
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 1

Robust Performance Evaluation of POMDP-based
Dialogue Systems

Dongho Kim,Student Member, IEEE,Jin H. Kim, and Kee-Eung Kim,Member, IEEE

Abstract—Partially observable Markov decision processes
(POMDPs) have received significant interest in research on
spoken dialogue systems, due to among many benefits its ability
to naturally model the dialogue strategy selection problemunder
unreliable automated speech recognition. However, the POMDP
approaches are essentially model-based, and as a result, the
dialogue strategy computed from POMDP is still subject to
the correctness of the model. In this paper, we extend some of
the previous MDP user models to POMDPs, and evaluate the
effects of user models on the dialogue strategy computed from
POMDPs. We experimentally show that the strategies computed
from POMDPs perform better than those from MDPs, and the
strategies computed from poor user models fail severely when
tested on different user models. This paper further investigates
the evaluation methods for dialogue strategies, and proposes a
method based on the bias-variance analysis for reliably estimating
the dialogue performance.

Index Terms—Decision theory, partially observable Markov
decision process (POMDP), planning under uncertainty, dialogue
management, spoken dialog system (SDS).

I. I NTRODUCTION

SPOKEN dialogue systems interact with the users using
speech in order to help accomplish their intended tasks [1].

Spoken dialogue systems are increasingly ubiquitous for infor-
mation search (e.g., querying for a train schedule) or command
and control (e.g., controlling a car audio). Fig. 1 shows the
three core components used in spoken dialogue systems: the
speech recognition / language understanding component for
interpreting the user’s speech, dialogue management compo-
nent for determining an appropriate system response, and the
response generation / text-to-speech component for converting
the system response to speech [2].

The main focus of this paper is about determining the best
system response in the dialogue management component. The
traditional approach to developing the dialogue management
component is to hand-code the dialogue strategy by a hu-
man expert. However, recent advances in sequential decision
making and reinforcement learning have made it possible to
learn the dialogue strategy from a corpus. While the early
work on this approach has primarily adopted Markov decision

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was supported in part by Korea Science and Engineering
Foundation (KOSEF) Grant R01-2007-000-21090-0 and in partby the In-
dustrial Strategic Technology Development Program (10035348) funded by
the Ministry of Knowledge Economy (MKE, Korea).

D. Kim, J. H. Kim, and K.-E. Kim are with the Department of Computer
Science, Korea Advanced Institute of Science and Technology, 335 Gwahak-
ro, Yuseong-gu, Daejeon, Republic of Korea (e-mail: dkim@ai.kaist.ac.kr,
{jkim, kekim}@cs.kaist.ac.kr).

user

speech recognition &

language understanding

response generation &

text-to-speech

dialogue

management

Fig. 1. A block diagram of spoken dialogue systems.

processes (MDPs) as the model for dialogue management, the
implication of using MDPs is that the current state of the
dialogue is known exactly, and thus they do not easily capture
the uncertainty introduced by errors in speech recognition/
language understanding.

To deal with the limited expressiveness of MDPs, par-
tially observable Markov decision processes (POMDPs) have
gathered interest for modeling spoken dialogue systems over
the recent years [3]. POMDPs extend MDPs by allowing
partial or uncertain observations, and hence, it is well suited
for computing the optimal dialogue strategy under unreliable
automatic speech recognition / natural language processing.
Although the task of solving POMDPs is known to be in-
tractable, recently proposed approximate algorithms suchas
point-based value iteration (PBVI) [4], heuristic search value
iteration (HSVI) [5], [6], and composite-summary PBVI [7]
show great promise for building spoken dialogue systems.

However, we should note that the POMDP approaches
are essentially model-based1: casting the dialogue system as
a POMDP requires a model of user behaviors and speech
recognition errors, which correspond to the transition andthe
observation probabilities in the POMDP model. Hence if the
model is poor,i.e., far from real user behaviors, the dialogue
strategy computed from the corresponding POMDP can be
useless. To model user’s behavior accurately, various user
models have been proposed and evaluated in the dialogue
management literature. For example, the effect of model
quality on dialogue strategies has been extensively studied
in [13], but only in the context of the less expressive MDPs.

Moreover, there is one more fundamental problem: it is
often impossible to obtain a completely accurate estimate of

1There are some recent works on reinforcement learning approaches
to POMDP-based dialogue systems [8], [9]. However, they should be
better understood as real-time dynamic programming (RTDP)for solving
POMDPs [10], rather than reinforcement learning. Since they also require the
model as an input, we expect that they are also susceptible tothe correctness
of the model. Reinforcement learning in partially observable environments is
a hard problem, and it is still being actively studied [11], [12].

2 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

user model parameters due to a finite amount of data. A simple
technique is to divide data into two pieces, training and test
data, and the policy optimized given training data is evaluated
on the user model estimated from test data. However, this
method is still limited when an insufficient amount of data is
available.

This paper is about building the user model and evaluating
its effect on dialogue strategies in POMDPs. We build the user
models from real data and use a symbolic version of HSVI
for solving POMDPs [14]. We then compare the generalization
capabilities of the MDP and the POMDP dialogue strategies
across different user models, extending the results in [13].
To assess the robustness of learned strategies under model
uncertainty, we propose an evaluation method based on the
bias-variance analysis of value functions [15]–[17] and show
that this method can evaluate the dialogue strategies in a more
reliable way than previous evaluation methods (e.g., cross-
model evaluation and corpus-based correlation evaluation) in
the sense that good strategies consistently outperform poor
strategies across different user models.

This paper is organized as follows. Section II briefly reviews
the MDP and POMDP models for spoken dialogue systems.
Section III describes some of the standard approaches for
modeling user behavior in the dialogue management literature.
In Section IV, we explain the existing evaluation methods for
dialogue strategies, as well as our proposed method based on
the bias-variance analysis. Section V describes our experimen-
tal setting and evaluation results. Finally, Section VI concludes
this paper.

II. MDPS AND POMDPS FORDIALOGUES

This section reviews the definition of MDPs and POMDPs
and explains how spoken dialogue systems can be cast as a
POMDP.

A. Review of MDPs and POMDPs

An MDP is defined as〈S, A, T, R, γ〉: S is the set of states;
A is the set of actions;T is the transition function where
T (s, a, s′) denotes the probabilityP (s′|s, a) of changing to
states′ from states by executing actiona; R is the reward
function where R(s, a) denotes the immediate reward of
executing actiona in states; γ ∈ [0, 1) is the discount factor
where rewards att timesteps in the future are discounted by
γt. A stationarypolicyπ : S → A specifies an actiona = π(s)
to take in each states. The value of states under policyπ

is defined as the sum of expected discounted rewards over
an infinite horizon starting in states and executing actions
according toπ:

V π(s) = E

[

∞
∑

t=0

γtR(st, at)|s0 = s, π

]

wherest andat denote the state and action at timestept. The
mappingV π : S → R is called thevalue functionaccording to
π. The goal of MDP algorithms is to compute a policyπ∗ that
maximizes the value in each state,i.e., V π∗

(s) ≥ V π(s), for
all s andπ. Such a maximizing policy and its value function

are said to beoptimal. Note that the optimal value function
V ∗ is unique and it satisfies a system of non-linear equations:

