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Abstract

A Neural Process (NP) is a map from a set of observed
input-output pairs to a predictive distribution over functions,
which is designed to mimic other stochastic processes’ infer-
ence mechanisms. NPs are shown to work effectively in tasks
that require complex distributions, where traditional stochas-
tic processes struggle, e.g. image completion tasks. This pa-
per concerns the practical capacity of set function approxi-
mators despite their universality. By delving deeper into the
relationship between an NP and a Bayesian last layer (BLL),
it is possible to see that NPs may struggle in simple exam-
ples, which other stochastic processes can easily solve. In this
paper, we propose a simple yet effective remedy; the Resid-
ual Neural Process (RNP) that leverages traditional BLL for
faster training and better prediction. We demonstrate that the
RNP shows faster convergence and better performance, both
qualitatively and quantitatively.

Introduction
Inferring with stochastic processes, such as Gaussian Pro-
cesses (GPs), provides a powerful probabilistic learning
framework. Despite its computational cost, it is still widely
used due to the unique strengths that usual function approxi-
mators are not equipped with. One important strength is that
they do not require a costly training phase of parameters:
after tuning a small set of hyper-parameters, GPs can be di-
rectly applied to any set of observations to infer the posterior
distribution of functions.

Neural Processes (NPs) (Garnelo et al. 2018a; 2018b) are
a novel attempt to achieve such strength using the combina-
tion of neural network function approximators. It is defined
by two components: a permutation invariant encoder that
processes query-observations pairs (which are called con-
texts) and yields an approximate posterior of function em-
beddings, and a decoder that takes the function embedding
and query point as inputs and yields the prediction on the
query point (which is called targets). Training is done by
feeding the model with random contexts and targets from
random functions and maximizing the lower bound of the
log probability of the predictive distribution. Attentive Neu-
ral Processes (ANPs) (Kim et al. 2019) are an improvement
over NPs by adopting the attention mechanism to be more
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flexible and accurate, at a certain computational cost. Af-
ter the training, an NP incurs prediction with computational
cost linear in the number of the contexts (quadratic in case
of an ANP), which is favorable over a GP which requires a
cubic computational cost.

The success of NPs is partially due to a recently bloom-
ing line of research on the set function approximators, based
on the permutation invariant neural networks such as Deep
Sets (Zaheer et al. 2017; Bloem-Reddy and Teh 2019). Nev-
ertheless, given the finite capacity, it has been reported that
not every permutation invariant continuous function is rea-
sonably well approximated. Wagstaff et al. (2019) argues
that even if the function approximators, after and before the
sum pooling, are flexible enough, the dimension of the em-
bedding to be summed should be at least the cardinality of
the input set to represent any permutation invariant function
with neural networks. In other words, when the embedding
dimension is not large enough to match the input cardinal-
ity, Deep Set based architectures can approximate only some
of the permutation invariant functions (e.g. averaging func-
tion). In practice, the function approximators after and be-
fore the sum pooling are typically not flexible enough, and
Deep Set fails for some of the tasks even though the embed-
ding dimension is larger than the input set cardinality (Mur-
phy et al. 2019). These imply the importance of building a
task-specific set function approximator, as ANPs improved
from NPs by a large margin.

In this paper, we delve further into the structural similar-
ity between the ANPs and traditional stochastic processes,
namely the Bayesian last layer (BLL) (Calandra et al. 2016;
Weber et al. 2018; Harrison, Sharma, and Pavone 2018), as
ANPs are designed to mimic BLL’s behavior efficiently. It
turns out that the self-attention layers in an ANP are not
expressive enough, and simple cases where the underlying
functions lie in the space spanned by a feature extractor,
which can be exactly modeled with BLL, might not be ef-
ficiently learned. This motivates us to extend the NP to ex-
plain the residual part of the prediction that the BLL cannot
model, which we call Residual Neural Processes. This also
allows us to improve the variety of function samples by bor-
rowing the idea of kernel learning, i.e. learning the approx-
imate posterior of feature functions with the implicit distri-
bution. We show that such extension improves convergence
speed and asymptotic performance significantly.



