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Abstract

Monte-Carlo Tree Search (MCTS) is the state-of-the-art on-
line planning algorithm for large problems with discrete ac-
tion spaces. However, many real-world problems involve con-
tinuous action spaces, where MCTS is not as effective as in
discrete action spaces. This is mainly due to common prac-
tices such as coarse discretization of the entire action space
and failure to exploit local smoothness. In this paper, we
introduce Value-Gradient UCT (VG-UCT), which combines
traditional MCTS with gradient-based optimization of action
particles. VG-UCT simultaneously performs a global search
via UCT with respect to the finitely sampled set of actions
and performs a local improvement via action value gradients.
In the experiments, we demonstrate that our approach out-
performs existing MCTS methods and other strong baseline
algorithms for continuous action spaces.

1 Introduction
Many real-world problems require planning to select ac-
tions sequentially in continuous action spaces. For example,
robotic manipulation is achieved by the torque command se-
quence, playing billiards requires computing precise force
and angle of the cue, and aerospace navigation needs to
choose target velocities. Physical systems often involve dif-
ferential equations for their dynamics that are differentiable
with respect to states and actions.

Monte-Carlo Tree Search (MCTS) (Kocsis and
Szepesvári 2006; Coulom 2006; Browne et al. 2012)
is a highly effective online closed-loop planning algo-
rithm for large search space problems and has shown
great promise especially when the action space is dis-
crete such as playing board games (Silver et al. 2016;
2017), real-time games (Balla and Fern 2009;
Pepels, Winands, and Lanctot 2014) and combinatorial
optimization (Sabharwal, Samulowitz, and Reddy 2012).
MCTS performs quite well with a black-box simulator,
without any heuristic function. However, it is generally not
a method of preferred choice when it comes to planning in
continuous actions. This is mainly because the number of
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possible actions is infinite, thus coarse-grained discretiza-
tion of the action space is unavoidable for a straightforward
tree search. Taking only rough actions can render the search
useless in many real-world problems that require precise
control.

Existing MCTS methods deal with continuous actions
in two main ways. Progressive widening (Coulom 2007;
Couëtoux et al. 2011a), also known as progressive unprun-
ing (Chaslot et al. 2008), gradually increases the number
of available actions at each node based on the visitation
count. The other approach is hierarchical optimistic opti-
mization (HOO) (Bubeck et al. 2009; Mansley, Weinstein,
and Littman 2011), which splits the action space and grad-
ually increases the resolution of actions. While these ap-
proaches may show sufficient performance for selecting
moderately good actions, they require a huge number of
samples to achieve highly accurate controls. In contrast,
gradient-based optimization is very effective for finding ex-
act local optima but cannot be made reachable to global op-
tima without careful initialization.

In this paper, we present Value-Gradient UCT (VG-
UCT), an MCTS algorithm equipped with the gradient-
based fine-tuning of the finite set of action samples. The al-
gorithm jointly performs global (but coarse-grained) search
via MCTS and local (but fine-grained) search via action-
value gradient ascent. Our algorithm is based on the observa-
tion that many real-world problems with continuous action
space have locally differentiable dynamics (with respect to
state and action) thus make gradient ascent highly effective.

In addition, it has been shown that the domain-specific
knowledge can be leveraged to significantly improve the
performance of MCTS (Enzenberger et al. 2010; Arrington,
Langley, and Bogaerts 2016). One of the promising algo-
rithms is kernel-regression UCT (KR-UCT) (Yee, Lisy, and
Bowling 2016; Lee et al. 2018), which has been successfully
applied to challenging continuous action problems such as
curling. KR-UCT can be regarded as leveraging the smooth-
ness in continuous dynamical systems, i.e. similar actions
have similar values thus it is a good idea to share informa-
tion of values between actions. In VG-KR-UCT, we further
incorporated our idea of using the first-order (i.e. gradient)
information of values to boost the performance of KR-UCT.



2 Background
Notations and Basic Formulation
We consider continuous MDP 〈S,A,P, r〉, where S ⊂ Rn
is a set of states s,A ⊂ Rm is a set of actions a,P : S×A →
Pr(S) is a transition function, and r(s, a) ∈ R is the imme-
diate reward for taking action a in state s. We consider the
transition s′ ∼ P(·|s, a) whose samples are generated by a
deterministic function ρ of an input noise variable ξ and con-
ditioning variables s, a: s′ = ρ(s, a, ξ) where ξ ∼ p(ξ) with
a fixed noise distribution. A policy πt : S → A is a mapping
from state to action at time step t. The goal is to maximize
the expected cumulative rewards E [

∑∞
t=0 r(st, at)], which

is assumed to be finite for all policies. We also assume the
differentiable transition and reward function.