V ∗(s) = max
a∈A

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′) ∀s ∈ S,

which is called theBellman equation.
One of the fundamental limitations of MDPs is the as-

sumption of complete observability: it inherently assumesthat
there is no error in observing the state. POMDPs [18] make
the model more expressive by allowing partial or uncertain
observations. A POMDP is defined as〈S, A, Z, T, O, R, γ, b0〉:
S, A, T , R, and γ are defined the same as in MDPs. The
states are now hidden in the sense that the agent makes
observations from the setZ instead.O is the observation
function whereO(s, a, z) denotes the probabilityP (z|s, a) of
making observationz when executing actiona and arriving
in states. Since the state is hidden, the information available
to determine the action consists of the history of past actions
and observations. However, since action-observation histories
grow with time, it is common to summarize histories with
a fixed-length sufficient statistic of the state, which is called
the belief stateb ∈ ∆(S) where ∆(S) is the belief space
representing|S|-dimensional probability simplex.b(s) denotes
the probability that the agent is at states. The belief stateb
can be updated to the successor beliefb′ given an actiona
and an observationz according to Bayes theorem, which we
denoteb′ = τ(b, a, z) such that:

b′(s′) = kO(s′, a, z′)
∑

s∈S

T (s, a, s′)b(s) (1)

wherek is a normalizing constant.
The policyπ specifies an actionπ(b) to execute given any

current beliefb. Similarly to MDPs, the value functionV π :
∆(S) → R can be defined as:

V π(b) = E

[

∞
∑

t=0

γtR(bt, at)|b0 = b, π

]

.

The optimal value function also satisfies the following Bellman
equations:

V ∗(b) = max
a∈A

R(b, a) + γ
∑

z∈Z

P (z|b, a)V ∗(τ(b, a, z))

where R(b, a) =
∑

s∈S b(s)R(s, a) and P (z|b, a) =
∑

s′ O(s′, a, z)
∑

s T (s, a, s′)b(s).

B. MDPs and POMDPs for Spoken Dialogue Systems

MDPs and POMDPs for spoken dialogue systems typically
model the dialogue states asS and the system actions asA.
The dialogue state keeps track of various attributes of the
dialogue, which can be naturally represented in a factored
form: a state space described by a set of state variables eachof
which represents specific aspect of the dialogue, as in factored
MDPs and POMDPs [19], [20]. The standard approach is to
factor states into three components〈su, au, sd〉 wheresu is
the user goal,au is the current user response, andsd is the
dialogue progress [3]: The user goalsu represents what the
user is trying to accomplish through the dialogue, and the

KIM et al.: ROBUST PERFORMANCE EVALUATION OF POMDP-BASED DIALOGUE SYSTEMS 3

Fig. 2. A factored POMDP for spoken dialogue systems.

dialogue progresssd generally captures what the user has said
and the information which the machine has received from the
user. Based on the users goal and the system action, the user
takes responseau. Note thatau represents the users true re-
sponse, which generates noisy recognition resultz = ãu when
using POMDPs. By making some conditional independence
assumptions, the transition and the observation probabilities
in POMDP models for dialogues can be formulated as:

P (s′|s, a) = P (s′u|su, a)P (a′

u|s
′

u, sd, a) (2)

P (s′d|s
′

u, a′

u, sd, a)

P (z|s, a) = P (ãu|au).

These probability models can be described compactly using
a graphical model [21],i.e., a factored POMDP model for
spoken dialogue systems as shown in Fig. 2.

Factored representation of the state space can be used in
various spoken dialogue systems. We focus on slot-filling
dialogues, in which there is a set of slots and the machine
has to collect values from the user for filling in the slots.
In slot-filling dialogues, the user goal is represented as the
set of values for each slot, which the user has in mind. The
user response specifies the user’s reaction to the system action,
such as mentioning a value for a particular slot, responding
to a yes/no question, hanging up or starting the dialogue from
scratch, and so on. The dialogue progress records a dialogue
history including the status of each slot, such as the grounding
status, the values of slots, or how confident the system is about
the values.

C. Algorithms for Factored MDPs and POMDPs

Compared to MDPs, solving POMDPs exactly is known to
be notoriously hard: it has been shown that finding an optimal
policy over the entire belief space for a POMDP is PSPACE-
complete [22]. However, a number of approximate POMDP
algorithms, including point-based algorithms, have made sig-
nificant progress in recent years. A family of point-based value
iteration algorithms achieves speed up in solving POMDPs
by performing value backups at reachable belief states rather
than over the entire belief space. For example, HSVI [5], [6]
finds traversals through belief space by recursively exploring

important belief states. If a traversal has ended, value backups
for belief states in the traversal are performed in the reversed
order. HSVI utilizes the forward exploration heuristic favoring
the belief state with a large difference between the lower and
upper bound of the value function.

There are also a number of algorithms for factored MDPs
and POMDPs. These algorithms utilize factored state space
representation to make computations in the algorithm faster by
representing all the vectors and matrices used in the algorithms
as the algebraic decision diagram (ADD) [23]. In our work, we
used SPUDD [24] for factored MDPs and Symbolic HSVI [14]
for factored POMDPs.

III. U SERMODELS FORMDPS AND POMDPS

In this section, we review some of the standard probabilistic
approaches for modeling user behavior,i.e., P (a′

u|s
′

u, sd, a),
in the second multiplicative term of (2).

One of the earliest user models is theBigram model [25],
which is a simple stochastic model for predicting the user
response to the given system action. The Bigram model is
specified as the probabilityP (a′

u|a) for every possible pair
of system actiona and user responseau. The Bigram model
has the advantage of being “naive”: purely probabilistic and
domain independent, but it often fails to accurately model
realistic user behavior. Since the sampled user response may
only be consistent with the previous system action, the user
behavior may not make sense in the context of the whole
dialogue. This model can be generalized to ann-gram model
to use the wider context of the dialogue [26], [27]. Then-gram
model is specified asP (a′

u|at−1, at−2, . . . , at−n+1). However,
n cannot be arbitrarily high due to data sparsity problems. If
no n-grams match the current history, the model can back-off
to a smallern. This model is called theTrigram model when
n = 3.

More “sophisticated” user models have been proposed
seeking a more accurate account of the real user behavior.
The Levin model [28] is a modification to the pure Bigram
model, which reduces the number of model parameters by
limiting to admittable user responses. For instance, for the air
travel information system (ATIS) task in [28], three types of
system actions are assumed:greeting, constraining question
and relaxation prompt. The constraining questions are the set
of actions each requesting a value for a particular slot from
the user, and the relaxation prompt is the action requestingthe
user to relax a particular constraint that was specified earlier.
The user response for greeting is parameterized byP (n),
n = 0, 1, 2, . . ., the probability of providing values forn slots
in the same response, andP (k), the probability distribution on
each slotk. The user response of the constraining questions is
similarly parameterized byP (n|k) andP (k′|k) whereP (k′|k)
specifies the probability of the user specifying a value for
slot k′ when asked for the value of slotk, and n is the
number of additional unsolicited slots in the same response.
The user is only allowed to either accept or reject the proposed
relaxation of slotk, hence the user response is parameterized
by P (yes|k) = 1 − P (no|k).

The Bigram and the Levin model both suffer from the
lack of goal consistency in user behavior. To overcome this

4 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

problem, thePietquin model [29] extends the Levin model
by conditioning the probabilities in the Levin model on the
user goalsu, i.e., P (a′

u|s
′

u, a). The user goal is represented as
a table of slot-value pairs.

