-DQN, Tr-DRQN, and CREST use the following format:
<sep> at−1 <sep> ot

For Tr-DQN-cat and CREST-cat, we use the following:
<sep> restart <sep> o0 <sep> a0
<sep> o1 <sep> . . . <sep> at−1 <sep> ot

6.3 Results
Table 3 shows the normalized scores on the test set games
before and after applying our data augmentation technique
and the relative improvement of the scores by the augmenta-
tion.1 The relative improvement of a score m over a reference
score mref is calculated as (m −mref)/mref . Table 3 also
lists the ratio of test episodes that contain the action examine
cookbook, which is a necessary condition for acquiring a
generalizable policy in the Cooking Game.

First of all, most of the models improved the performance
on Level 3 and 4. Furthermore, the performance of CREST-
cat has increased significantly at Level 1 and 2, setting up the
state-of-the-art on the benchmark. As manifested in the rel-
atively high portion of episodes with examine cookbook,
CREST-cat succeeded in learning the generalizable policy of
examining and following the recipe on these difficulty levels,
after applying our augmentation. Tr-DQN-cat also accom-
plished the generalizable policy on Level 2.

On the contrary, other models experienced performance
drop on Level 1 and 2. Note the relatively low portion of
episodes with examine cookbook for these models. As

1The figures of Tr-DQN, Tr-DRQN, and GATA in Table 3 are
our reproduction.

mentioned in Section 4, each ingredient is associated with
slightly different distribution of desired processing methods
in the Cooking Game banchmark. Without data augmen-
tation, these models learned a non-generalizable subopti-
mal policy that exploits this distribution without reading the
recipe. Unfortunately, our data augmentation technique pro-
hibits this strategy. Unlike CREST-cat, these models could
not acquire the generalizable policy whether our data aug-
mentation is applied or not. As a result, they learned neither
of the aforementioned policies, yielding poorer performance.

Nevertheless, it is remarkable that the acquisition of the
generalizable policy on Level 1 and 2 was possible only
with our data augmentation method. This confirms that the
Transition-Matching Permutation is essential in achieving
higher level of generalizability. However, on Level 3 and 4,
the low portion of episodes with examine cookbook shows
that our data augmentation technique was not sufficient to ac-
quire the generalizable policy. It is because our data aug-
mentation technique is not perfect in discovering the sym-
metries. For instance, each ingredient also has a designated
set of initial locations in the Cooking Game; e.g. carrot
can appear only in the fridge or the garden. Consequently,
the Transition-Matching Permutation hinders learning more
efficient policy of examining the cookbook and visiting the
associated location, although such policy was not acquired
without augmentation as well.

One possible direction to handle these problems would be
to consider the permutation on the n-tuples of the phrases for
some n instead of single phrases. In this case, the efficient
search algorithm for such tuples would be the main chal-
lenge. Another possible direction is to utilize belief states.
It would be possible to capture symmetry that is manifested
over multiple time-steps. In this case, the challenge would
be to construct belief states which are well-suited to work to-
gether with the Transition-Matching Permutation.

7 Conclusion
In this work, we proposed Transition-Matching Permutation,
a novel data augmentation technique for text-based games,
based on the Permutable POMDP formulation. We experi-
mentally verified the effectiveness of our approach by training
various agents with our data augmentation technique. More-
over, with our technique, a simple variant of DQN with a rea-
sonable observation pruning attained the state-of-the-art per-
formance on Level 1 and 2 of the Cooking Game benchmark.

One limitation of our work is that it does not handle non-
trivial relationships between the state, action, and observation
permutations. Discovering such complex relations from the
trajectory data can be a promising future direction.

Acknowledgements
This work was supported by the National Research Foun-
dation (NRF) of Korea (NRF-2019R1A2C1087634, NRF-
2021M3I1A1097938), the Ministry of Science and Informa-
tion communication Technology (MSIT) of Korea (IITP No.
2020-0-00940, IITP No. 2019-0-00075, IITP No. 2021-0-
02068), and Electronics and Telecommunications Research
Institute (ETRI) grant funded by the Korean government (No.
22ZS1100).

References
Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté,

Mikuláš Zelinka, Marc-Antoine Rondeau, Romain
Laroche, Pascal Poupart, Jian Tang, Adam Trischler,
and Will Hamilton. Learning dynamic belief graphs to
generalize on text-based games. Advances in Neural
Information Processing Systems, 33, 2020.

Giovanni Campagna, Agata Foryciarz, Mehrad Moradshahi,
and Monica Lam. Zero-shot transfer learning with syn-
thesized data for multi-domain dialogue state tracking. In
Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 122–132, 2020.

Subhajit Chaudhury, Daiki Kimura, Kartik Talamadupula,
Michiaki Tatsubori, Asim Munawar, and Ryuki Tachibana.
Bootstrapped Q-learning with context relevant observation
pruning to generalize in text-based games. In Proceedings
of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3002–3008, 2020.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and
John Schulman. Quantifying generalization in reinforce-
ment learning. In International Conference on Machine
Learning, pages 1282–1289. PMLR, 2019.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybar-
tas, Tavian Barnes, Emery Fine, James Moore, Ruo Yu Tao,
Matthew Hausknecht, Layla El Asri, Mahmoud Adada,
Wendy Tay, and Adam Trischler. TextWorld: A learn-
ing environment for text-based games. arXiv preprint
arXiv:1806.11532, 2018.

Finale Doshi and Nicholas Roy. The permutable POMDP:
Fast solutions to POMDPs for preference elicitation. In
Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems - Volume 1,

AAMAS ’08, page 493–500. International Foundation for
Autonomous Agents and Multiagent Systems, 2008.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Côté, and Xingdi Yuan. Interactive fiction
games: A colossal adventure. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2020.

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and
Adriane Boyd. spaCy: Industrial-strength natural language
processing in Python. 2020.

Yutai Hou, Yijia Liu, Wanxiang Che, and Ting Liu.
Sequence-to-sequence data augmentation for dialogue lan-
guage understanding. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics, pages
1234–1245, 2018.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter
Abbeel, and Aravind Srinivas. Reinforcement learning
with augmented data. Advances in Neural Information Pro-
cessing Systems, 33, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne
Van Den Berg, Ivan Titov, and Max Welling. Modeling re-
lational data with graph convolutional networks. In Euro-
pean semantic web conference, pages 593–607. Springer,
2018.

Adam Trischler, Marc-Alexandre Côté, and Pedro Lima. First
TextWorld problems, the competition: Using text-based
games to advance capabilities of AI agents. 2019.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep rein-
forcement learning with double Q-learning. In Proceedings
of the AAAI conference on artificial intelligence, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008,
2017.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image aug-
mentation is all you need: Regularizing deep reinforce-
ment learning from pixels. In International Conference on
Learning Representations, 2020.

	Introduction
	Background
	Partially Observable Markov Decision Process (POMDP)
	Permutable POMDP

	Related Works
	Generalization in Text-Based Games
	Data Augmentation

	Tasks
	Data Augmentation via Transition-Matching Permutation
	Candidate Phrase Extraction
	Filtering from Trajectory Data
	Training Procedure

	Experiments
	Training Details
	Models
	Results

	Conclusion

