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Abstract—Partially observable Markov decision processes
language understanding

(POMDPs) have received significant interest in research on

B

spoken dialogue systems, due to among many benefits its abjli dial
to naturally model the dialogue strategy selection problemunder user lalogue
unreliable automated speech recognition. However, the PORIP management

approaches are essentially model-based, and as a result,eth

dialogue strategy computed from POMDP is still subject to

the correctness of the model. In this paper, we extend some of

the previous MDP user models to POMDPs, and evaluate the

effects of user models on the dialogue strategy computed fro  Fig. 1. A block diagram of spoken dialogue systems.
POMDPs. We experimentally show that the strategies compute
from POMDPs perform better than those from MDPs, and the
strategies computed from poor user models fail severely wime
tested on different user models. This paper further investjates
the evaluation methods for dialogue strategies, and propes a
method based on the bias-variance analysis for reliably eishating
the dialogue performance.

response generation &
text-to-speech

processes (MDPs) as the model for dialogue management, the
implication of using MDPs is that the current state of the
dialogue is known exactly, and thus they do not easily captur
the uncertainty introduced by errors in speech recognition
language understanding.

To deal with the limited expressiveness of MDPs, par-
tially observable Markov decision processes (POMDPSs) have
gathered interest for modeling spoken dialogue systems ove
the recent years [3]. POMDPs extend MDPs by allowing
Ertial or uncertain observations, and hence, it is wellesli

Index Terms—Decision theory, partially observable Markov
decision process (POMDP), planning under uncertainty, dilbgue
management, spoken dialog system (SDS).

I. INTRODUCTION

POKEN dialogue systems interact with the users usi r computing the optimal dialogue strategy under unrééiab

speeqh in order to help acqomplish theirin_ten_ded tasks[ Jtomatic speech recognition / natural language proagssin
Spoken dialogue systems are increasingly ubiquitous for4in Although the task of solving POMDPs is known to be in-

mation searchd.g, querying for a train schedule) or comman : .
and control €.g, controlling a car audio). Fig. 1 shows thgractable, recently proposed approximate algorithms sach

: . ) Rint-based value iteration (PBVI) [4], heuristic searciue
three core components used in spoken dialogue systems.ie

speech recognition / language understanding component r('%Itlon (HSVI) [5], [6], and composite-summary PBVI [7]

. . . ow great promise for building spoken dialogue systems.
interpreting the user’s speech, dialogue management compo g P gsp 9 Y

o : However, we should note that the POMDP approaches
nent for determining an appropriate system response, and th | . .
. . are essentially model-basectasting the dialogue system as
response generation / text-to-speech component for ctimger

the system response to speech [2]. a POMDP requires a model of user behaviors and speech

The main focus of this paper is about determining the beretcognltlon errors, which correspond to the transition #rel

! i L?Rservation probabilities in the POMDP model. Hence if the
system response in the dialogue management component. The

traditional approach to developing the dialogue managemérr]deel is poorj.e., far from real user behaviors, the dialogue

component is to hand-code the dialogue strategy by a Strategy computed from the corresponding POMDP can be

u- . ) .
: . ._Useless. To model user's behavior accurately, various user
man expert. However, recent advances in sequential damshq

making and reinforcement learning have made it possible toOOIeIS have been proposed and evaluated in the dialogue

. . Tnanagement literature. For example, the effect of model
learn the dialogue strategy from a corpus. While the ear . . . ! .
(%/uahty on dialogue strategies has been extensively sludie

work on this approach has primarily adopted Markov deCISIOm [13], but only in the context of the less expressive MDPs.
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1There are some recent works on reinforcement learning aphes
to POMDP-based dialogue systems [8], [9]. However, theyukhde
better understood as real-time dynamic programming (RTEP)solving
POMDPs [10], rather than reinforcement learning. Sincg #iso require the
model as an input, we expect that they are also susceptilifeetoorrectness
of the model. Reinforcement learning in partially obsefgaénvironments is
a hard problem, and it is still being actively studied [11]2].
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user model parameters due to a finite amount of data. A simplee said to beoptimal Note that the optimal value function
technique is to divide data into two pieces, training and teB™ is unique and it satisfies a system of non-linear equations:
data, and the policy optimized given training data is evigda . Nerer
on the user model estimated from test data. However, thid (5) = ?QXR(S’“) T Z T(s,a,s)V*(s') Vs €S,
method is still limited when an insufficient amount of data is s'€S
available. which is called theBellman equation

This paper is about building the user model and evaluatingOne of the fundamental limitations of MDPs is the as-
its effect on dialogue strategies in POMDPs. We build the useumption of complete observability: it inherently assurthest
models from real data and use a symbolic version of HSVhere is no error in observing the state. POMDPs [18] make
for solving POMDPs [14]. We then compare the generalizatidhe model more expressive by allowing partial or uncertain
capabilities of the MDP and the POMDP dialogue strategiebservations. APOMDP is defined & A, Z, T, O, R, , by):
across different user models, extending the results in.[13, A, T, R, and~ are defined the same as in MDPs. The
To assess the robustness of learned strategies under mésties are now hidden in the sense that the agent makes
uncertainty, we propose an evaluation method based on thservations from the se¥ instead.O is the observation
bias-variance analysis of value functions [15]-[17] andveh function whereO(s, a, z) denotes the probability’(z|s, a) of
that this method can evaluate the dialogue strategies inra maaking observation: when executing actio and arriving
reliable way than previous evaluation methodsg( cross- in states. Since the state is hidden, the information available
model evaluation and corpus-based correlation evaluption to determine the action consists of the history of past astio
the sense that good strategies consistently outperform pead observations. However, since action-observatiomigst
strategies across different user models. grow with time, it is common to summarize histories with