The Hidden Markov Model (HMM) [30] is a model for
simulating both system actions and user behaviors. Hence,
the model consists of the system model for predicting system
actions and the user model for predicting user responses. There
are many ways to define the system model, and the simplest
approach is to use the classical definition of HMMs. In this
case, the system model2 is defined by the transition proba-
bilities P (s′d|sd) and the observation probabilitiesP (a|sd).
However, since it is desirable to take the user response into
account when predicting the system action, the system models
using the Input Hidden Markov Model (IHMM) and the Input-
Output Hidden Markov Models (IOHMM) are proposed as
variants. The IHMM system model modifies the state transition
probabilities in HMM to beP (s′d|sd, au), and the IOHMM
system model further modifies the observation probabilities in
IHMM to be P (a|sd, au). The user model is defined as the
probability P (a′

u|sd, a).
If a dialogue has multiple goals, it can be divided into

multiple segments, each of which has a particular goal. To
capture this, the HMM user model can be extended to a two-
level model where the HMMs for each dialogue goal are
connected by goal transition probabilities.

All of the above user models are designed for predicting the
true user response, and can be estimated from the dialogue
corpus. If we model the dialogue problem as an MDP, we
treat the recognized (and possibly incorrect) user response
as the true user response3, and use these user models in the
transition probabilities. Note that the reinforcement learning
approach in [13] is equivalent to solving MDPs via stochastic
optimization, where the recognized user response is sampled
from the user model. If we model the dialogue problem as
a POMDP, we use a dialogue corpus annotated with true
user response, and additionally estimate the uncertainty in
speech recognition results for observation probabilities. Our
detailed methodologies for obtaining the models are described
in Section V-C.

IV. EVALUATION METHODS FORDIALOGUE STRATEGIES

It is generally non-trivial to evaluate dialogue strategies
obtained from MDPs and POMDPs. The main challenge
comes from the fact that when the computed strategy deviates
from the dialogue flow in the corpus, there is no intuitive way
of predicting how the dialogue will continue. In [31], we used
the cross-model and the corpus-based correlation evaluation
techniques [13] to evaluate the MDP and POMDP dialogue

2The original definition of the HMM dialogue simulation modeluses an
abstract dialogue state for capturing the progress of the dialogue, for which
we usesd since it plays an equivalent role.

3MDPs can be constructed to account for the dialogue state uncertainties in
various ways: if the confidence score from the speech recognizer is available,
we can include it into the state space; we can also includen-best list of
recognition results into the state space [3]. In fact, theoretically speaking, we
can include the complete history of actions and observations into the state
space of an MDP to be as expressive as a POMDP, but such a representation
will be no longer manageable.

strategies. In this section, we review the above evaluation
techniques, discuss the their shortcomings, and present a more
reliable way of evaluating dialogue strategies adopting the
recent work on bias-variance analysis of MDP and POMDP
policies [15]–[17].

A. Cross-model Evaluation

Ideally, we would like to evaluate the dialogue strategies
by interacting with real users. When it is not possible, the
availability of several user models allows us the cross-model
evaluation [13], which involves testing the learned strategy
across different user models. We prepare the dialogue sim-
ulators corresponding to each user model, and compare the
returns by simulating the strategies. It is essential to test the
strategies on different user models, since testing on the same
user model may show good performance results even when the
user model is significantly different from real user behaviors.
Hence, we can expect that the dialogue strategy which gen-
eralizes well across different user models will perform well
when tested with a real user.

In order to simulate speech recognition errors, we con-
struct each simulator using the corresponding POMDP model.
Hence, the recognized user response is generated from the
simulator, but each strategy monitors the dialogue state using
its own user model. We make POMDP strategies monitor
the dialogue state using the belief update from (1), but we
make the MDP strategies simply take the recognized user
response as the true user response, since the policies in MDP
are inherently memoryless and reactive.

One of the issues in using this evaluation method is that a
dialogue strategy obtained from a naive user model may appear
to perform very well when evaluated on the same user model
(e.g., Bigram strategy evaluated on Bigram simulator), but may
show poor performance when tested on a different user model
(e.g., Bigram strategy evaluated on Levin simulator).

B. Corpus-based Correlation Evaluation

Since the cross-model evaluation instead uses simulators
assuming specific user models, it inevitably introduces a bias.
The corpus-based correlation evaluation [13] is an attemptto
mitigate the bias by evaluating the learned dialogue strategy
directly on the real dialogue data.

We first calculate the similarity scoreθ(πd, π
∗) based on

how similar the strategyπd followed in the dialogued is to the
learned strategyπ∗. We then measure the correlation between
θ(πd, π

∗) and the discounted return of the dialogued. The idea
here is that the correlation coefficient is expected to reflect the
quality of the learned strategy because we can expect that the
strategy will show high similarity to the dialogues with high
returns, and low similarity to those with low returns. Hence,
the dialogue strategy with the largest correlation coefficient is
most preferable.

Let a dialogue be a sequence of state-action pairs,d =
{(st, at)}

T−1

t=0 . The similarity score between the learned policy
π∗ and the policyπd of dialogued can be defined as:

θ(πd, π
∗) =

1

T

T−1
∑

t=0

θπ∗(st, at)

KIM et al.: ROBUST PERFORMANCE EVALUATION OF POMDP-BASED DIALOGUE SYSTEMS 5

whereθπ∗(s, a) is an action similarity measure reflecting how
well the selected system actiona in the data agrees withπ∗

and π∗(s).4 An action similarity could be defined in various
ways. We use three definitions proposed in [13]:

1) the reciprocal rank ofa according to the ordering of Q-
values in the policyπ for the states in which a was
executed

θπ(s, a) =
1

1 + |{a′ ∈ A|Qπ(s, a′) > Qπ(s, a), a′ 6= a}|
;

2) the softmax of Q-values5

θπ(s, a) =
exp(Qπ(s, a))

∑

a′∈A exp(Qπ(s, a′))
;

3) the ratio of the number of〈system speech action, slot〉
pairs present in botha and aπ = π(s) to pairs present
in eithera or aπ

θπ(s, a) =
|{ak ∈ a} ∩ {ak ∈ aπ}|

|{ak ∈ a} ∪ {ak ∈ aπ}|
.

We abbreviate the above metrics as RR, SQ, and RSA respec-
tively.

The correlation coefficient, however, is not a perfect mea-
sure because it only indicates the strength of a linear relation-
ship between the similarity score and the return. In [31], we
proposed regressing a linear function on the similarity-return
data and compute the area under the linear function to evaluate
the dialogue strategies in the hope that it will better reflect the
quality of dialogue strategies.

In hindsight, these evaluation methods appear to be useful
only in limited settings. First, it is well known that there
can be multiple optimal policies for an MDP or a POMDP.
Hence, the optimal dialogue strategy computed from the model
can be radically different from the successful dialogues in
the corpus. Second, although there is a general tendency
that learned strategies show low similarity to unsuccessful
dialogues and high similarity to successful dialogues, thelinear
relationship assumption between the similarity and the return
seems to be problematic. Depending on the similarity metric
we use, the relationship may become nonlinear, making the
correlation coefficient not very useful for differentiating good
user strategies from poor ones. Hence, a careful choice of the
similarity metric is required for reliable results.