Background
The task that we are handling throughout this paper is re-
gression in the context of meta-learning setting, although the
method is not limited to regression tasks. A regression prob-
lem can be defined as approximating a mapping f from input
variables x ∈ Rdx to continuous output variables y ∈ Rdy ,
i.e. y = f(x). Given the finite training samples of input and
output variables, contexts XC ,YC := {xc}c∈C , {yc}c∈C ,
one should predict target outputs YT := {yt}t∈T from
XT := {xt}t∈T . With a slight abuse of notations, we will
write f(XC) = {f(xc)}c∈C and f(XT ) = {f(xt)}t∈T .

Using a stochastic process, a prior distribution over func-
tion values pθ(f(XC), f(XT )|XC ,XT ) is defined. With
a likelihood pθ(YC ,YT |f(XC), f(XT )), a posterior pre-
dictive distribution p(YT |YC ,XT ,XC) can be computed.
Meta-learning with a stochastic processes then will be the
task of finding out the best θ in the prior and likelihood, with
the predefined task generator, i.e. (XC ,YC ,XT ,YT ) ∼ G.

On the other hand, if we only have to learn how to map the
input and the output of the inference, the training task can
be alternatively defined by a black box that gives the con-
ditional predictive distribution pθ(YT |YC ,XT ,XC). Sim-
ilarly, the best θ should be found given the task generator
G. The subscript θ will be omitted afterward for the sake of
brevity.

Bayesian Last Layer (BLL)
A classical way of meta-learning with a stochastic process
would be the Bayesian last layer (BLL) method (Weber et al.
2018; Harrison, Sharma, and Pavone 2018), which fits into
the former way of defining the task. Using the fact that the
last layers of many neural networks are usually (generalized)
linear models, a straightforward way of building a flexible
stochastic process is to set a Gaussian prior on the weights
of the last layer.

After the training phase with random functions (or maxi-
mizing the marginal likelihood of a fixed data set), previous
layers are treated as a fixed feature function φ(x) ∈ Rdh ,
and the closed form predictive distribution can be inferred
conditioned on an arbitrary context set since the inference is
equivalent to the Bayesian linear regression y = w>φ(x)+ε
(when dy = 1 for simplicity), where w is the weights of the
last linear layer. It is also equivalent to a GP with specific
kernel choice, which is called a manifold GP (Calandra et
al. 2016). The posterior inference of BLL can be specified
as:

p(w) = N (w;0, I), p(ε) = N (ε; 0, σ2
N ),

p(w|XC ,YC) = N (w;mw,Sw),

mw = ΦC(σ
2
NI + Φ>CΦC)

−1YC ,

Sw = I−ΦC(σ
2
NI + Φ>CΦC)

−1Φ>C ,

p(YT |XT ,YC ,XC)

= N (YT ;m
>
wΦT ,Φ

>
T S−1w ΦT + σ2

NI), (1)

where we denote the feature matrices of the context and the
target input sets by ΦC = [φ(xc1), φ(xc2), ...]c1,c2,...∈C and
ΦT = [φ(xt1), φ(xt2), ...]t1,t2,...∈T .

The main difference between the BLL and the Bayesian
linear regression is that the BLL trains the feature
function φ(·) as well, maximizing the model evidence
EYC ,XC

[log p(YC |XC , φ(·))], while it is usually fixed in
a linear regression. In a meta-learning context, we can either
maximize the log probability of the predictive distribution
Eq. (1) with a random context and target set sampled from
the task generator G.

Due to the matrix inversion, the computation of
the predictive distribution takes O(|C|2dh + |C|d2h +
min(d3h, |C|3)), where the minimum depends on whether we
invert |C|×|C|matrix or dh×dh matrix using the Woodbury
matrix identity.

Neural Processes (NPs)
Recently, Garnelo et al. (2018a) proposed a novel methodol-
ogy to the abovementioned problem: learning the whole in-
ference procedure using neural networks. To mimic stochas-
tic processes, two main characteristics of general probabil-
ity distributions are encoded into the neural architecture for
p(YT |YC ,XT ,XC):

• Exchangeability: p(x1,x2) = p(x2,x1)

• Consistency: p(x1) =
∫
p(x1,x2)dx2

To achieve exchangeability, a permutation invariant neu-
ral network as Deep Set (Zaheer et al. 2017) is adopted to
be invariant to the ordering of the contexts and the targets.
While summarizing contexts into a finite dimensional vector
rC := r(XC ,YC) ∈ Rdh , to make the summarizing func-
tion r(·) permutation invariant, each context (xc,yc) is fed
as the input to the neural network g(·), and its outputs are
aggregated by taking an average to form the context embed-
ding rC :

rC =
1

|C|
∑
c∈C

g(xc,yc).