Online planning methods compute a policy for a limited
horizon T , treating the current state as the initial state s0.
Specifically, they solve the following optimization problem
within the limited computational budget to obtain optimal
sequence of per-step policies π∗0 , . . . , π

∗
T :

arg max
π0,...πT

V (s0) = EP

[
T∑
t=0

r(st, at) | s0

]
(1)

s.t. at = πt(st) ∀t = 0, . . . , T

After solving Eq. (1), the first action a∗0 = π∗0(s0) is ex-
ecuted, and then re-planning is performed at the next time
step. The planning horizon T trades off between searching
for high-quality long-term policies and computation time re-
quired to solve the optimization problem (Jiang et al. 2015).
We assume a black-box forward simulator G that generates
samples of the next state s′ and reward r, given the current
state s, action a, and noise ξ to be used with the planner,
i.e. (s′, r) = G(s, a, ξ) where ξ ∼ p(ξ) is a known noise
density function. We use a notation xi:j to denote a list of
{xi, xi+1, . . . , xj−1, xj}.

Monte-Carlo Tree Search
Monte-Carlo tree search (MCTS) (Browne et al. 2012) is
a generic online closed-loop planning algorithm that com-
bines random sampling and tree search. Starting from an
empty tree, it iteratively performs finite-horizon simulations
from the current state and selects a leaf node for expansion.
UCT (Kocsis and Szepesvári 2006) is an MCTS algorithm
that adopts UCB1 (Auer, Cesa-Bianchi, and Fischer 2002)
as the action selection rule at each internal decision node
νD (associated to state) of the search tree:

arg max
νC∈CHILDREN(νD)

Q(νD, νC) + c

√
logN(νD)

N(νD, νC)
(2)

where CHILDREN(νD) is a set of child nodes of νD (or
equivalently a set of possible actions at the current state),
Q(νD, νC) is the average of the sampled rewards when the
child chance node νC (associated to action) is selected in
νD,N(νD) is the number of simulations performed through
νD, N(νD, νC) is the number of times νC is selected in
νD, c is the exploration constant to adjust the exploration-
exploitation trade-off. After νC is selected using Eq. (2), the

state transition occurs by taking the action stored in νC (i.e.
s′ = ρ(s, ACTION(νC), ξ) where ξ ∼ p(ξ)). Then, the simu-
lation continues with the child node νD′, which corresponds
to the sampled noise ξ (or equivalently the sampled state s′).
UCT expands the search tree non-uniformly, focusing more
search efforts into promising nodes. UCT solves Eq. (1) in
an anytime manner, and it can be formally shown that UCT
chooses an optimal action at the root node a∗0 = π∗0(s0) with
probability 1 as the number of simulations goes to infinity in
finite MDPs.

Progressive Widening
In continuous MDPs, the vanilla UCT no longer works since
each action should be tried at least once but there are in-
finitely many actions. One of the widely adopted approaches
to the problem is progressive widening (Coulom 2007;
Chaslot et al. 2008), which maintains a finite list of chance
nodes (or equivalently list of actions) to be searched and
incrementally adds a new child chance node νC to the list
based on the visitation counts. Specifically, a new child node
is added every time the following is satisfied:

bN(νD)αc ≥ |CHILDREN(νD)| (3)

where α ∈ (0, 1) is a parameter that controls the (sublin-
ear) growth rate, which enables accumulate enough infor-
mation for the best action on the list. As a new node νC
is created, a new action particle a to be stored in νC is ei-
ther sampled from a probability distribution a ∼ πsampler(·|s)
or generated deterministically (e.g. in the direction of in-
creasing the coverage of action space). The newly gener-
ated action particle a is then stored in ACTION(νC) (and
in INIT-ACTION(νC) too). However, this approach still suf-
fers from coarse-grained discretization and requires a vast
amount of action particles to precisely select optimal ac-
tions. In the continuous and stochastic environment, there
are also infinitely many possible transitions. In order to make
MCTS be consistent, we also gradually add a new child de-
cision node νD′ to CHILDREN(νC) when the following in-
equality is satisfied, which is double progressive widening
(Couëtoux et al. 2011a) technique:

bN(νD, νC)βc ≥ |CHILDREN(νC)| (4)