C. Bias-Variance Evaluation

As pointed out in the cross-model evaluation method, the
average return obtained from the simulation of the same user
model used for computing the strategy is often misleading.
The same can be said about the value function obtained from
the MDP and POMDP algorithms. This is because the cross-
model evaluation does not consider the uncertainty inherent
in the estimated model especially when learned from a finite

4States in the definitions of action similarity is replaced by beliefstateb in
the case of POMDP policies. One step look-ahead is performedto calculate
Q-values given the learned POMDP policy.

5In [13], this similarity metric was defined as the ratio of theQ-value to
the sum of all Q-values. We use a softmax of Q-values because it gives more
reliable scores.

Dirichlet

prior

Dirichlet

posterior

dialogue data

sampled

model 2

sampled

model 1

sampled

model n
...

sample

trajectory

sample

trajectory

sample

trajectory

sample

trajectory
... ...

average return average return

variance

estimated

model

average return

bias

Fig. 3. Computing bias and variance using user model simulation.

amount of data. Hence, we need to take this uncertainty
into account when we evaluate dialogue strategies using user
model simulators. In this section, we propose a model-based
simulated evaluation scheme which stems from the recent
work on bias-variance analysis of value functions in MDPs
and POMDPs [15]–[17].

Given a dialogue strategy, our evaluation method works as
follows. First, we assume Dirichlet prior on the probabilities
and update Dirichlet prior to Dirichlet posterior using a
dialogue corpus. Second, we sample multiple user models
according to the Dirichlet posterior on the probabilities.These
samples correspond to the test user models where the pa-
rameter values are perturbed. The perturbation representsthe
variation in the parameter values due to the limited amount
of data available for estimating the user model. Third, we
construct simulators using each sampled user model, and run
multiple trials on each simulator to obtain average returns. We
compute the average and the variance of the average returns.
This evaluation process is illustrated in Fig. 3.

This method can be seen as a Bayesian approach to com-
puting the bias and variance of a value function using Monte-
Carlo simulation. Fig. 4 shows the bias and variance of a value
function. A strategy is optimized for the estimated parameters
of the user model, achieving the estimated valueV̂ . Let V

be the random variable denoting the true value of the strategy
in the (unknown) true user model, and thus the uncertainty
in the model parameters introduces the bias and variance in
V . The bias denotes the difference betweenV̂ andE[V], the
expectation ofV over parameters of the user model. Since
the strategy is optimized for the estimated user model, the
value V can significantly decrease from̂V if there is some
amount of perturbation in the true model. Hence,E[V] can be
regarded as an indicator of how well the strategy will perform
on “average” over the parameter values of the user model.
The varianceσ2(V) of true valueV also originates from the
model uncertainty, representing the amount of variation inthe
performance of the strategy with respect to the uncertainty

6 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

bias

variance

value

Fig. 4. Bias and variance of a value function.

in the true model parameters. We can approximateE[V] and
σ2(V) by the sample average and variance of the average
returns calculated from the above Monte-Carlo simulation.

The analytical formula for computing the bias and variance
of value functions in MDPs and POMDPs can be found in [15]
and [16] respectively. However, we cannot directly use the
formula since the dialogue management model has a large state
space. Using ADDs for the formula was also computationally
infeasible in our experiments, but the Monte-Carlo estimation
yielded reliable results. The idea of evaluating the dialogue
strategies by Monte-Carlo simulation has appeared in [17] for
the task of selecting the best features to be included in the
model, although no explicit connection was made to the bias-
variance analysis of value functions and developed only in the
context of MDP-based systems.

V. EXPERIMENTS

In this section, we present experimental results of dialogue
strategy evaluation methods. We describe the corpus used
in experiments and the details of the model implementation
before showing the results.

A. Dataset

The DARPA COMMUNICATOR 2000 corpus [32]–[34] used
in our experiments contains 648 real human-computer dia-
logues recorded using different dialogue managers from the
travel booking domain. We selected the first 300 dialogues in
the corpus for manually tagging the true user response with
semantic information such as the type of the user response
and its corresponding slot. Hence, the tags allow us to view
the dialogues as sequences of “intentions”. In order to deal
with the data sparsity problem in estimating user models, we
ignored the slot values.

We also constrained ourselves to the task of completing
the first leg flight reservations. As a result, the dialogue
manager has to fill out four slots:orig_city, dest_city,
depart_date and depart_time, which means the starting
location, the destination city, the departure date, and the
departure time, respectively.

Note that our preparation of the dataset from the corpus
follows almost the same procedure used in [13]. The only
difference is that we used a subset of the corpus, and tagged
the dialogues manually.

B. State Space, Action Space, and Reward Function

The factored state space〈su, au, sd〉 of the MDP
and POMDP for our dialogue management problem is
specified as follows: The dialogue progress variablesd

represents that a particular slot isunknown, known, or
confirmed, resulting in a total number of34 = 81
possible combinations. Similarly, the current user response
variable au is determined by the user response for each
slot: au = 〈au,orig city, au,dest city, au,depart date, au,depart time〉.
We have eight types of user responses for each slot:
provide_info, reprovide_info, correct_info,
reject_info, yes_answer, no_answer, question, and
null (no mention of any slot value in the response). The
user goal variablesu, which is only used in the Pietquin user
model, will be explained in the next subsection. Note that
we ignored slot values, and thus they are not tracked in the
dialogue state. However, the POMDP still tracks multiple
dialogue progress states for each slot, as well as user response
types and user goals.

The action space is determined by the combination of
the system actions for each slot:null, request_info,
implicit_confirm, and explicit_confirm, resulting in
a total of44 system actions. We addedhangup to the action
set for finishing the dialogue. Ideally, we would like to use all
system actions, but most of them are unlikely to be used in
practice,e.g., implicit_confirm for all the slots at the same
time. It was also difficult to include all possible system actions
because of the large memory requirement of the POMDP
algorithm. We thus used 32 system actions which appeared
at least once in the corpus. We treatedrequest_info for all
slots asgreeting system action.

The reward function is selected as follows. First, every
interaction incurs a negative reward of−1 in order to penalize
long dialogues. Second, successful slot-filling (changingfrom
unknown to known regardless of slot values) or confirmation
(changing fromknown to confirmed) for each slot is awarded
by +25, but this reward is given only at the end of the
dialogue, i.e., when the system executeshangup action, in
order not to provide any clue on how to complete the task
during the dialogue. Third, we assign relatively large penalty
of −10 for executing inappropriate actions in certain states:
executingrequest_info on a known or confirmed slot, and
executingimplicit_confirm or explicit_confirm on an
unknown or confirmed slot. Without this penalty, the dialogue
strategy can show too much repetitive information request
and confirm actions, which is undesirable. Fourth, we assign
very large penalty of−100 for not executing the mandatory
greeting action in the first turn, or executing it in other
than the first turn. This enforces thatgreeting is the only
action which should be executed only once in the first turn.
The discount factor ofγ = 0.95 was used for all experiments.
Note that our reward function closely resembles the one used
in [13].