In the deterministic version of NPs (Garnelo et al. 2018a),
the conditional predictive distribution is directly modeled as
p(YT |XT ,XC ,YC) = p(YT |XT , rC). It is then modeled
as a factorized Gaussian across the targets (xt,yt)t∈T for
consistency:

p(YT |XT , rC) =
∏
t∈T

N (yt|µ(xt, rC), diag[σ(xt, rC)]
2), (2)

where both µ(·) and σ(·) are the functions of rC and xt
modeled by neural networks. The NP is then optimized by
maximizing the log predictive probability of targets given
contexts,

L = EXC ,YC ,XT ,YT
[log p(YT |XT , rC)].

Garnelo et al. (2018b) later proposed to extend the deter-
ministic NP with latent variables to enable global sampling
of functions. It introduces the stochastic context embedding
z ∈ Rdh that provides implicit stochasticity to the posterior
of functions. Following the common choice of latent vari-
able generative models in amortized variational inference, z
is modeled by the factorized Gaussian, with statistics (mean



and variance, denoted as sC) being permutation invariant us-
ing the function r(·),

p(YT |XT ,XC ,YC) ≈
∫
p(YT |XT , z)q(z|sC)dz,

sC =
1

|C|
∑
c∈C

g(xc,yc),

q(z|sC) = N (z|µ(sC), diag[σ(sC)]2).

Observation likelihood p(YT |XT , z) is parameterized as in
Eq. (2) where z replaces rC . The model is learned by maxi-
mizing the following approximated ELBO,

log p(YT |XT ,XC ,YC)

≥ Eq(z|sTC)[log p(YT |XT , z)]−DKL(q(z|sTC)‖p(z|sC))
≈ Eq(z|sTC)[log p(YT |XT , z)]−DKL(q(z|sTC)‖q(z|sC))

via the reparametrization trick (Kingma and Welling 2014).
The main strength of NPs compared to other stochastic pro-
cesses is their linear time complexity in the number of con-
texts, i.e. O(|C|d2h), when performing the prediction.

Attentive Neural Processes
It turns out that NPs tend to underfit severely, i.e. not be-
ing able to accurately predict, even at context points. Kim
et al. (2019) hypothesize that this is due to the bottleneck of
fixed-length global summary rC (or z), whereas there are in-
finitely many potential targets xt to be predicted. They draw
inspiration from the locality of GPs, where the kernel forces
the prediction yt to be necessarily close to yc when xt is
close to xc and propose Attentive Neural Processes (ANPs)
that implement the locality via the attention mechanism.

In an ANP, the summary of a context rC is no longer
global, and there exists a local summary rt|C per each target.
This is made possible by the attention mechanism, which
takes key, query, and value as its input. In this case, the at-
tention mechanism computes similarities between the tar-
get input embeddings ΦT (queries) and the context input
embeddings ΦC (keys), and aggregates context embeddings
{g(xc,yc)}c∈C (values) with these similarities to predict the
embedding corresponding to the target.

By denoting N key-value pairs arranged as matrices as
K ∈ RN×dh , V ∈ RN×dv , and M queries as Q ∈ RM×dh ,
the (scaled) dot-product attention (Graves 2012), one of the
most widely used attention mechanisms, can be written as:

DotProduct(Q,K, V ) = softmax(QK>/
√
dh)V

The Multi-head attention (Vaswani et al. 2017) is an ex-
tension that linearly transforms keys, values, and queries,
and then applies dot-product attention in each head. It tends
to yield smoother predictions than the dot-product attention
by performing ensemble over multiple dot-product atten-
tion:

MultiHead(Q,K, V ) := concat(head1, ..., headH)WO

where headi := DotProduct(QWQ
i ,KW

K
i , V W

V
i ).

Furthermore, ANPs adopt the self-attention instead of the
simple neural network g(·), i.e. an attention with Q = K =

BLL

RC = (σ2
NI + Φ>CΦC)

−1 [YC ,Φ
>
C

]
rt|C = φ(xt)

>ΦCRC

p(yt|xt,YC ,XC)

= N
(

rt|C

[
I
0

]
,

(
φ(xt)

> − rt|C

[
0
I

])
φ(xt)

)

ANP

RC = SA([XC ,YC ])

rt|C =
1√
dk

softmax(φ(xt)>ΦC)RC

p(yt|xt,YC ,XC)

= N
(
µ(rt|C ,xt), [σ(rt|C ,xt)]

2
)

Table 1: Comparison of the conditional predictive distribu-
tions of a Bayesian Last Layer (top) and a single-headed At-
tentive Neural Process (bottom).