where β ∈ (0, 1) is a (sublinear) growth rate parameter. As
a new decision node νD′ is created, a new noise is sam-
pled from the noise distribution ξ ∼ p(ξ) and is stored
to νD′. Then, the next state can always be obtained deter-
ministically from this noise s′ = ρ(s, a, ξ). If the condi-
tion (4) is not met, the least visited decision node is tra-
versed (Auger, Couëtoux, and Teytaud 2013) or any decision
node can be selected uniformly. From now, we will refer to
p̂(ξ) as a noise sampling distribution, which follows p(ξ) if
the condition (4) is satisfied or selects an existing noise in
νD′ ∈ CHILDREN(νC) by the predefined rule otherwise.

Other Related Work
There is a significant body of important work on extending
MCTS to continuous action spaces.

HOOT (Mansley, Weinstein, and Littman 2011) replaces
the UCB1 action selection rule by HOO (Bubeck et al. 2009)



in UCT to deal with continuous actions in discrete state en-
vironments. HOLOP (Weinstein and Littman 2012) takes
an alternative approach of leveraging HOO by representing
the entire planning problem as a continuous bandit problem,
where actions correspond to plans.

The progressive widening approach has been extended
to stochastic continuous state and action planning prob-
lems through double progressive widening (Couëtoux et al.
2011a), where the progressive widening is applied to states
as well as actions. In order to improve the performance of
MCTS with progressive widening, cRAVE (Couëtoux et al.
2011b) adopts the RAVE heuristic (Gelly and Silver 2011)
using the Gaussian convolution, encouraging information
sharing among actions in the entire subtree. KR-UCT (Yee,
Lisy, and Bowling 2016) also encourages information shar-
ing between actions in the same node through kernel regres-
sion, where new action generation is guided by kernel den-
sity estimation. KR-UCT has outperformed cRAVE in the
simulated curling domain and is regarded as the state-of-the-
art.

Another simple online planning algorithm for continu-
ous control is Random Shooting (Nagabandi et al. 2018).
It is a simple sampling-based planning method that gener-
ates multiple action sequences, computes the rewards for
each trajectory and chooses the first action of the trajec-
tory with the highest cumulative rewards. Cross-entropy
method (CEM) (Rubinstein and Kroese 2004; Weinstein and
Littman 2013) is also popular method for online planning.
It iterates the procedure of sampling action sequences and
fitting a new distribution (e.g. Gaussian) to top-K action se-
quences with the highest rewards alternatively.

3 VG-UCT for Continuous Actions

Many real-world problems with continuous state and ac-
tion spaces have locally smooth dynamics. Nonetheless, to
the best of our knowledge, using the first-order information
(i.e. gradients) of the environment dynamics in MCTS has
been mostly unexplored. In this section, we establish Value-
Gradient UCT (VG-UCT), an MCTS algorithm that effec-
tively uses this additional information. We first introduce
the algorithm that uses the exact gradients of the dynamics
with white-box model that can yield analytic derivatives, and
then present its practical version that requires only black-
box simulator (s′, r) = G(s, a, ξ).

(Stochastic) Value Gradients

The goal of online planning is to directly optimize the se-
quence of policies at each time step π0, . . . πT , rather than
optimizing a single parameter θ of the parameterized pol-
icy πθ. Suppose that the initial state s0 and the sequence of
policies π0, . . . , πT are given. Then, as described in Figure
4 in Appendix A, we can sequentially obtain rewards r0:T at
every time step through intermediate states s0:T and actions
a0:T , which are computed by at = πt(st), rt = r(st, at),
and st+1 = ρ(st, at, ξt) where ξt ∼ p(ξ). Then, differenti-
ating the planning objective in Eq. (1) with respect to st and

πt yields the stochastic value-gradient (Heess et al. 2015):
∂V (st, πt:T )

∂st
=
∂rt
∂st

+
∂πt
∂st

∂rt
∂πt

+ Eξt∼p(ξ)
[(

∂st+1

∂st
(5)

+
∂πt
∂st

∂st+1

∂πt

)
∂V (st+1, πt+1:T )

∂st+1

]
∂V (st, πt:T )

∂πt
=
∂rt
∂πt

+ Eξt∼p(ξ)
[
∂st+1

∂πt

∂V (st+1, πt+1:T )

∂st+1

]
(6)

for t ≤ T . Therefore, if the gradients of en-
vironment dynamics, (i.e. ∂r(s,a)