This paper is organized as follows. Section Il briefly revsewa fixed-length sufficient statistic of the state, which islexhl
the MDP and POMDP models for spoken dialogue systeniBe belief stateb ¢ A(S) where A(S) is the belief space
Section 1l describes some of the standard approaches fepresentingS|-dimensional probability simplex(s) denotes
modeling user behavior in the dialogue management litezatuthe probability that the agent is at stateThe belief staté
In Section 1V, we explain the existing evaluation methods f&an be updated to the successor beliegiven an actionu
dialogue strategies, as well as our proposed method basedadd an observation according to Bayes theorem, which we
the bias-variance analysis. Section V describes our exygeri  denoted’ = 7(b, a, z) such that:
Eﬁ:sszt;l;grénd evaluation results. Finally, Section VIdodes V(') = kO(s', 0, ') ZST(Sv 0, 5')b(s) D

se

wherek is a normalizing constant.

II. MDPs AND POMDPs FORDIALOGUES . o . .
_ _ _ L The policy 7 specifies an actiom(b) to execute given any
This section reviews the definition of MDPs and POMDPgrrent beliefb. Similarly to MDPs, the value functioi™ :

and explains how spoken dialogue systems can be cast 88 &) — R can be defined as:
POMDP.

V() =E | > 'R(bs,ar)|bo = b, .

A. Review of MDPs and POMDPs t=0

An MDP is defined agS, A, T, R, ~): S is the set of states; The optimal value function also satisfies the following Beh
A is the set of actions? is the transition function where equations:
T(s,a,s’) denotes the probability’(s’|s,a) of changing to . .
st((':\tes’ fr)om states by executing a(cti|om; R is the reward V7 (b) = max R(b,a) + 7 > Plb,a)V* (7(b,a,2))
function where R(s,a) denotes the immediate reward of €7
executing actior: in states; v € [0, 1) is the discount factor where R(b,a) = 3 _sb(s)R(s,a) and P(z|b,a) =
where rewards at timesteps in the future are discounted by . O(s',a,2) > T(s,a,s")b(s).
~+t. A stationarypolicy 7 : S — A specifies an actioa = 7(s)
to take in each state. The value of states under policyr g MDPs and POMDPs for Spoken Dialogue Systems

is defined as the sum of expected discounted rewards ove : .
an infinite horizon starting in state and executing actions MDPS anq POMDPs for spoken dialogue syste_ms typically
according tor: model the dialogue states &and the system actions ak

' The dialogue state keeps track of various attributes of the

. >, dialogue, which can be naturally represented in a factored
V™(s) =E | Y ' R(st,ar)|s0 = s, form: a state space described by a set of state variablesogach
t=0 which represents specific aspect of the dialogue, as inriatto

wheres; anda; denote the state and action at timestephe MDPs and POMDPs [19], [20]. The standard approach is to
mappingV’™ : S — R is called thevalue functioraccording to factor states into three componentss,,, a.,, sq) wheres,, is

m. The goal of MDP algorithms is to compute a policy that the user goalg, is the current user response, angdis the
maximizes the value in each state., V™ (s) > V7 (s), for dialogue progress [3]: The user goa) represents what the
all s and=. Such a maximizing policy and its value functioruser is trying to accomplish through the dialogue, and the
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important belief states. If a traversal has ended, valu&lys:
/’<R> ; ___— for belief states in the traversal are performed in the reser
E order. HSVI utilizes the forward exploration heuristic éaing
Su : Su the belief state with a large difference between the lowet an
upper bound of the value function.
Sd — . Sd There are also a number of algorithms for factored MDPs
g< and POMDPs. These algorithms utilize factored state space
; @ a representation to make computations in the algorithm fdwste
representing all the vectors and matrices used in the dfgosi
as the algebraic decision diagram (ADD) [23]. In our work, we

used SPUDD [24] for factored MDPs and Symbolic HSVI [14]
for factored POMDPs.

timestep ¢ ' timestep ¢ 41
Ill. USERMODELS FORMDPs AND POMDPs

In this section, we review some of the standard probalilisti
approaches for modeling user behavice,, P(al,|s), sq4,a),

Fig. 2. A factored POMDP for spoken dialogue systems.

dialogue progress,; generally captures what the user has saf& the sefc%nd mt:_ltiplicative te;mlof_ (21%'. del
and the information which the machine has received from th One of the earliest user models is tgram model [25],

user. Based on the users goal and the system action, the 'Fh is a simple.stochastic modgl for pred[cting the user
takes response,. Note thata, represents the users true rel€sponse to the given system action. The Bigram model is

sponse, which generates noisy recognition resuita,, when specified as t_he probability’(a’,|a) for every possible pair
using POMDPs. By making some conditional independenBIeSyStem actioru and user response,. The Bigram model

assumptions, the transition and the observation proliaiili zas the _a(jjvantage of l;eln_g r;tawef: _E)urely probab|I||st|cI atjn |
in POMDP models for dialogues can be formulated as: omain indepen ent, u.t It often falls to accurately mode
realistic user behavior. Since the sampled user responge ma

P(s'|s,a) = P(s)|su,a)P(a,,|s,, s4,a) (2) only be consistent with the previous system action, the user
behavior may not make sense in the context of the whole
dialogue. This model can be generalized toragram model
to use the wider context of the dialogue [26], [27]. Thgram

P(S:i|8'/u,7 a'/u,v Sd, a)

P(z|s,a) = P(ay|ay).