V , particularly effective for obtaining a richer representa-
tion by modeling interactions among context points. Higher-
order interactions can be also modeled by simply stacking
multiple alternating self-attention layers and dense layers,
as in transformer (Vaswani et al. 2017).

ANPs use both the deterministic path rt|C and the
stochastic path z. It gets one context dependent summary
of contexts rt|C and one global summary of contexts sC by

rt|C = MultiHead(φ(xt),ΦC ,SA([XC ,YC ])),

sC =
1

|C|
∑
c∈C

[SA([XC ,YC ])]c, (3)

where SA([XC ,YC ]) ∈ R|C|×dh are trainable self-attention
networks. Note that the feature extractor φ(xc) ∈ Rdh is
adopted to perform attention over diverse features of inputs.
To summarize, the conditional predictive distribution of an
ANP is given by:

p(YT |XT ,XC ,YC) ≈
∫
p(YT |XT , z, rt|C)q(z|sC)dz,

p(YT |XT , z, rt|C) =∏
t∈T
N (yt|µ(xt, rt|C , z), diag[σ(xt, rt|C , z)]2),

q(z|sC) = N (z|µ(sC), diag[σ(sC)]2). (4)

By adopting the attention mechanisms, ANPs are shown
to be less affected by the finite dimension bottleneck, yield-
ing much more accurate predictions than BLLs or NPs.
However, using the self-attention network leads to an in-
creased prediction time complexity, O(|C|2dh + |C|d2h),
which is asymptotically equivalent to that of BLLs.

Residual Neural Processes
Despite the asymptotically equivalent time complexity, we
find in practice that ANPs outperform BLLs with the same
bottleneck width dh, and the performance gap gets larger as



Figure 1: Model architectures of an Attentive Neural Process
(top) and an Residual Neural Process (bottom)

the problem gets more complex. Where does the additional
modeling power come from?

By considering the most basic form of ANP (determinis-
tic path-only, dy = 1 and H = 1), it can be easily observed
that ANPs and BLLs exhibit a structural similarity (see Ta-
ble 1). Both summarize contexts into the matrix RC of |C|
rows, and compute the similarities between target/context
input embeddings φ(xt)>ΦC to build target-dependent con-
text embeddings rt|C . It is then fed into a function along
with the target input to yield the predictive mean/variance.

One major difference is that the context summary of a
BLL is linear in YC whereas that of an ANP is not. Al-
though the conditional mean of a BLL can be the best loss
minimizer among functions in the feature space by the rep-
resenter theorem, the capacity of the feature space becomes
a bottleneck due to the cubic complexity O(d3h) in the in-
version operation. Consequently, having a conditional mean
that is non-linear in YC is evidently helpful to increase per-
formance without increasing dh.

Nevertheless, considering the fact that Deep Set based ar-
chitectures including the self-attention network turned out
to be not omnipotent (Murphy et al. 2019; Wagstaff et al.
2019), there are also drawbacks in learning flexible non-
linear prediction respect to YC since the optimal sum-
mary RC can be very difficult to learn. Even in the cases
when functions lie in the space spanned by feature func-
tion so that BLLs can perfectly predict, the self-attention
network is required to learn how to solve a linear sys-
tem. While the scaling 1√

dk
and the softmax transforma-

tion over the similarities help to fix output scale of RC

independent of |C| or dh, it can be easily shown empir-
ically that the self-attention network cannot yield a rea-
sonably approximate solution to an arbitrary linear sys-
tem: We tried to train a self-attention network such that
SA(ΦC) = Φ̂

−1
C ≈ (Φ>CΦC)

−1Φ>C . It ended up with
1
|C|2 ‖I− Φ̂

−1
C ΦC‖2F ≥ 0.6 when [ΦC ]ij ∼ N (0, 1), where

the off-the-shelf pseudo-inverse library achieved an error of

1e−12. Stacking self-attention layers multiple times or ad-
justing parameters {dh, |C|} did not help improve the error.