∂s , ∂r(s,a)
∂a , ∂ρ(s,a,ξ)

∂s ,
∂ρ(s,a,ξ)

∂a ) are available, on the sampled trajectory τ =
(s0, a0, ξ0, s1, a1, ξ1, . . . , sT ) for any given policy π0:T ,
Monte-Carlo estimates of the value gradients can be com-
puted by the backward recursions, starting from vaT+1 = 0
and vsT+1 = 0:

vst =

[
∂r(s, a)

∂s
+
∂π(s)

∂s

∂r(s, a)

∂a
(7)

+

(
∂ρ(s, a, ξ)

∂s
+
∂π(s)

∂s

ρ(s, a, ξ)

∂a

)
vst+1

]∣∣∣∣∣
s=st,a=at,ξ=ξt

vat =

[
∂r(s, a)

∂a
+
∂ρ(s, a, ξ)

∂a
vst+1

]∣∣∣∣∣
s=st,a=at,ξ=ξt

(8)

Remark. If πt is not a function that outputs a transforma-
tion of input st (e.g. MCTS or methods that directly opti-
mizes the sequence of actions a0:T ), then ∂πt

∂st
= 0.

We can directly use these estimates of the value gradients
[va0 , . . . , v

a
T ] to locally improve the given policies π0:T :
πt(st)← πt(st) + ηvat for t = 0, . . . , T (9)

where η is a step-size for the stochastic gradient ascent.

Value-Gradient UCT (VG-UCT)
UCT is an anytime planning algorithm that performs com-
binatorial optimization with respect to π0, . . . , πT in fi-
nite set of actions to maximize the expected sum of re-
wards E[

∑T
t=0 r(st, at)]. It samples a trajectory τ =

(s0, a0, ξ0, s1, a1, ξ1, . . . , sT ) via UCB1 inside the tree or
via rollout policy outside the tree at every simulation: start-
ing from the root node νD0 and initial state s0:

(Tree policy: inside the tree) (10)

νCt = arg maxνCt ∈CHILDREN(νD)

[
Q(νDt , ν

C
t ) + c

√
logN(νD)

N(νD,νC)

]
at = ACTION(νCt ), ξt ∼ p̂(ξ), st+1 = ρ(st, at, ξt)

νDt+1 = (a child of νCt that corresponds to ξt)
(Rollout policy: outside the tree)

at ∼ πrollout(·|st), ξt ∼ p(ξ), st+1 = ρ(st, at, ξt)

UCT asymptotically converges to the globally optimal se-
quence of policies π∗0:T when the state and action space are
finite. The main idea behind our proposed method, Value-
Gradient UCT (VG-UCT), is to combine UCT’s global
search with respect to the (coarse-grained) discretized ac-
tions and local search via value-gradient ascent for fine-
tuning. VG-UCT essentially consists of the following three
steps in each simulation:



Algorithm 1 Value-Gradient UCT (VG-UCT)

function SEARCH(s0)
Create a root node νD .
repeat

SIMULATE(s0, νD , 0)
until TIMEOUT()
νC ← arg maxνC∈CHILDREN(νD)Q(νD, νC)

a∗ ← ACTION(νC)
return a∗

end function

function SIMULATE(s, νD , t)
if t = (planning horizon T ) then

return
[
0, ∅, ∅

]
end if
[νC , a, rollout]←SELECTACTION(s, νD , c)
[νD′, ξ]←SAMPLENOISE(νD , νC )
[r, s′]← G(s, a, ξ)
if rollout then

[R′, {at+1:T }, {ξt+1:T }]←ROLLOUT(s′, t+ 1)
else

[R′, {at+1:T }, {ξt+1:T }]←SIMULATE(s′, νD′, t+ 1)
end if
R← r +R′

N(νD)← N(νD) + 1
N(νD, νC)← N(νD, νC) + 1

Q(νD, νC)← Q(νD, νC) + R−Q(νD,νC)

N(νD,νC)

// After simulation, perform value-gradient ascent.
for j = 1, . . . ,m do
ãj ← a+ εej
[g]j = (RETURN(s, {ãj , at+1:T }, {ξ, ξt+1:T })−R)/ε (Eq. (12))

end for
ACTION(νC)← ACTION(νC) + ηg // a remains same.
ACTION(νC) is clipped within:

{â ∈ A : ‖â− INIT-ACTION(νC)‖ ≤ ∆}
return

[
R, {a, at+1:T }, {ξ, ξt+1:T }

]
end function

function SELECTACTION(s, νD , c)
if bN(νD)αc ≥ |CHILDREN(νD)| then

Create a new chance node νC

Add νC to CHILDREN(νD)
a ∼ πsampler(·|s)
ACTION(νC)← a, INIT-ACTION(νC)← a
N(νD, νC)← 0, Q(νD, νC)← 0
rollout← true

else
νC ← arg max

νC∈CHILDREN(νD)

Q(νD, νC) + c
√

logN(νD)

N(νD,νC)

a← ACTION(νC)
rollout← false

end if
return [νC , a, rollout]

end function
function SAMPLENOISE(νD , νC )

if bN(νD, νC)cβ ≥ |CHILDREN(νC)| then
Create a new decision node νD′

Add νD′ to CHILDREN(νC)
NOISE(νD′)← p(ξ) and N(νD′)← 0

else
νD′ ← (least visited node in CHILDREN(νC))

end if
ξ ← NOISE(νD′)
return [νD′, ξ]

end function
function ROLLOUT(s, t)

if t = (planning horizon T ) then
return

[
0, ∅, ∅

]
end if
a ∼ πrollout(·|s) and ξ ∼ p(ξ)
[r, s′]← G(s, a, ξ)
[R′, {at+1:T }, {ξt+1:T }]←ROLLOUT(s′, t+ 1)
R← r +R′

return
[
R, {a, at+1:T }, {ξ, ξt+1:T }

]
end function

1. Sample a trajectory τ = (s0, a0, ξ0, s1, a1, ξ1, . . . , sT )
via UCT.

(
Eq. (10)

)
2. Compute Monte-Carlo estimate of the value gradients
va0:T w.r.t. the sampled τ .

(
Eq. 7-8

)
3. Update π0:T via gradient ascent: ACTION(νCt ) ←

ACTION(νCt ) + ηvat , ∀t
(
Eq. (9))

)
The first UCT step generates a tree-guided trajectory

while exploring the combinatorial space of finite (coarse-
grained) actions. Using the sampled trajectory, we then lo-
cally fine-tunes the trajectory-generating policies πt (i.e. the
actual action ACTION(νCt ) stored at each node νCt ) in the
direction of maximizing the expected cumulative rewards.
By combining UCT search and gradient-based fine-tuning,
we can expect to overcome both local optima problem in
gradient-based method and coarse-grained solution problem
in tree search.

However, care must be taken when we update
ACTION(νCt ) via value-gradient ascent in the chance
node since the slight perturbation of the action can have

potentially large impact on the future trajectory in the
subtree. If the influence by action perturbation is severely
large, then there is a risk that information accumulated in
the tree becomes invalid. Fortunately, we can show that this
influence is bounded by the degree of action perturbation
and the Lipschitz continuity of the environment dynamics.
Theorem 1. Assume transition function is induced by
a Lipschitz model class (Asadi, Misra, and Littman
2018) Φg , and reward function is Lipschitz continuous.
If two Lipschitz policies π0:T and π̂0:T are ∆-close, i.e.
supt,s d(πt(s), π̂t(s)) ≤ ∆, then for all s0, the gap between
two value functions are bounded by ∆:

|V (s0, π0:T )− V (s0, π̂0:T )| ≤ Lv∆

where Lv = Lr

(
1 + T + La(1+Lπ)

1−Ls

(
T − Ls(1−LTs )

1−Ls

))
,

Ls, La are Lipschitz constants for transition function, Lr is
a Lipschitz constant for reward function, and Lπ is a Lips-
chitz constant for policy.

Proof. Details on the definitions, assumptions and the



proofs are in Appendix B.

By Theorem 1, we can guarantee that the degree of the
change of average rewards to be stored in each node is
bounded by Lv∆ when we confine the maximum pertur-
bation of ACTION(νC) from the initially generated value
INIT-ACTION(νC) by ∆. Therefore, we additionally intro-
duce the following procedure for the stability of the tree
search, which restricts actions to be improved only within
the ∆-bounded region.

4. Clip ACTION(νCt ) within {a ∈ A :
d
(

INIT-ACTION(νCt ), a
)
≤ ∆} ∀t

Here, we can further show that under some assumptions
detailed in Appendix C, VG-UCT asymptotically improves
the best sequence of actions toward the maximally achiev-
able rewards within ∆-bounded region, despite the possibly
occasional negative updates (Theorem 2 in Appendix C).