These probability models can be described compactly usiftpdel is specified a8 (ay, i1, a;—2, - -, at—n+1). However,
a graphical model [21]j.e., a factored POMDP model for 7 cannot be arbitrarily high due to data sparsity problems. If
spoken dialogue systems as shown in Fig. 2. no n-grams match the current history, the model can back-off

Factored representation of the state space can be usedoia sSmallem. This model is called th&rigram model when
various spoken dialogue systems. We focus on slot-fillirig= 3.
dialogues, in which there is a set of slots and the machineMore “sophisticated” user models have been proposed
has to collect values from the user for filling in the slotsSeeking a more accurate account of the real user behavior.
In slot-filling dialogues, the user goal is represented as tdhe Levin model [28] is a modification to the pure Bigram
set of values for each slot, which the user has in mind. THeedel, which reduces the number of model parameters by
user response specifies the user’s reaction to the systésn,acfimiting to admittable user responses. For instance, fereth
such as mentioning a value for a particular slot, respondifi@vel information system (ATIS) task in [28], three types o
to a yes/no question, hanging up or starting the dialogum freSystem actions are assumegteeting constraining question
scratch, and so on. The dialogue progress records a dialogé relaxation prompt The constraining questions are the set
history including the status of each slot, such as the grimgnd of actions each requesting a value for a particular slot from

status, the values of slots, or how confident the system igtab#1€ user, and the relaxation prompt is the action requestiag
the values. user to relax a particular constraint that was specifiederarl

The user response for greeting is parameterizedPgy),
, n=20,1,2,..., the probability of providing values fot slots
C. Algorithms for Factored MDPs and POMDPs in the same response, aftdk), the probability distribution on
Compared to MDPs, solving POMDPs exactly is known teach slotc. The user response of the constraining questions is
be notoriously hard: it has been shown that finding an optimsimilarly parameterized by’ (n|k) and P(k’|k) whereP (k'|k)
policy over the entire belief space for a POMDP is PSPACEpecifies the probability of the user specifying a value for
complete [22]. However, a number of approximate POMDSlot £’ when asked for the value of sldt, and n is the
algorithms, including point-based algorithms, have made snumber of additional unsolicited slots in the same response
nificant progress in recent years. A family of point-baseldea The user is only allowed to either accept or reject the predos
iteration algorithms achieves speed up in solving POMDRslaxation of slotk, hence the user response is parameterized
by performing value backups at reachable belief stateerathy P(yedk) = 1 — P(nolk).
than over the entire belief space. For example, HSVI [5], [6] The Bigram and the Levin model both suffer from the
finds traversals through belief space by recursively expipr lack of goal consistency in user behavior. To overcome this
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problem, thePietquin model [29] extends the Levin model strategies. In this section, we review the above evaluation
by conditioning the probabilities in the Levin model on théechniques, discuss the their shortcomings, and present@a m
user goals,, i.e., P(al,|s},,a). The user goal is represented aseliable way of evaluating dialogue strategies adopting th
a table of slot-value pairs. recent work on bias-variance analysis of MDP and POMDP
The Hidden Markov Model (HMM) [30] is a model for policies [15]-[17].
simulating both system actions and user behaviors. Hence,
the model consists of the system model for predicting systetn Cross-model Evaluation
actions and the user model for predicting user responseseTh |deally, we would like to evaluate the dialogue strategies
are many ways to define the system model, and the simplpgtinteracting with real users. When it is not possible, the
approach is to use the classical definition of HMMs. In thigvailability of several user models allows us the cross-ehod
case, the system modeis defined by the transition proba-evaluation [13], which involves testing the learned stygte
bilities P(s)[sq¢) and the observation probabilitieB(a|sq). across different user models. We prepare the dialogue sim-
However, since it is desirable to take the user response inf@tors corresponding to each user model, and compare the
account when predicting the system action, the system modelturns by simulating the strategies. It is essential to ttes
using the Input Hidden Markov Model (IHMM) and the Inputstrategies on different user models, since testing on theesa
Output Hidden Markov Models (IOHMM) are proposed asiser model may show good performance results even when the
variants. The IHMM system model modifies the state transitiaiser model is significantly different from real user behasio
probabilities in HMM to beP(s;|s4, a,), and the IOHMM Hence, we can expect that the dialogue strategy which gen-
system model further modifies the observation probalsliite eralizes well across different user models will perform iwel
IHMM to be P(a|sq,a.). The user model is defined as thevhen tested with a real user.
probability P(al,|sq, a). In order to simulate speech recognition errors, we con-
If a dialogue has multiple goals, it can be divided intgtruct each simulator using the corresponding POMDP model.
multiple segments, each of which has a particular goal. Hence, the recognized user response is generated from the
capture this, the HMM user model can be extended to a twsimulator, but each strategy monitors the dialogue stategus
level model where the HMMs for each dialogue goal args own user model. We make POMDP strategies monitor
connected by goal transition probabilities. the dialogue state using the belief update from (1), but we
All of the above user models are designed for predicting theake the MDP strategies simply take the recognized user
true user response, and can be estimated from the dialogesponse as the true user response, since the policies in MDP
corpus. If we model the dialogue problem as an MDP, wgre inherently memoryless and reactive.
treat the recognized (and possibly incorrect) user respons One of the issues in using this evaluation method is that a
as the true user resporis@nd use these user models in theialogue strategy obtained from a naive user model may appea
transition probabilities. Note that the reinforcementrigéiag to perform very well when evaluated on the same user model
approach in [13] is equivalent to solving MDPs via stoclast{e.g, Bigram strategy evaluated on Bigram simulator), but may
optimization, where the recognized user response is sampihow poor performance when tested on a different user model
from the user model. If we model the dialogue problem gg.g, Bigram strategy evaluated on Levin simulator).
a POMDP, we use a dialogue corpus annotated with true
user response, and additionally estimate the uncertamty B. Corpus-based Correlation Evaluation

speech recognition results for observation probabilitt®sr  Since the cross-model evaluation instead uses simulators

detailed methodologies for obtaining the models are desdri assuming specific user models, it inevitably introducesas.bi

in Section V-C. The corpus-based correlation evaluation [13] is an attexmpt
mitigate the bias by evaluating the learned dialogue gjyate