Motivated from the above, for better summarization of
contexts RC , it can be naturally proposed to train ANP
to predict a nonlinear residual of a context summary re-
spect to YC . Instead of explicitly learning the residual as
in ResNet (He et al. 2016), we compute the exact linear con-
texts summary–BLL statistics–and additionally feed it to the
conditional predictive distribution to make the network more
flexible. It is also expected to learn a good feature function
faster since the gradients from the exact linear path avoids
a backpropagation through a large number of parameters
of the self-attention network. We hence name our model a
Residual Neural Process (RNP), defined by

RC =SA([XC ,YC ]),

rnlt|C =MultiHead(φ(xt),ΦC ,SA([XC ,YC ])),

rlt|C =

 φ(xt)

ΦC(σ
2
NI + Φ>CΦC)

−1YC

φ(xt)−ΦC(σ
2
NI + Φ>CΦC)

−1Φ>Cφ(xt)

 ,
p(YT |XT , z, r

nl
t|C , r

l
t|C) = (5)∏

t∈T
N (yt;µ(xt, z, r

nl
t|C , r

l
t|C), diag[σ(xt, z, rnlt|C , r

l
t|C)]

2).

where the rlt|C term above is carefully designed to adopt ad-
equate features used for the prediction of a BLL; we can
recover (1) by learning the dot product between the first and
second (predictive mean), and between the first and third
(predictive variance).

While the number of parameters does not increase sig-
nificantly from original ANPs, RNPs take a few more com-
putation steps for prediction; however, since a BLL takes
O(|C|2dh + |C|d2h + min(d3h, |C|3)), the asymptotic time
complexity does not increase when compared to an ANP
given either cases of |C| > dh or dh > |C|.

Stochastic Feature Extractor
A natural extension to a BLL for more accurate uncertainty
prediction would be defining a prior and inferring a posterior
on not only on the last layer but on the feature function as
well. The exact predictive distribution will not be tractable
anymore, but it has been shown that with approximate infer-
ence it is possible to express a far richer family of distribu-
tions over functions, e.g. Bayesian Neural Networks (Graves
2011; Kingma, Salimans, and Welling 2015). It has not been
applied to a meta-learning context, as it is challenging to
avoid costly training phases with the approximate inference
algorithms proposed so far.

Inheriting a spirit of NPs, however, it is possible to ap-
proximately infer the posterior of feature function in a meta-
learning context. We introduce the additional stochastic con-
text embedding zf for feature extractor in BLL, such that,

p(YT |XT ,XC ,YC)

≈
∫
p(YT |XT ,XC ,YC , φzf

)q(zf |sC)dz,



Target NLL MSE

NP 1.030 (±0.028) 0.557 (±0.020)
BLL 0.068 (±0.011) 0.344 (±0.012)
ANP 0.106 (±0.044) 0.316 (±0.005)

RNP (var) 0.051 (±0.009) 0.310 (±0.003)
RNP (full) 0.021 (±0.010) 0.309 (±0.004)

Figure 2: Learning curves, converged results and example predictions of deterministic models are shown. (top left) Wall-clock
time v.s. unseen target negative log likelihood / mean squared error averaged over 5 random seeds. 95% confidence bounds are
also shown as shades. (top right) Converged results after 2× 106 iterations. 95% confidence bounds are also reported. (bottom)
Predictive mean and variance of different models given the same context.

where φzf
(·) is implemented with a neural network of a con-

catenated input φzf
(·) = φ([·, zf ]) and q(zf |sC) follows

Eq. (3) and Eq. (4).
Such an extension can also be applied to ANPs and RNPs.

A problem of having only a separate stochastic path is that
the stochasticity induced by z does not affect the way how
a deterministic target-dependent context summary rt|C is
computed. In the case where the correlations of xs vary sig-
nificantly over tasks (e.g. variable length-scale), the differ-
ence between having different context summarizing mecha-
nism per task and having fixed mechanism over tasks will be
maximized. With both the stochastic path and the stochastic
feature extractor, we optimize over the modified objective,

L = Eq(zf |sTC),q(z|sTC)[log p(YT |XT , z, φzf , r
nl
t|C , r

l
t|C)]

−DKL(q(z|sTC)‖q(z|sC))−DKL(q(zf |sTC)‖q(zf |sC)).