When we actually measure the performance of dialogue
strategies, the return of the dialogue is determined by the same
reward function as above, using the true dialogue progress state
in the simulator (cross-model and bias-variance evaluation) or

KIM et al.: ROBUST PERFORMANCE EVALUATION OF POMDP-BASED DIALOGUE SYSTEMS 7

in the annotated corpus (corpus-based correlation evaluation).
Table I shows how the rewards are measured using a dialogue
example.

C. User Model Implementation

There are 8 possible user responses for each slot, and hence
the number of the combined user responses is84 = 4096. To
deal with the data sparsity problem when building the Bigram
model, we made the naive Bayes assumption,i.e., the user
response for each slot is conditionally independent of others
given the system action:P (a′

u|a) =
∏

k P (a′

u,k|a) wherek is
the index of a slot. We also built the Trigram model using the
same assumption. We did not considern-grams withn ≥ 4
because of the data sparsity problem and computational burden
of the POMDP algorithm.

We made the same conditional independence assumption
for the Levin model. Furthermore, we assumed that the user
response for a slot depends only on the system action asso-
ciated with the slot. The admittable user responses for each
system action for the slot were: (1)null andprovide_info
for null or request_info; (2) null, reprovide_info,
correct_info, andreject_info for implicit_confirm;
(3) yes_answer and no_answer for explicit_confirm.
Therefore, the Levin model is specified asP (a′

u|a) =
∏

k P (a′

u,k|ak) whereak is a system action for slotk. The
probabilities of the prohibited user responses are zero.

The original Pietquin model conditions the model parame-
ters on the user goal. The user goal is represented as a table of
slot-value pairs, but our dialogues ignore the actual slot values.
As a result, we circumvented the issue by having boolean
values representing whether the information regarding theslot
has been provided during each turn, instead of the full slot-
value table. Hence, the number of possible user goals was
24 = 16. Although this is not exactly same as the “goal
consistency” in the original Pietquin model, this workaround
was also used in [35].

In implementing the HMM model, we used a simple one-
level model in contrast to the original two-level model. This
is because we only deal with the first leg flight reservation
in the experiments, and it is regarded as a single dialogue
goal [30]. The original HMM model generates both system
actions and user responses. Because we only need to simulate
user’s behavior, the user model in the original HMM model is
only used. We decided to use the dialogue progress states as
dialogue states for the HMMs, hence, the HMM model is spec-
ified asP (a′

u|sd, a) =
∏

k P (a′

u,k|sd,k, ak). The assumption
of admissible user responses used in the Levin and Pietquin
model is also used in the HMM model.

While obtaining the observation probabilities which repre-
sent the uncertain results from the automated speech recog-
nizer, we also had to deal with the data sparsity problem.
The observationz is only dependent on the true user re-
sponse, henceO(s, a, z) = P (z|au). However the numbers
of possible observations and user responses are 4096 each,
and the table representation of the observation probabilities
would require4096 × 4096 parameters. Hence, we made the
naive Bayes assumption that the observation for a particu-
lar slot is only dependent on the user response in the set

zorig city zdest city zdepart date zdepart time

au,depart timeau,depart dateau,dest cityau,orig city

Fig. 5. Graphical model of the observation probability.

of related (frequently confused) slots: the observation for
orig_city or dest_city is only dependent on the user
responses inorig_city anddest_city, and the observation
for depart_date or depart_time is only dependent on the
user responses indepart_date and depart_time. This is
reasonable because, for example, the observation values that
orig_city and dest_city are the same, and these two
slots are often confused with each other. Fig. 5 shows the
graphical model representation of the observation probability.
This model is used in all of the three user models.

When constructing the user models for MDPs, there are two
possible approaches. The first approach would be taking the
output from the automated speech recognizer while ignoring
the true user response, and directly estimating the transition
probabilitiesP (ã′

u|a) by counting frequencies. We found that
this approach suffers from data sparsity, especially in our
experimental setting where we simulate speech recognition
errors using the observation model from POMDP. We thus
adopted the second approach, where we used the automated
speech recognition output as well as the manually tagged true
user response. This approach estimates the transition proba-
bilities P (a′

u|a) and the observation probabilitiesP (ã′

u|a
′

u)
as we do for POMDPs, then obtain the MDP user model by
marginalizing out the true user responsea′

u, i.e., P (ã′

u|a) =
∑

a′

u

P (ã′

u|a
′

u)P (a′

u|a).

D. Solving MDPs and POMDPs

When obtaining MDP strategies, we modeled the dialogue
management as a factored MDP, and used SPUDD [24]. We
ran the algorithm until the Bellman error was lower than 0.02.
When obtaining POMDP strategies, we modeled the problem
as factored POMDP, and used Symbolic HSVI [14]. We ran
the algorithm for 25 recursive backups at the initial beliefstate.

E. Cross-model Evaluation Result

In the cross-model evaluation, we tested the learned strategy
across different user models. Fig. 6 shows the cross-model
evaluation result reporting the average returns with 95%
confidence intervals over 1000 runs terminating athangup

or after the maximum of 70 turns. The results of the MDP
dialogue strategies are consistent with the results previously
reported in [13]: a strategy computed from a naive user model
may appear to perform well when evaluated on the same user
model, but shows poor performance when tested on a different
user model. The performances of the Bigram and Trigram
strategies degraded drastically when tested on different user
models, whereas the strategies obtained from the sophisticated
user models, such as the Levin, Pietquin and HMM strategies,

8 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

TABLE I
AN EXAMPLE DIALOGUE WITH PARTIALLY FILLED SLOTS.

System utterance (M) / System action (a) / Reward (r) /
User utterance (U) / True user response (au) / True dialogue progress state (sd) /
ASR result (O) Recognized user response (ãu) Most likely state for each slot and its probability from POMDP (̂sd)

M1: Hello. a = greet r = −1

U1: I want to depart from Indianapolis. au = (proi, null, null, null) sd = (k, u, u, u)

O1: [From Indianapolis] ãu = (proi, null, null, null) ŝd = (k : 0.998, u : 0.988, u : 0.894, u : 0.968)

M2: Traveling from Indianapolis, a = (impc, reqi, null, null) r = −1

Where would you like to go?
U2: Portland. au = (null, proi, null, null) sd = (c, k, u, u)

O2: [Atlanta] ãu = (null, proi, null, null) ŝd = (c : 0.985, k : 0.996, u : 0.881, u : 0.960)

M3: Traveling to Atlanta, a = (null, impc, reqi, null) r = −1

departing on what date?
U3: No. au = (null, reji, null, null) sd = (c, u, u, u)

O3: [–] ãu = (null, null, null, null) ŝd = (c : 0.978, k : 0.871, u : 0.790, u : 0.951)

M4: Traveling to Atlanta, a = (null, impc, reqi, null) r = −11 (−1 plus −10 for implicit_confirm on unknown slot)
departing on what date?

U4: Correction. au = (null, reji, null, null) sd = (c, u, u, u)

O4: [–] ãu = (null, null, null, null) ŝd = (c : 0.971, k : 0.764, u : 0.709, u : 0.943)

M5: Going to Atlanta, a = (null, impc, reqi, null) r = −11 (−1 plus −10 for implicit_confirm on unknown slot)
departing on what date?