IV. EVALUATION METHODS FORDIALOGUE STRATEGIES  directly on the real dialogue data.

It is generally non-trivial to evaluate dialogue stratagie YVe first calculate the similarity scoré(r,, =) based on
obtained from MDPs and POMDPs. The main challenﬁws'm"ar the strategy, followed in the dialogué! is to the
comes from the fact that when the computed strategy devialg@med strategy™. We then measure the correlation between

from the dialogue flow in the corpus, there is no intuitive Waz(”dv_”*) and the discounted return of the dialogLi&rhe idea
of predicting how the dialogue will continue. In [31], we dse Nere is that the correlation coefficient is expected to reflee

the cross-model and the corpus-based correlation evahuatfiuality of the learned strategy because we can expect that th

techniques [13] to evaluate the MDP and POMDP dia|ogl§érategy will show high similarity to the dialogues with hig
returns, and low similarity to those with low returns. Hence

2The original definition of the HMM dialogue simulation modetes an the dialogue strategy with the largest correlation coedfitis
abstract dialogue state for capturing the progress of tagiie, for which  most preferable.
we usesy since it plays an equivalent role. . ]

3MDPs can be constructed to account for the dialogue stateriaimties in Let a g@llogue b_e _a ;equence of state-action palirs; .
various ways: if the confidence score from the speech rezegis available, {(s¢,a:)};—o - The similarity score between the learned policy
we can include it into the state space; we can also includeest list of 7* and the policyn'd of dia|ogued can be defined as:
recognition results into the state space [3]. In fact, tegoally speaking, we
can include the complete history of actions and observatioto the state 1 T-1
space of an MDP to be as expressive as a POMDP, but such aeneattésn O(ma, 7)) = = Z O (8¢, at)
will be no longer manageable. T =0
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Dirichlet

wheref.« (s, a) is an action similarity measure reflecting how :
prior

well the selected system actienin the data agrees with*
and7*(s).* An action similarity could be defined in various

l dialogue data

ways. We use three definitions proposed in [13]: Di”tCh'_et
. . i posterior
1) the reciprocal rank of according to the ordering of Q- /N
values in the policyr for the states in which a was
executed sampled sampled sampled
model 1 model 2 model n
Ox(s,a) = L ; — O~
1+ |{a' € A|Q™(s,a') > Q™(s,a),a’ # a}| sample | | sample sample | | sample
trajectory trajectory trajectory trajectory

2) the softmax of Q-valués

exp(Q7(s,a))
Daeaexp(Q (s, )’
3) the ratio of the number ofsystem speech actipslot)

pairs present in both anda, = (s) to pairs present
in eithera or a,

average return
L
bias

average return
|

0.(s,a) =

variance

average return
]

estimated
model

~ Har € a} n{ar € ar}|

Har € a} U{ar € ar}|’
We abbreviate the above metrics as RR, SQ, and RSA respec-
tively. amount of data. Hence, we need to take this uncertainty
The correlation coefficient, however, is not a perfect meéato account when we evaluate dialogue strategies using use
sure because it only indicates the strength of a linearioglat model simulators. In this section, we propose a model-based
ship between the similarity score and the return. In [31], weimulated evaluation scheme which stems from the recent
proposed regressing a linear function on the similaritysm@ work on bias-variance analysis of value functions in MDPs
data and compute the area under the linear function to eealuand POMDPs [15]-[17].
the dialogue strategies in the hope that it will better reftbe Given a dialogue strategy, our evaluation method works as
quality of dialogue strategies. follows. First, we assume Dirichlet prior on the probalekt
In hindsight, these evaluation methods appear to be usedund update Dirichlet prior to Dirichlet posterior using a
only in limited settings. First, it is well known that theredialogue corpus. Second, we sample multiple user models
can be multiple optimal policies for an MDP or a POMDPaccording to the Dirichlet posterior on the probabiliti#aese
Hence, the optimal dialogue strategy computed from the inodamples correspond to the test user models where the pa-
can be radically different from the successful dialogues wameter values are perturbed. The perturbation represeats
the corpus. Second, although there is a general tendewayiation in the parameter values due to the limited amount
that learned strategies show low similarity to unsuccéssfof data available for estimating the user model. Third, we
dialogues and high similarity to successful dialogueslitiear construct simulators using each sampled user model, and run
relationship assumption between the similarity and therret multiple trials on each simulator to obtain average retuvkis
seems to be problematic. Depending on the similarity metriompute the average and the variance of the average returns.
we use, the relationship may become nonlinear, making tfiais evaluation process is illustrated in Fig. 3.
correlation coefficient not very useful for diﬁerenti@i@OOd This method can be seen as a Bayesian approach to com-
user strategies from poor ones. Hence, a careful choiceeof §uting the bias and variance of a value function using Monte-
similarity metric is required for reliable results. Carlo simulation. Fig. 4 shows the bias and variance of aevalu
function. A strategy is optimized for the estimated parasreet
of the user model, achieving the estimated valiieLet V/
be the random variable denoting the true value of the styateg