VG-UCT with Finite Differences
The vanilla VG-UCT introduced in Section 3 requires addi-
tional O(n2 +nm) computational time at each time-step for
matrix-multiplication (Eq. (7-8)) in order to obtain value-
gradients va0:T . A more fundamental issue in VG-UCT is
that it requires white-box model of the transition function ρ
and reward function r to compute

[
∂ρ
∂s ,

∂ρ
∂a ,

∂r
∂s ,

∂r
∂a

]
, which is

usually not accessible. In contrast, existing MCTS methods
work only with the black-box simulator (s′, r) ∼ G(s, a).

One way to circumvent the need for a (gradient-yielding)
white-box model is to use finite differences,[

∂f(x)

∂x

]
j

≈ f(x+ εej)− f(x)

ε
(11)

where ej is an one-hot vector whose j-th value is one, and
ε is a small number, e.g. 10−7. It only requires evaluating
the function, thus we can approximate the Jacobians of the
dynamics using a black-box forward simulator ρ and r on
the sampled trajectory τ = (s0, a0, ξ0, s1, a1, ξ1, . . . , sT )
using the finite differences. Then, we can apply approx-
imate

[
∂ρ
∂s ,

∂ρ
∂a ,

∂r
∂s ,

∂r
∂a

]
to Eq. (7-8) for computing value-

gradients. However, while this approach is applicable, it re-
quiresO(n2+nm) times more queries to the black-box sim-
ulator at every time step. Given that the forward-simulation
of physical simulators is usually the main bottleneck of the
overall search procedure, this approach is infeasible for on-
line planning in high-dimensional state space with a very
limited search time.

Thus, we take instead a more direct approach to obtaining
value gradients [va0 , . . . , v

a
T ], which circumvents estimating

Jacobian of the dynamics. Let RETURN(st, {at:T }, {ξt:T })
be the sum of rewards with respect to the initial state st and
a sequence of actions {at:T } and noises {ξt:T }:

RETURN(st, {at:T }, {ξt:T }) =

T∑
k=t

r(sk, ak)

s.t. sk+1 = ρ(sk, ak, ξk),

which is a deterministic function of the given inputs. Then,
the value gradient can be computed by1

[ṽat ]j =
(

RETURN(st, {at + εej , at+1:T }, {ξt:T }) (12)

− RETURN(st, {at:T }, {ξt:T })
)
/ε

for all j = 1, . . . ,m, where ṽat becomes equivalent to vat in
Eq. (8) as ε→ 0.

Complexity The additional time complexity and the num-
ber of additional queries to the simulator of Eq. (12) is
now O

(
(T − t)m

)
. Here, note that ṽat does not depend

on the past or future value-gradients unlike Eq. (8), thus
their computations are fully parallelizable for each time step.
When fully parallelized, the overall complexity of Eq. (12)
isO

(
Tm

)
whereas Eq. (7-8) requiresO

(
T (n2 +nm)

)
. The

final pseudo-code of VG-UCT using Eq. (12) is described
in Algorithm 1, where the improvements to UCT (with pro-
gressive widening) are highlighted as blue.

4 Experiments
In this section, we compare the performance of VG-UCT
with those of representative set of other online planning al-
gorithms for continuous action spaces: (1) UCT with pro-
gressive widening (UCT), (2) Kernel Regression UCT (KR-
UCT) (Yee, Lisy, and Bowling 2016), (3) Grad-MPC (Ca-
macho and Alba 2013), a simple gradient-based MPC that
randomly initializes actions a0:T and then updates them
via value-gradient ascent using Eq. (12), (4) Cross-Entropy
Method (CEM) (Weinstein and Littman 2013), (5) Uniform
Random Shooting (Uniform-RS) (Nagabandi et al. 2018),
(6) Hierarchical Open-Loop Optimistic Planning (HOLOP)
(Weinstein and Littman 2012). For UCT and VG-UCT, the
new actions are sampled uniformly from the entire action
space when performing progressive widening, unless other-
wise noted. Detailed experimental settings are provided in
Appendix D.

Illustrative 2D Example
We first show how the combination of UCT search (global
but coarse-grained) and gradient-based optimization (local
but fine-grained) can effectively work together in a smooth
dynamical system. We use an illustrative example shown
in Figure 1. This is a three-step planning problem, where
the initial state is s0 = (1, 1), the action space is A =
[0, 2] × [0, 2] ⊂ R2, and ρ(s, a, ξ) = s + a + ξ where
ξ ∼ N (0, (0.03)2I). As described in Figure 1, in order to
achieve the maximal reward, the agent should reach the goal
at (5, 5) colored in red very precisely, while avoiding the
negative reward regions colored in blue.