Experimental Results
Following the training method of an NP, we train on mul-
tiple realizations of the underlying data generating process.
We sample a function per batch, and select random points
to be the target and the context. Note that we did not force-
fully include the context points among the target points as
done in the previous NP benchmarks (Garnelo et al. 2018b;
Kim et al. 2019) since such a training method introduces
an additional bias. The convergence speed is hence a little
slower when compared to what reported before. We used
the architecture reported in (Kim et al. 2019) for an ANP
structure; except for the fact that we used a feature extractor

φ(x) of 2 hidden layers with dh units each (dh depends on
the task) and with skip connections. Adam optimizer with a
learning rate of 5e-5 is used throughout all experiments.

As a quantitative result we mainly report an unseen tar-
get NLL or an upper bound of it: however, note that it is
significantly affected by the lower bound of predictive vari-
ance. We used the lower bound 10−2 of predictive variance,
the lower bound used in previous NP researches. In the case
of BLLs, we used the lower bound of observation variance
of 10−4, but augmented the predictive distribution to have
10−2 lower bound for a predictive variance for a fair com-
parison of NLL. For a stochastic feature extractor, we used
zf ∈ R5 for all experiments1.

1D Function Regression with Deterministic NPs
First, we demonstrate the idea of the RNP with determin-
istic path only models. The functions to train are generated
from a Gaussian Process with a squared exponential kernel
and small likelihood noise, with hyper-parameters fixed. The
number of contexts and the number of targets is chosen ran-
domly (|C|, |T | ∼ U [3, 100]). Both XC and XT are also
drawn uniformly in [−20, 20]. In this experiment, we used
dh = 150. This is just an illustrative example, and there is
no need to use a known stochastic process (e.g. a GP) for
training NPs.

In Figure 2 we show the running average of unseen tar-
get negative log-likelihood (NLL) and mean squared er-
ror (MSE). Deterministic NP, deterministic ANP, and BLL

1Code used for experiments can be found at :
https://github.com/dlqudwns/Residual-Neural-Process



Target NLL

BLL 0.212 (±0.024)
ANP (stochastic path) 0.079 (±0.026)

ANP (stochastic feature) 0.082 (±0.024)
ANP (both) 0.059 (±0.025)

RNP (stochastic path) 0.048 (±0.025)
RNP (stochastic feature) 0.047 (±0.025)

RNP (both) 0.038 (±0.023)

Figure 3: Learning curves, converged results, and example predictions of stochastic models are shown. (top left) Iterations /
Wall-clock time v.s. an upper bound of the unseen target negative log-likelihood averaged over 10 random seeds. 95% confi-
dence bounds are also shown as shades. (top right) Converged results after 1× 106 iterations. 95% confidence bounds are also
reported. (bottom) 20 samples of predictive mean and variance of different models given the same context.

methods are included in the plot as baselines, and two dif-
ferent deterministic RNP models are demonstrated. One de-
noted with Residual NP (var) uses:

rvart|C =

[
φ(xt)

φ(xt)−ΦC(σ
2
NI + Φ>CΦC)

−1Φ>Cφ(xt)

]
,

instead of full rlt|C as from Eq. (5).
It can be observed in the left figure that the RNPs (full)

outperform the ANPs and the BLLs, showing much rapid
decrease and better convergence point in terms of both NLL
and MSE. The two learning curves are plotted against wall-
clock time and show that the improvement of performance
persists even with the increased running time of the RNPs.
The RNPs with variance statistics only, the RNPs (var) im-
prove from ANP but do not show dramatic improvement as
the RNPs (full). Even though the performance of the BLLs
alone is not always better than the ANPs, the results prove
that adopting BLLs statistics and making attention based
contexts summary to predict the residuals do help for bet-
ter prediction overall. The performance at convergence is
shown on the right, where the results of the RNPs required
15% of more time than the ANPs.

At the bottom of Figure 2, predictions of models are
shown. With the help of the BLL statistics, the RNP seems
to alleviate the discontinuities of mean prediction that occur
in the ANP plot due to the attention mechanism.