As pointed out in the cross-model evaluation method, the the (unknown) true user madel, and thus the uncertaint
average return obtained from the simulation of the same udlr ' y

. . . - In the model parameters introduces the bias and variance in
model used for computing the strategy is often misleadin . . -
The same can be said about the value function obtained fr mThe bias denotes the difference betwéémndE[V], the

Fig. 3. Computing bias and variance using user model sioualat

0(s,a)

C. Bias-Variance Evaluation

the MDP and POMDP algorithms. This is because the cro
model evaluation does not consider the uncertainty intier
in the estimated model especially when learned from a fini

4States in the definitions of action similarity is replaced by belgteb in
the case of POMDP policies. One step look-ahead is perfotmediculate
Q-values given the learned POMDP policy.

5In [13], this similarity metric was defined as the ratio of tQevalue to
the sum of all Q-values. We use a softmax of Q-values becaugees more
reliable scores.

gxpectation ofV” over parameters of the user model. Since

zﬁe strategy is optimized for the estimated user model, the

y%luev can significantly decrease from if there is some

amount of perturbation in the true model. HenEgy'] can be
regarded as an indicator of how well the strategy will perfor
on “average” over the parameter values of the user model.
The variances?(V) of true valueV also originates from the
model uncertainty, representing the amount of variatioth&
performance of the strategy with respect to the uncertainty
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B. State Space, Action Space, and Reward Function

The factored state spac€s,,a,,sqs) of the MDP
and POMDP for our dialogue management problem is
specified as follows: The dialogue progress variable
represents that a particular slot isnknown, known, or
confirmed, resulting in a total number of3* = 81
possible combinations. Similarly, the current user resgon

bias variable a,, is determined by the user response for each
]E[V] A value slot: a, = ) <au,orig_city7 Gy, destcity y Qu,depart datey au,deparltime>-

We have eight types of user responses for each slot:
Fig. 4. Bias and variance of a value function. provide_i nfo, reprovide_info, correct_info,
reject_info, yes_answer, no_answer, question, and

nul I (no mention of any slot value in the response). The

in the true model parameters. We can approxinigfié] and user goal variable,,, which is only used in the Pietquin user

o%(V) by the sample average and variance of the averagwdel, will be explained in the next subsection. Note that

returns calculated from the above Monte-Carlo simulation. we ignored slot values, and thus they are not tracked in the

The analytical formula for computing the bias and varianadialogue state. However, the POMDP still tracks multiple
of value functions in MDPs and POMDPs can be found in [15lialogue progress states for each slot, as well as usernsspo
and [16] respectively. However, we cannot directly use tHgpes and user goals.
formula since the dialogue management model has a large statThe action space is determined by the combination of
space. Using ADDs for the formula was also computationaltjie system actions for each slotul |, request _i nfo,
infeasible in our experiments, but the Monte-Carlo estiamat i nplicit_confirm andexplicit_confirm resulting in
yielded reliable results. The idea of evaluating the diag a total of4* system actions. We addéengup to the action
strategies by Monte-Carlo simulation has appeared in [&7] fset for finishing the dialogue. Ideally, we would like to udle a
the task of selecting the best features to be included in tigstem actions, but most of them are unlikely to be used in
model, although no explicit connection was made to the bigsracticee.g, i npl i ci t _confi r mfor all the slots at the same
variance analysis of value functions and developed onlfén ttime. It was also difficult to include all possible systemiaics

variance \ o%(V)

context of MDP-based systems. because of the large memory requirement of the POMDP
algorithm. We thus used 32 system actions which appeared
V. EXPERIMENTS at least once in the corpus. We treatedjuest _i nf o for all

In this section, we present experimental results of diaﬂaogn?lotS asgreeting sy.sten? action. )
d he reward function is selected as follows. First, every

strategy evaluation methods. We describe the corpus use

in experiments and the details of the model implementati(:JWer"’:jq'?n Incurs a neg(;ja'uve rewafrdletli mfﬁ_rdertcr)] pen_allze
before showing the results. ong dialogues. Second, successful slot-filling (chanding

unknown to known regardless of slot values) or confirmation
(changing fromknown to conf i r med) for each slot is awarded
A. Dataset by +25, but this reward is given only at the end of the

The DARPA GMMUNICATOR 2000 corpus [32]-[34] used dialogue,i.e, when the system executéangup action, in
in our experiments contains 648 real human-computer digrder not to provide any clue on how to complete the task
logues recorded using different dialogue managers from tdgring the dialogue. Third, we assign relatively large ggna
travel booking domain. We selected the first 300 dialogues @i —10 for executing inappropriate actions in certain states:
the corpus for manually tagging the true user response wigkecutingr equest _i nf o on a known or confirmed slot, and
semantic information such as the type of the user respor@¢ecuting npl i cit _confirmorexplicit_confirmonan
and its corresponding slot. Hence, the tags allow us to vigsmknown or confirmed slot. Without this penalty, the dialegu
the dialogues as sequences of “intentions”. In order to desfategy can show too much repetitive information request
with the data sparsity problem in estimating user models, va@d confirm actions, which is undesirable. Fourth, we assign
ignored the slot values. very large penalty of-100 for not executing the mandatory

We also constrained ourselves to the task of completiggeeting action in the first turn, or executing it in other
the first leg flight reservations. As a result, the dialoguéan the first turn. This enforces that eeti ng is the only
manager has to fill out four sloteri g city, dest _city, action which should be executed only once in the first turn.
depart_date anddepart _ti me, which means the starting The discount factor ofy = 0.95 was used for all experiments.
location, the destination city, the departure date, and th®te that our reward function closely resembles the one used
departure time, respectively. in [13].