As can be seen in Figure 1, the VG-UCT agent was the
only one that was able to arrive at the goal very accurately

1Here, the central difference is also applicable, but it requires
more queries to the simulator than the forward difference. In Eq.
(12), RETURN(st, {at:T }, {ξt:T }) is obtained during UCT rollout,
and forward difference can reuse it. We tested the the central differ-
ence too, but the results were almost identical to those of forward
difference under the same number of simulation (but twice the wall
clock time).
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Figure 1: An illustrative example that requires planning to explore beyond blue regions and choose actions precisely. Each row
shows the trajectory of the algorithms for each time step under the search time limit of 0.1 second. Each green dot represents
the current position of each agent executed with different random seed, and each black line represents its trajectory. In this
example, VG-UCT agent was most accurate in arriving at the goal location within the search time limit.
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Figure 2: The results of four stochastic continuous control benchmarks. For each figure, the x-axis denotes the search time for
action selection (seconds), and the y-axis represents the sum of rewards during 200 time steps for Pendulum and Acrobot, 50
steps for Reacher-v2, and 100 steps for Pusher-v2. The errorbars indicate 1.96× (standard error).

within the search time limit. UCT can only explore the
(coarsely) discretized actions, thus it is very difficult to reach
the goal precisely within short search time limit. Similarly,
Uniform-RS had difficulty to reach the goal exactly since
it uses sequences of randomly sampled actions. CEM often
suffers from bad local minima if the sampled trajectories at
the first iteration are not close enough to the goal. HOLOP
generates plan by recursively splitting up the (T × m)-
dimensional solution space for a0:T . In order to get suffi-
ciently high resolution for the discretized space, it required
exponentially many simulations with respect to T ×m. On
the other hand, Grad-MPC failed to overcome the bad local
optima. If the initial sequence of actions a0:T was not good
enough, it tended to stay at s0 or not improved at all due to
lack of gradient signal almost everywhere. VG-UCT shows
the best performance by choosing a roughly good sequence
of actions through UCT and fine-tuning it through value gra-
dients.

Continuous Control Benchmark Tasks
Realistic experiments were conducted on four stochas-
tic variants of continuous control tasks: Pendulum (con-
tinuous action version), Acrobot (continuous action ver-
sion), Reacher and Pusher from the OpenAI Gym envi-
ronment (Brockman et al. 2016; Todorov, Erez, and Tassa

2012), ranging from low-dimensional control problem (n =
2, m = 1) to high-dimensional control problem (n = 22,
m = 7). The reward functions of Pendulum and Acrobot
were defined in the form of

r(s) = exp(−‖x− xgoal‖2/σ)− 1

as in (Deisenroth and Rasmussen 2011), where x is the cur-
rent position of the tip, and xgoal is the position of the up-
right tip. In all tasks, we injected Gaussian white noise to the
action and the state, before and after the deterministic for-
ward simulation, in order to make the transition stochastic.
Other settings regarding the dynamics remained the same as
in OpenAI Gym.

In Figure 2, we summarize experimental results of our
methods (VG-UCT, VG-KR-UCT) and the baseline algo-
rithms 2 . VG-KR-UCT is our extended version of KR-UCT

2Though the main focus of the paper is online planning us-
ing a small amount of search time with a black-box simulator, we
also report the result of Soft-Actor Critic (SAC) (Haarnoja et al.
2018) trained for a very long time, i.e. 10 million steps for rela-
tive performance comparison. We also report the results of a sim-
ple iLQG given 10 seconds of search time per decision, but note
that it requires Jacibian/Hessian of the dynamics. Estimating Ja-
cobian/Hessian via finite differences requires O(n+m)/O(n2 +
nm+m2) queries to the black-box simulator.
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Figure 3: The result of reinforcement learning via MCTS on four stochastic continuous control benchmarks. The x-axis denotes
training epochs that correspond to 5 episodes, and the y-axis represents the sum of rewards during 200 time steps for Pendulum
and Acrobot, 50 steps for Reacher, and 100 steps for Pusher. The shades in the plots indicate 1.96× (standard error). The search
times for MCTS planners are given 0.05s for Pendulum, Acrobot and Reacher, and 1s for Pusher. The dotted line show the
performance of SAC trained with 10 million steps.