U5: I am not going to Atlanta. au = (null, reji, null, null) sd = (c, u, u, u)

O5: [–] ãu = (null, null, null, null) ŝd = (c : 0.964, u : 0.672, u : 0.636, u : 0.934)

M6: Where would you like to go? a = (null, reqi, null, null) r = −1

U6: [User hangs up] – sd = (c, u, u, u)

O6: [User hangs up] – ŝd = (c : 0.964, u : 0.672, u : 0.636, u : 0.934)

M7: hangup. a = hangup r = 50 (only one slot isc in sd).

The shorthand notations used above are as follows: The states (sd,origin city, sd,dest city, sd,depart date, sd,depart time) are represented usingu = unknown, k =
known, andc = confirmed. The true user response (au,origin city, au,dest city, au,depart date, au,depart time) and the recognized user response (ãu,origin city,
ãu,dest city, ãu,depart date, ãu,depart time) are represented usingproi = provide_info andreji = reject_info. The system action (aorigin city, adest city,
adepart date, adepart time is represented usingreqi = request_info and impc = implicit_confirm. Note that recognition errors inO3, O4, andO5
decrease the probability ofknown for dest_city, making POMDP strategies eventually reask for the information. MDP strategies, in contrast, will
never do so as they do not maintain such probability.

still perform reasonably well on different user models (The
performance degradation was relatively small compared to the
Bigram and Trigram strategies). The results of the POMDP
dialogue strategies are also generally consistent with thepre-
vious results in [31], [36]: the POMDP strategies significantly
outperform the MDP strategies when tested on the same user
model, and also generalizes better than the MDP strategies
when evaluated on different user models.

We also make an interesting observation about the results
from the Trigram simulator. Although the Levin, Pietquin and
HMM strategies are regarded as good strategies, all of them
show severe performance degradation. This phenomenon can
be explained by the fact that Trigram model is the only model
that looks at past system actions more than one turn. Hence,
the user responses generated from the Trigram simulator may
appear to be non-stationary for all the strategies other than the
Trigram strategy. This is because the strategies look only at the
past one system action to predict the user response, whereas
the simulator looks at the past two system actions to sample
the user response. This non-stationarity makes the strategies
suffer more than in other user model simulators. We also
note that MDP strategies occasionally outperform POMDP
strategies in Trigram simulator. This is because in a non-
stationary environment, it is sometimes more advantageousto
just take the most recent experience (MDP) rather than using
all the past experiences (POMDP).

F. Corpus-based Correlation Evaluation Result

Table II shows the evaluation results on 300 dialogues in
the COMMUNICATOR corpus. For each dialogue similarity
metric and each learned strategy, we show the average dialogue
similarity and the correlation coefficient. Note that the average
similarity does not stand for the quality of the learned strategy.
The best correlation result is highlighted in bold face for each
similarity metric.

The results did not exactly follow those reported in [13].
The overall correlation coefficients were much higher. We
conjecture that this is because our reward function is slightly
different. It was also hard to find any significant consistency
across different similarity metrics. This indicates that corpus-
based evaluation results depend heavily on how the action
similarity metric is defined.

The POMDP strategies obtained from the Levin, Pietquin,
and HMM models showed higher correlation than other strate-
gies when the SQ metric is used. Moreover, the SQ metric
was the only metric that yielded consistently higher correlation
for POMDP strategies compared to MDP strategies within the
same user model assumption. This seems to indicate that the
metric needs to be some direct function ofQ-values in order
to capture the linear relationship between dialogue similarities
and dialogue returns.

KIM et al.: ROBUST PERFORMANCE EVALUATION OF POMDP-BASED DIALOGUE SYSTEMS 9

Bigram strategy

Bigram simulator

Trigram simulator

Levin simulatorPietquin simulator

HMM simulator

50 60 70 80 90 100 110 120

MDP strategy

POMDP strategy

115.84

108.40

74.5965.66

65.35

63.5665.35

69.81

68.28 66.98

(a) Bigram strategy

Trigram strategy

Bigram simulator

Trigram simulator

Levin simulatorPietquin simulator

HMM simulator

−50 0 50 100 150

MDP strategy

POMDP strategy

41.12

-4.51

129.69117.09

50.65

-11.24

49.88

-14.68

54.31

-6.99

(b) Trigram strategy

Levin strategy

Bigram simulator

Trigram simulator

Levin simulatorPietquin simulator

HMM simulator

50 60 70 80 90 100 110 120

MDP strategy

POMDP strategy

93.76

88.71

76.49
74.15

99.53

92.48

99.25

90.42

97.85

92.22

(c) Levin strategy

Pietquin strategy

Bigram simulator

Trigram simulator

Levin simulatorPietquin simulator

HMM simulator

50 60 70 80 90 100 110 120

MDP strategy

POMDP strategy

87.13

72.54

80.91
72.46

98.27

91.29

99.06

90.84

100.88

90.79

(d) Pietquin strategy

HMM strategy

Bigram simulator

Trigram simulator

Levin simulatorPietquin simulator

HMM simulator

50 60 70 80 90 100 110 120

MDP strategy

POMDP strategy

85.1

83.61

68.67
71.87

97.39

90.22

97.12

101.34

91.51

93.01

(e) HMM strategy

Fig. 6. Cross-model evaluation result. Each graph shows theaverage returns of the MDP and POMDP dialogue strategies obtained from each user model.
The performance on each user model simulator is shown at eachaxis. The error bars indicate 95% confidence intervals. Notethat the scale changes in the
Trigram strategy graph.

TABLE II
CORPUS-BASEDCORRELATION EVALUATION RESULTS

RR SQ RSA
Dialogue strategy Similarity score Correlation Similarity score Correlation Similarity score Correlation

MDP Bigram 0.289 0.647 0.169 0.599 0.243 0.574
MDP Trigram 0.345 0.614 0.213 0.583 0.321 0.607
MDP Levin 0.320 0.650 0.202 0.630 0.271 0.593

MDP Pietquin 0.359 0.598 0.193 0.628 0.353 0.591
MDP HMM 0.362 0.637 0.207 0.645 0.355 0.622

POMDP Bigram 0.270 0.651 0.174 0.600 0.224 0.577
POMDP Trigram 0.285 0.627 0.176 0.617 0.198 0.543
POMDP Levin 0.369 0.628 0.244 0.658 0.234 0.607

POMDP Pietquin 0.351 0.628 0.231 0.653 0.257 0.608
POMDP HMM 0.366 0.617 0.238 0.652 0.235 0.608

G. Bias-Variance Evaluation Result

Adopting the Monte-Carlo approximation technique in Sec-
tion IV-C, we sampled 30 models for each user model sim-
ulator. We used the Dirichlet prior of which the parameters
are all set to 1 and sampled the POMDP models from the
updated Dirichlet posterior. Model sampling for the Bigram
and Trigram model can be done in a straightforward way.
For the Levin, Pietquin and HMM models that prohibit in-
appropriate user responses, we also set Dirichlet parameters
for the prohibited user responses to 1, allowing the prohibited
user responses to have non-zero probabilities. We also experi-
mented with the sampled models in which the prohibited user

responses were enforced to have zero probabilities, but the
result was not significantly different. For each sampled models,
we calculated the average of 1000 samples of returns by sim-
ulating the model, terminating each run athangup or after the
maximum of 70 turns. Hence, we gathered 30 average returns,
each corresponding to the sampled user model. Fig. 7 shows
bias-variance evaluation results reporting the average returns
with 95% confidence intervals. The confidence intervals were
calculated from the 30 average returns.