Note that our preparation of the dataset from the corpusWhen we actually measure the performance of dialogue
follows almost the same procedure used in [13]. The on$ifrategies, the return of the dialogue is determined by dinees
difference is that we used a subset of the corpus, and taggeward function as above, using the true dialogue progtess s
the dialogues manually. in the simulator (cross-model and bias-variance evaloato
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in the annotated corpus (corpus-based correlation evai)at
Table | shows how the rewards are measured using a dialogue
example.

C. User Model Implementation

There are 8 possible user responses for each slot, and hence L ore ity | Zdeparidate | Zdeparisime
the number of the combined user responsetis- 4096. To Fig- 5. Graphical model of the observation probability.
deal with the data sparsity problem when building the Bigram
model, we made the naive Bayes assumptian, the user
response for each slot is conditionally independent of rsth

»f related (frequently confused) slots: the observation fo

given the system actior(a’,|a) = [], P(d/, ,|a) wherek is orig_ci ty or deSF—Ci ty is onlyl dependent on the user
the index of a slot. We also built the Trigram model using thgSPONsesiorig_city anddest _city, and the observation
same assumption. We did not considegrams withn > 4 [Of depart_date ordepart_tine is only dependent on the
because of the data sparsity problem and computationakhurd!SE" réSPonses idepart _dat e anddepart _tine. This is
of the POMDP algorithm. reasonable because, for example, the observation valaes th
We made the same conditional independence assumptfh9-city anddest_city are the same, and these two
for the Levin model. Furthermore, we assumed that the usapts are often confused with each other. Fig. 5 shows the
response for a slot depends only on the system action asdaphical model representation of the observation praibabi

ciated with the slot. The admittable user responses for eabiiS model is used in all of the three user models.
system action for the slot were: (il | andpr ovi de_i nf o When constructing the user models for MDPs, there are two

possible approaches. The first approach would be taking the
correct info,andreject infoforinplicit _confirn output from the automated speech recognizer while ignoring
(3) yes ;nswe; andno answer for expl i ci t confirm the true user response, and directly estimating the tiansit

Therefore, the Levin model is specified @&(a/|a) = probabilities P(a;,|a) by counting frequencies. We found that

[1, P(d, .|ax) whereay is a system action for slat. The this approach suffers from data sparsity, especially in our

probabilities of the prohibited user responses are zero. ~ €XPerimental setting where we simulate speech recognition
The original Pietquin model conditions the model param&ors using the observation model from POMDP. We thus

ters on the user goal. The user goal is represented as a fabl@qpPted the second approach, where we used the automated

slot-value pairs, but our dialogues ignore the actual shies. SPeech recognition output as well as the manually tagged tru

As a result, we circumvented the issue by having boole&ff€" response. This approach estimates the transitioraprob

values representing whether the information regardingstoe  Pilities P(a;[a) and the observation probabilitieB(a;,|a;,)

has been provided during each turn, instead of the full sidt$ We do for POMDPs, then obtain the MDP user model by

value table. Hence, the number of possible user goals w#&'ginalizing out the true user responsg i.e, P(a;|a) =

24 = 16. Although this is not exactly same as the “gana;b P(ay,|ay,) P(ay|a).

consistency” in the original Pietquin model, this workamdu

was also used in [35]. D. Solving MDPs and POMDPs

In implementing the HMM model, we used a simple one- \yhen ghtaining MDP strategies, we modeled the dialogue
level model in contrast to the original two-level model. gh'management as a factored MDP, and used SPUDD [24]. We
is because we only deal with the first leg flight reservation, the algorithm until the Bellman error was lower than 0.02
in the experiments, and it is regarded as a single dialogygen obtaining POMDP strategies, we modeled the problem
goal [30]. The original HMM model generates both systes 5ctored POMDP, and used Symbolic HSVI [14]. We ran

actions and user responses. Because we only need to SImygle, | orithm for 25 recursive backups at the initial besite.
user’s behavior, the user model in the original HMM model is

only used. We decided to use the dialogue progress states as )

dialogue states for the HMMs, hence, the HMM model is speE: Cross-model Evaluation Result

ified as P(ay|sd, a) = [], P(a, x|sak, ax). The assumption  In the cross-model evaluation, we tested the learned girate

of admissible user responses used in the Levin and Pietgatross different user models. Fig. 6 shows the cross-model

model is also used in the HMM model. evaluation result reporting the average returns with 95%
While obtaining the observation probabilities which repreconfidence intervals over 1000 runs terminatinghahgup

sent the uncertain results from the automated speech recogafter the maximum of 70 turns. The results of the MDP

nizer, we also had to deal with the data sparsity problemialogue strategies are consistent with the results poslyo

The observationz is only dependent on the true user rereported in [13]: a strategy computed from a naive user model

sponse, hencé(s,a,z) = P(z|a,). However the numbers may appear to perform well when evaluated on the same user

of possible observations and user responses are 4096 eauwtdlel, but shows poor performance when tested on a different

and the table representation of the observation probigsilituser model. The performances of the Bigram and Trigram

would require4096 x 4096 parameters. Hence, we made thetrategies degraded drastically when tested on differeet u

naive Bayes assumption that the observation for a partianodels, whereas the strategies obtained from the sopdtistic

lar slot is only dependent on the user response in the seser models, such as the Levin, Pietquin and HMM strategies,

for null or request_info; (2) null, reprovide_info,
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TABLE |
AN EXAMPLE DIALOGUE WITH PARTIALLY FILLED SLOTS.