1D Function Regression with Stochastic NPs
We then demonstrate the idea of incorporating stochas-
ticity in a feature extractor. Unlike previous experiment,

we made kernel hyper-parameters to be also sampled ran-
domly l ∼ U [0.1, 0.6], σf ∼ U [0.1, 1]. In the experiments
with stochastic models, we resort to evaluating approximate
lower bounds:

log p(yt|xt,XC ,YC) ≥

Eq(zi|XC ,YC)

[
log

(
1

K

K∑
i=1

p(yt|xt, zi)p(zi|XC ,YC)

q(zi|XC ,YC)

)]

≈ Eq(zi|XC ,YC)

[
log

(
1

K

K∑
i=1

p(yt|xt, zi)

)]
, (6)

as suggested in (Burda, Grosse, and Salakhutdinov 2016;
Le et al. 2018). We usedK = 50 and 2000 estimates are run-
ning averaged. The results are shown in Figure 3. dh = 150
is used in this experiment. We compared the ANPs and
the RNPs with different stochasticities: the stochastic path
model is what used in the ANPs, where decoder is fed by z.
The stochastic feature model is what we suggest, where the
feature extractor is fed by latent variable zf . We can also use
two methods in the same time, and is denoted as both. The
BLL method here is implemented with stochastic feature,
and shown as baseline.

It can be observed that the performance of the BLL is rel-
atively worse: apparently, the inclusion of stochastic feature
slows down the learning of feature extractor. Nevertheless,
the RNPs are getting benefit from the BLL part of the model
and shows increased learning speed from that of the ANPs.
Either having one of the stochastic path or the stochastic fea-
ture shows similar performance, whereas having both shows



MNIST NLL CelebA NLL

BLL -0.985 (±0.006) -2.776 (±0.028)
ANP -1.106 (±0.006) -3.252 (±0.036)
RNP -1.108 (±0.004) -3.289 (±0.017)

RNP (both) -1.135 (±0.006) -3.277 (±0.013)

Figure 4: Learning curves, converged results and example predictions on image completion tasks are shown. (top left) Iterations
v.s. an upper bound of the unseen target negative log likelihood averaged over 5 random seeds. 95% confidence bounds are also
shown as shades. (top right) Converged results after 2 × 106 iterations. 95% confidence bounds are also reported. (bottom)
Given four different contexts (10 points, 30 points, 100 points and upper half), 10 samples of a predictive mean of each process
are shown. Predicted variances are not presented in this figure.

better NLL.
On the right of the figure, we pick 4 models and presented

their predictive distributions. Unlike ANPs, the RNPs did
not miss any of the contexts. With both the stochastic path
and the stochastic feature, the RNPs show more smooth and
stable prediction when compared to the stochastic path only,
which we suspect the variable attention that can learn vary-
ing length-scales with zf .

2D Function Regression on Image Data
If we treat images as a function that maps pixel location
x ∈ R2 to its pixel intensity y (y ∈ R3 for RGB, y ∈ R
for gray-scale), the whole dataset becomes a group of func-
tions sampled from some stochastic process. We trained and
compared BLL, ANP, and RNP models on MNIST (Le-
Cun et al. 1998) and sub-sampled 32 × 32 CelebA (Liu
et al. 2015). We used random sizes of contexts and targets
(|C|, |T | ∼ U [3, 200]). The x and y are re-scaled to [−1, 1]
and [−0.5, 0.5] respectively. dh = 250 is used in this exper-
iment.

The quantitative results reporting the upper bound of Tar-
get NLL is shown in Figure 4. K = 50 samples are used to
evaluate the bound and 2000 bounds are running averaged.
Compared to previous experiments, the performance gap be-
tween the BLL and the other methods is the largest, mean-
ing that the nonlinear mapping from YC is crucial in the

image completion tasks. While the RNPs with both stochas-
ticity show improved results in both domains, the improve-
ments come from different reasons: MNIST benefits from
additional stochasticity while leveraging BLL features helps
in CelebA. For the convergent results, the RNPs (both) re-
quired 50% of more wall-clock time than the ANPs. The
bottom figure shows the predictive means for ten different
samples of z and zf given different contexts. The RNPs tend
to show more diverse and realistic samples than the ANPs,
especially when not enough samples were provided.

Conclusion
In this paper, we presented an RNP, which leverages a BLL
for efficient residual learning. A stochastic feature extractor
is also presented to approximately infer a posterior of fea-
ture extractor, complementing the stochasticity that was pre-
viously independent to the context summary. As a result, the
RNPs with both types of stochasticities improves from the
ANPs, both quantitatively (convergence speed and asymp-
totic performance of target NLL) and qualitatively (sample
quality and diversity).

One of the directions for future work would be to inves-
tigate other various architectures of set function approxima-
tors that can better represent inference procedures. While we
explicitly included BLL statistics to the decoder input in this
work, a self-attention network that inherently capture them



would be more desirable for both approximation accuracy
and model simplicity.
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