First, note that each strategy yields similar graph shape
across the simulators. There was no significant tendency of
high average returns when evaluated on the same user model

10 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

Bigram strategy

Bigram simulator

Trigram simulator

Levin simulatorPietquin simulator

HMM simulator

−100 −50 0 50 100

MDP strategy

POMDP strategy

5.20

-11.01

-24.50-61.59

44.57

27.16

41.33

27.11

39.16
28.00

(a) Bigram strategy

Trigram strategy

Bigram simulator

Trigram simulator

Levin simulatorPietquin simulator

HMM simulator

−100 −50 0 50 100

MDP strategy

POMDP strategy

�5.13

-69.75

-21.58

-101.24

23.69

-49.19

21.97

-48.03

17.04

-54.02

(b) Trigram strategy

Levin strategy

Bigram simulator

Trigram simulator

Levin simulatorPietquin simulator

HMM simulator

−100 −50 0 50 100

MDP strategy

POMDP strategy

28.09

16.25

1.22

-37.42

71.23

58.44

69.61

57.52

65.52 54.01

(c) Levin strategy

Pietquin strategy

Bigram simulator

Trigram simulator

Levin simulatorPietquin simulator

HMM simulator

−100 −50 0 50 100

MDP strategy

POMDP strategy
27.82

11.14

3.61
-39.57

73.00

51.47

72.17

51.49

68.97
49.12

(d) Pietquin strategy

HMM strategy

Bigram simulator

Trigram simulator

Levin simulatorPietquin simulator

HMM simulator

−100 −50 0 50 100

MDP strategy

POMDP strategy

11.43

11.14

-18.03
-53.83

66.19

53.91

64.59

54.40

61.45
48.88

(e) HMM strategy

Fig. 7. Bias-variance evaluation result. Note that the overall performance is degraded compared to cross-model evaluation results due to the bias. The error
bars indicate 95% confidence intervals for the expected return over the model parameter values.

simulator. This is because if the strategy is overfit to a specific
user model, the perturbation incurred by model sampling will
result in a large bias. This is particularly true for poor dialogue
strategies such as Bigram and Trigram strategies evaluatedin
the same user model simulator. Hence, whatever simulator we
use, good dialogue strategies will yield high average returns
and poor ones will yield low average returns. This consistent
property is highly desirable, which could not be found in the
cross-model evaluation method.

Second, observe that the difference in performance between
the POMDP and MDP strategies was more distinctive than
in the cross-model evaluation. This indicates the POMDP
strategies are more robust to the model uncertainty than the
MDP strategies, reflecting the advantage of maintaining the
distribution over the dialogue states.

Third, the POMDP strategies from the Levin, Pietquin, and
HMM models showed better performance than other strategies
whatever simulator we used. We can make a qualitative
explanation as follows: consider a poor dialogue strategy such
as the Bigram strategy. This strategy is often opportunistic in
the sense that it tries to exploit every possible user response.
For example, the user may provide additional information
about some slots even though prompted with an explicit
confirmation, and the strategy may be betting on such event
albeit it is of a small probability. The performance of the
strategy can thus be sensitive to the myriad of events with
small probabilities. However, good dialogue strategies such as

Levin strategy typically ignore those events, and thus achieve
better performance under parameter perturbation.

VI. CONCLUSION

This paper experimentally investigates the effect of user
modeling on POMDP-based dialogue systems. Building on the
previous results on MDP-based dialogue systems, we extended
the experiments to the POMDP case, and showed that good
user model is essential for computing good dialogue strategies.
Our findings in POMDP dialogue strategies are consistent
with those in MDPs. We also showed that POMDP strategies
significantly outperform MDP strategies, whether the user
model used in learning the strategy is identical or different
to the one used in the evaluation, except when tested on the
non-stationary user model simulator.

We also proposed a model-based simulated evaluation
scheme, which has connection to the recent work on the bias-
variance analysis of value functions in MDPs and POMDPs.
The key idea behind this evaluation method is to evaluate the
dialogue strategies under model uncertainty. We experimen-
tally showed that this evaluation method yields more reliable
results.

Although the experiments in this paper focused on dialogues
without slot values, the proposed methodology should be
extended in the future to deal with dialogues with slot values,
making our method a step closer to evaluating deployed
spoken dialogue systems. Another potential research direction

KIM et al.: ROBUST PERFORMANCE EVALUATION OF POMDP-BASED DIALOGUE SYSTEMS 11

includes the use of other metrics in addition to average returns
for evaluating dialogue strategies with further analyses of the
influence of user models on learned dialogue strategies.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for the invaluable comments for improving the paper.

REFERENCES

[1] N. Fraser, “Assessment of interactive systems,” inHandbook of Stan-
dards and Resources for Spoken Language Systems, 1997, pp. 564–614.

[2] M. F. McTear, “Spoken dialogue technology: Enabling theconversa-
tional user interface,”ACM Comput. Surv., vol. 34, no. 1, pp. 90–169,
2002.

[3] J. D. Williams and S. Young, “Partially observable Markov decision
processes for spoken dialog systems,”Comput. Speech Lang., vol. 21,
no. 2, pp. 393–422, 2007.

[4] J. Pineau, G. Gordon, and S. Thrun, “Anytime point-basedapproxima-
tions for large POMDPs,”J. Artif. Intell. Res., vol. 27, pp. 335–380,
2006.

[5] T. Smith and R. Simmons, “Heuristic search value iteration for
POMDPs,” inProc. 20th Conf. Uncertainty Artif. Intell. (UAI), Banff,
Canada, 2004, pp. 520–527.

[6] ——, “Point-based POMDP algorithms: Improved analysis and im-
plementation,” in Proc. 21st Conf. Uncertainty Artif. Intell. (UAI),
Edinburgh, U.K., 2005, pp. 542–555.

[7] J. D. Williams and S. Young, “Scaling POMDPs for spoken dialog
management,”IEEE Trans. Audio Speech Lang. Process., vol. 15, no. 7,
pp. 2116–2129, 2007.

[8] B. Thomson, J. Schatzmann, K. Weilhammer, H. Ye, and S. Young,
“Training a real-world POMDP-based dialog system,” inHLT/NAACL
Workshop ”Briding the Gap: Academic and Industrial Research in
Dialog Technologies, Rochester, 2007.

[9] B. Thomson and S. Young, “Bayesian update of dialogue state: A
POMDP framework for spoken dialogue systems,”Comput. Speech and
Lang., vol. 24, no. 4, pp. 562–588, 2010.

[10] H. Geffner and B. Bonet, “Solving large POMDPs using real time
dynamic programming,” inFall AAAI Symp. on POMDPs, 1998.

[11] D. Wierstra and M. Wiering, “Utile distinction hidden Markov models,”
in Proc. 21st Int. Conf. Machine Learning (ICML), Banff, Alberta,
Canada, 2004, pp. 855–862.

[12] S. Ross, J. Pineau, and B. Chaib-draa, “Bayes-adaptivePOMDPs,” in
Proc. Adv. Neural Inf. Process. Syst. 20 (NIPS), 2008.

[13] J. Schatzmann, M. N. Stuttle, K. Weilhammer, and S. Young, “Effects
of the user model on simulation-based learning of dialogue strategies,”
in Proc. IEEE Workshop Autom. Speech Recognition Understanding
(ASRU), San Juan, Puerto Rico, 2005, pp. 412–417.