System utteranceM) /
User utterancely) /
ASR result Q)

System actiond) /
True user response{,) /
Recognized user responsg,|

Reward ¢) /
True dialogue progress state,j /
Most likely state for each slot and its probability from POR (34)

M1: Hello. a = greet r=-—1
ul: | want to depart from Indianapolis. a., = (proi,null,null,null) s4 = (k,u,u,u)
O1l: [From Indianapolis] Gy = (proi,null,null,null) §5=(k:0.998,u :0.988,u: 0.894,u : 0.968)
M2:  Traveling from Indianapolis, a = (inpc,reqi,null,null) r=-—1
Where would you like to go?
u2: Portland. ay = (null,proi,null,null) sq=(c,k,u,u)
02: [Atlanta] Gy = (null,proi,null,null) 83 =(c:0.985k :0.996,u : 0.881,u : 0.960)
M3: Traveling to Atlanta, a = (null,inpc,reqi,null) r=-—1
departing on what date?
us: No. ay = (null,reji,null,null) sq=(c,u,u,u)
03 [ Gy = (null,null,null,null) 83 =(c:0.978,k :0.871,u : 0.790,u : 0.951)
M4:  Traveling to Atlanta, a = (null,inpc,reqi,null) r = —11 (—1 plus —10 for i npl i ci t _confirmon unknown slot)
departing on what date?
U4:  Correction. ay = (null,reji,null,null) sq=(c,u,u,u)
04: [ Gy = (null,null,null,null) 83 = (c:0.971,k : 0.764,u : 0.709,u : 0.943)
M5:  Going to Atlanta, a = (null,inpc,reqi,null) r = —11 (—1 plus —10 for i npl i ci t _confirmon unknown slot)
departing on what date?
U5: | am not going to Atlanta. ay = (null,reji,null,null) sq=(c,u,u,u)
05 [ Gy = (null,null,null,null) 83 =(c:0.964,u:0.672,u: 0.636,u : 0.934)
M6:  Where would you like to go? a= (null,reqi,null,null) r=-—1
U6:  [User hangs up] - sq = (c,u,u,u)
06:  [User hangs up] - 84 =1(c:0.964,u :0.672,u : 0.636,u : 0.934)
M7:  hangup. a = hangup r = 50 (only one slot isc in sg).

The shorthand notations used above are as follows: The$tat@rigin_city: Sd,destcity: Sd,departdate Sd,departtime) &ré represented using= unknown, k =
known, andc = confi rmed. The true user responsef origin_city, Gu,destcity: Gu,departdate Gu,departtime) and the recognized user respondeg érigin_city
Gy, destcity, Gu,departdate Gu,departtime) are represented using oi = provi de_i nfo andreji =reject_i nfo. The system actionagrigin_city, adestcity:
Gdepartdate Gdeparttime IS represented usingegi = request _i nfo andinpc =inplicit_confirm Note that recognition errors i®3, O4, and 05
decrease the probability dfnown for dest _city, making POMDP strategies eventually reask for the infoiomatMDP strategies, in contrast, will
never do so as they do not maintain such probability.

still perform reasonably well on different user models (The. Corpus-based Correlation Evaluation Result
performance degradation was relatively small comparetieo t

Bigram and Trigram strategies). The results of the POMDP 1ap16 || shows the evaluation results on 300 dialogues in

the COMMUNICATOR corpus. For each dialogue similarity
metric and each learned strategy, we show the average dlog

dialogue strategies are also generally consistent wittpthe
vious results in [31], [36]: the POMDP strategies signifitan

outperform the MDP strat_egies when tested on the same u_§ﬁ1i|arity and the correlation coefficient. Note that theege
model, and also generalizes better than the MDP strategigs,ijarity does not stand for the quality of the learnedts.

when evaluated on different user models.
We also make an interesting observation about the resu,bl}

from the Trigram simulator. Although the Levin, Pietquindan

The best correlation result is highlighted in bold face facle
thilarity metric.

HMM strategies are regarded as good strategies, all of them! N€ results did not exactly follow those reported in [13].
show severe performance degradation. This phenomenon ¢&§ overall correlation coefficients were much higher. We
be explained by the fact that Trigram model is the only mod&pniecture that this is because our reward function is 8ligh
that looks at past system actions more than one turn. Hengiférent. It was also hard to find any significant consisgenc
the user responses generated from the Trigram simulator nff0SS different similarity metrics. This indicates thatpus-
appear to be non-stationary for all the strategies other tha Pased evaluation results depend heavily on how the action
Trigram strategy. This is because the strategies look drtlyea Similarity metric is defined.

past one system action to predict the user response, whereahe POMDP strategies obtained from the Levin, Pietquin,
the simulator looks at the past two system actions to samplled HMM models showed higher correlation than other strate-
the user response. This non-stationarity makes the steategies when the SQ metric is used. Moreover, the SQ metric
suffer more than in other user model simulators. We alsgas the only metric that yielded consistently higher catieh
note that MDP strategies occasionally outperform POMDier POMDP strategies compared to MDP strategies within the
strategies in Trigram simulator. This is because in a nosame user model assumption. This seems to indicate that the
stationary environment, it is sometimes more advantagemuganetric needs to be some direct function@fvalues in order
just take the most recent experience (MDP) rather than usitigycapture the linear relationship between dialogue shitids

all the past experiences (POMDP). and dialogue returns.
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Fig. 6. Cross-model evaluation result. Each graph showsatkeage returns of the MDP and POMDP dialogue strategiesinatat from each user model.