[14] H. S. Sim, K.-E. Kim, J. H. Kim, D.-S. Chang, and M.-W. Koo,
“Symbolic heuristic search value iteration for factored POMDPs,” in
Proc. 23rd Nat. Conf. Artif. Intell. (AAAI), Chicago, IL, 2008.

[15] S. Mannor, D. Simester, P. Sun, and J. N. Tsitsiklis, “Bias and variance
approximation in value function estimates,”Manag. Sci., vol. 53, no. 2,
pp. 308–322, 2007.

[16] M. M. Fard, J. Pineau, and P. Sun, “A variance analysis for POMDP pol-
icy evaluation,” inProc. 23rd Nat. Conf. Artif. Intell. (AAAI), Chicago,
IL, 2008.

[17] J. R. Tetreault, D. Bohus, and D. J. Litman, “Estimatingthe reliability
of MDP policies: A confidence interval approach,” inProc. of Human
Language Technologies: The Annual Conf. of the North American
Chapter of the Association for Computational Linguistics (NAACL-
HLT), Rochester, NY, 2007.

[18] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,”Artif. Intell., vol. 101,
pp. 99–134, 1998.

[19] C. Boutilier, R. Dearden, and M. Goldszmidt, “Exploiting structure in
policy construction,” inProc. 14th Int. Joint Conf. Artif. Intell. (IJCAI),
Montreal, Canada, 1995, pp. 1104–1111.

[20] C. Boutilier and D. Poole, “Computing optimal policiesfor partially
observable decision processes using compact representations,” in Proc.
13th Nat. Conf. Artif. Intell. (AAAI), Portland, OR, 1996, pp. 1168–1175.

[21] T. Dean and K. Kanazawa, “A model for reasoning about persistence
and causation,”Comput. Intell., vol. 5, no. 3, pp. 142–150, 1989.

[22] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov
decision-processes,”Math. Oper. Res., vol. 12, no. 3, pp. 441–450, 1987.

[23] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi, “Algebraic decision diagrams and their
applications,” inProc. IEEE/ACM Int. Conf. Computer-Aided Design
(ICCAD), Santa Clara, CA, 1993, pp. 188–191.

[24] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier, “SPUDD: Stochastic
planning using decision diagrams,” inProc. 15th Conf. Uncertainty Artif.
Intell. (UAI), Stockholm, Sweden, 1999, pp. 279–288.

[25] W. Eckert, E. Levin, and R. Pieraccini, “User modeling for spoken
dialogue system evaluation,” inProc. IEEE Workshop Autom. Speech
Recognition Understanding (ASRU), 1997, pp. 80–87.

[26] K. Georgila, J. Henderson, and O. Lemon, “Learning usersimulations
for information state update dialogue systems,” inProc. of Interspeech,
Lisbon, Portugal, 2005, pp. 893–896.

[27] ——, “User simulation for spoken dialogue systems: Learning and
evaluation,” in Proc. of Interspeech, Pittsburgh, PA, 2006, pp. 1065–
1068.

[28] E. Levin, R. Pieraccini, and W. Eckert, “A stochastic model of human-
machine interaction for learning dialog strategies,”IEEE Trans. Speech
Audio Process., vol. 8, no. 1, pp. 11–23, 2000.

[29] O. Pietquin, “A framework for unsupervised learning ofdialogue strate-
gies,” Ph.D. dissertation, Faculté Polytechnique de Mons, 2004.

[30] H. Cuayáhuitl, S. Renals, O. Lemon, and H. Shimodaira,“Human-
computer dialogue simulation using hidden Markov models,”in Proc.
IEEE Workshop Autom. Speech Recognition Understanding (ASRU), San
Juan, Puerto Rico, 2005.

[31] D. Kim, H. S. Sim, K.-E. Kim, J. H. Kim, H. Kim, and J. W. Sung,
“Effects of user modeling on POMDP-based dialogue systems,” in Proc.
Interspeech, Brisbane, Australia, 2008.

[32] M. Walker, J. Aberdeen, J. Boland, E. Bratt, J. Garofolo, L. Hirschman,
A. Le, S. Lee, S. Narayanan, K. Papineni, B. Pellom, J. Polifroni,
A. Potamianos, P. Prabhu, A. Rudnicky, G. Sanders, S. Seneff, D. Stal-
lard, and S. Whittaker, “DARPA Communicator dialog travel planning
systems: The June 2000 data collection,” inProc. Eurospeech, Aalborg,
Denmark, 2001, pp. 1371–1374.

[33] M. Walker, R. Passonneau, and J. Boland, “Quantitativeand qualitative
evaluation of DARPA Communicator spoken dialogue systems,” in Proc.
Assoc. Comput. Ling. (ACL), 2001, pp. 515–522.

[34] K. Georgila, O. Lemon, and J. Henderson, “Automatic annotation
of COMMUNICATOR dialogue data for learning dialogue strategies
and user simulations,” inProc. 9th Workshop Semantics Pragmatics
Dialogue (SEMDIAL), 2005, pp. 61–68.

[35] J. Schatzmann, K. Georgila, and S. Young, “Quantitative evaluation
of user simulation techniques for spoken dialogue systems,” in Proc.
SIGdial Workshop Discourse Dialogue, Lisbon, Portugal, 2005, pp. 45–
54.

[36] N. Roy, J. Pineau, and S. Thrun, “Spoken dialogue management using
probabilistic reasoning,” inProc. Assoc. Comput. Ling. (ACL), 2000, pp.
93–100.

Dongho Kim studied computer science and math-
ematics as an undergraduate at KAIST where he
received his BS degree in 2003. He is currently
a PhD candidate in computer science at KAIST.
His research interests include decision-making in
complex, uncertain environments.

12 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

Jin H. Kim received the BS degree from Seoul
National University, Korea, in 1971, and the MS and
PhD degrees in computer science from University
of California Los Angeles, in 1979 and 1983, re-
spectively. He was a research engineer at the Korea
Institute of Science and Technology from 1973 to
1976 and a senior staff member in computer science
at Hughes Research Laboratories, California, from
1981 to 1985. In 1985, he joined the faculty of
KAIST Computer Science Department. In 1990, he
founded the Center for AI Research and became

a chief director. He was a visiting scientist at the IBM Watson Research
Center in 1990. From 1995 to 1999, he served as the president of the Korea
R&D Information Center, which is responsible for the scientific and technical
information services in Korea. He is a fellow of the Korean Academy of
Science and Technology, a fellow of International Association of Pattern
Recognition, and a member of the National Academy of Engineering of
Korea. He published about 70 international journal papers in the area of
artificial intelligence and pattern recognition. His research is now focused
on dependency modeling for pattern recognition.

Kee-Eung Kim received the BS degree in Computer
Science from KAIST, Korea, in 1995, and the ScM
and PhD degrees in Computer Science from Brown
University, USA, in 1998 and 2001, respectively.
From 2001 to 2006, he was a senior software
engineer at Samsung SDS, Korea, and a senior
research staff member at Samsung advanced institute
of technology, Korea. In 2006, he joined the faculty
of Computer Science Department at KAIST. His
research interests are representations and algorithms
for sequential decision making problems in artificial

intelligence and machine learning, including Markov decision processes and
reinforcement learning.