The performance on each user model simulator is shown at &esh The error bars indicate 95% confidence intervals. &t the scale changes in the
Trigram strategy graph.

TABLE I
CORPUSBASED CORRELATION EVALUATION RESULTS
RR SQ RSA
Dialogue strategy  Similarity score  Correlation Similargcore  Correlation Similarity score  Correlation
MDP Bigram 0.289 0.647 0.169 0.599 0.243 0.574
MDP Trigram 0.345 0.614 0.213 0.583 0.321 0.607
MDP Levin 0.320 0.650 0.202 0.630 0.271 0.593
MDP Pietquin 0.359 0.598 0.193 0.628 0.353 0.591
MDP HMM 0.362 0.637 0.207 0.645 0.355 0.622
POMDP Bigram 0.270 0.651 0.174 0.600 0.224 0.577
POMDP Trigram 0.285 0.627 0.176 0.617 0.198 0.543
POMDP Levin 0.369 0.628 0.244 0.658 0.234 0.607
POMDP Pietquin 0.351 0.628 0.231 0.653 0.257 0.608
POMDP HMM 0.366 0.617 0.238 0.652 0.235 0.608

G. Bias-Variance Evaluation Result responses were enforced to have zero probabilities, but the

Adopting the Monte-Carlo approximation technigue in Seggsult was not significantly different. For each sampled eled _
tion IV-C, we sampled 30 models for each user model sinf® galculated the averf_;lge_of 1000 samples of returns by sim-
ulator. We used the Dirichlet prior of which the parametellélat'ng the model, terminating each runtaingup or after the

are all set to 1 and sampled the POMDP models from ghaaximum of 70 tgrns. Hence, we gathered 30 average returns,
updated Dirichlet posterior. Model sampling for the Bigran‘?f"‘ch correspondmg tp the sampled user model. Fig. 7 shows
and Trigram model can be done in a straightforward Wag;as—vanance evaluation results reporting the averagemns

For the Levin, Pietquin and HMM models that prohibit in: ith 95% confidence intervals. The confidence intervals were
appropriate user responses, we also set Dirichlet parameféalcmated from the 30 average returns.

for the prohibited user responses to 1, allowing the prabibi  First, note that each strategy yields similar graph shape
user responses to have non-zero probabilities. We alsaiexpacross the simulators. There was no significant tendency of
mented with the sampled models in which the prohibited uskigh average returns when evaluated on the same user model
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Fig. 7. Bias-variance evaluation result. Note that the allgrerformance is degraded compared to cross-model di@iugesults due to the bias. The error
bars indicate 95% confidence intervals for the expectedmatuer the model parameter values.

simulator. This is because if the strategy is overfit to a gjgec Levin strategy typically ignore those events, and thus eehi
user model, the perturbation incurred by model sampling wibetter performance under parameter perturbation.

result in a large bias. This is particularly true for poorldgue

strategies such as Bigram and Trigram strategies evaluated VI. CONCLUSION

the same user model simulator. Hence, whatever simulator weThis paper experimentally investigates the effect of user
use, good dialogue strategies will yield high average returmodeling on POMDP-based dialogue systems. Building on the
and poor ones will yield low average returns. This consisteprevious results on MDP-based dialogue systems, we extende
property is highly desirable, which could not be found in théhe experiments to the POMDP case, and showed that good
cross-model evaluation method. user model is essential for computing good dialogue stiegeg

Second, observe that the difference in performance betwegor findings in POMDP dialogue strategies are consistent
the POMDP and MDP strategies was more distinctive thavith those in MDPs. We also showed that POMDP strategies
in the cross-model evaluation. This indicates the POMDdignificantly outperform MDP strategies, whether the user
strategies are more robust to the model uncertainty than #h@del used in learning the strategy is identical or différen
MDP strategies, reflecting the advantage of maintaining tig the one used in the evaluation, except when tested on the
distribution over the dialogue states. non-stationary user model simulator.

Third, the POMDP strategies from the Levin, Pietquin, and We also proposed a model-based simulated evaluation
HMM models showed better performance than other strategmsheme, which has connection to the recent work on the bias-
whatever simulator we used. We can make a qualitativariance analysis of value functions in MDPs and POMDPs.
explanation as follows: consider a poor dialogue strategyns The key idea behind this evaluation method is to evaluate the
as the Bigram strategy. This strategy is often opportunisti dialogue strategies under model uncertainty. We expermen
the sense that it tries to exploit every possible user respontally showed that this evaluation method yields more rédiab
For example, the user may provide additional informatioresults.
about some slots even though prompted with an explicit Although the experiments in this paper focused on dialogues
confirmation, and the strategy may be betting on such evavithout slot values, the proposed methodology should be
albeit it is of a small probability. The performance of theextended in the future to deal with dialogues with slot vajue
strategy can thus be sensitive to the myriad of events withaking our method a step closer to evaluating deployed
small probabilities. However, good dialogue strategieshsas spoken dialogue systems. Another potential researchtitirec
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includes the use of other metrics in addition to averagemstu [22] C. H. Papadimitriou and J. N. Tsitsiklis, “The complgxiof Markov
for evaluating dialogue strategies with further analysethe
influence of user models on learned dialogue strategies.
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