that integrates our core idea on updating action particles
via value-gradient ascent (Eq. (12)), and its pseudo-code
is provided in Appendix E. As can be seen in the figure,
VG-UCT (and VG-KR-UCT) outperforms other baselines,
which highlights the effectiveness of VG-UCT that com-
bines global exploration and local fine-tuning. Other algo-
rithms such as UCT, Uniform-RS, and HOLOP suffer from
crude discretization and thus their control from planning was
not accurate enough to obtain large rewards. In addition,
CEM, HOLOP, and Uniform-RS are open-loop planning al-
gorithms, which can lead to sub-optimal action in stochastic
dynamics even if an infinite amount of time is given (We-
instein and Littman 2012). The performance of Grad-MPC
is heavily affected by the initial location of the actions. Us-
ing KR-UCT (without value gradients) helped improve the
performance of MCTS in some tasks via information sharing
among similar actions and guiding action generation via ker-
nel density estimation, but improvement was marginal since
it could not fundamentally resolve coarse-grained discretiza-
tion of the action space.

MCTS as a Policy Improvement Operator
As suggested by Silver et al. (2017), MCTS can be
used as a powerful policy improvement operator for re-
inforcement learning. It is clear that trajectories τ =
{s0, a0, r0, s1, a1, r1, . . .}, which are generated from the
MCTS search guided by some policy π (i.e. used for sam-
pling actions in intermediate nodes and rollouts), will have
higher rewards compared to those generated by the direct ex-
ecution of π. This idea can be adopted in VG-UCT to further
improve its performance.

Specifically, we iteratively employ following procedures
to improve the quality of new action particle proposals in
MCTS:

1. Using the current stochastic policy πθ parameterized by
θ as the proposal distribution for generating new action
particles and for rollout in MCTS, collect trajectories
τ (0), τ (1), ..., where

τ (i) = {s(i)
0 , a

(i)
0 , s

(i)
1 , a

(i)
1 , ...}

is the i-th trajectory collected from the environment.

2. Update the policy parameter θ by maximizing the log-

likelihood

arg maxθ
∑
i

∑|τ(i)|
t=0 log πθ(a

(i)
t |s

(i)
t ),

which corresponds to the behavioral cloning of the
MCTS-improved policy.

In the above scheme, the performance improvement rate of
the policy πθ would reflect the performance of search.

For this set of experiments, we use Gaussian policies
N
(
a|µθ(s),diag(σ2

θ)
)

with state-independent covariance
for VG-UCT and UCT. The state-dependent parameterized
mean µθ is represented as a neural network with two hid-
den layers, where each hidden layer uses 64 tanh activation
units. We use the learned policy network as both an action
sampler and a rollout policy for MCTS.

In Figure. 3, we present the learning curves of MCTS al-
gorithms when they were adopted as policy improvement
operator to the policy network that guides search. VG-UCT
significantly outperforms UCT in all four stochastic contin-
uous control tasks. These are mainly due to the coarse action
selection made by UCT, which turns out to have a negative
impact on policy improvement, compared to VG-UCT.

5 Conclusion
We presented VG-UCT, an online MCTS algorithm for con-
tinuous action spaces, which combines traditional MCTS
with local fine-tuning of action particles via value-gradient
ascent. Our approach circumvents estimating Jacobian of the
dynamics and directly approximate the value-gradient using
a finite-difference method, which only requires black-box
simulator. Our experimental results show that VG-UCT out-
performs the existing MCTS methods and strong baselines
for continuous action spaces over various tasks.

As for future work, we can use both policy and value
networks to further improve the performance of VG-UCT.
By training a value function network, we would obtain an
actor-critic-like method that can yield value-gradients with-
out calls to the black-box simulator. This can potentially re-
duce the variance of value-gradients induced by the stochas-
tic nature of rollout policy and transition while improving
the search efficiency by lowering the number of queries to
the black-box simulator, which is the main bottleneck of
search.
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Appendix A Stochastic Computation Graph of MDP

s0 : Input node

: Deterministic node

: Stochastic node s0 s1 . . . sT−1 sT

a0 a1 . . . aT−1 aT

r0 r1 . . . rT−1 rT

V

ξ0 ξ1 . . . ξT−1

Figure 4: Stochastic computation graph of MDP and the objective function value for the finite-horizon planning, where V =

Eξ
[∑T

t=0 rt | s0, π0:T

]
, rt = r(st, at), st+1 = ρ(st, at, ξt), ξt ∼ p(ξ), and at = πt(st).

Appendix B Proof of Theorem 1
We first introduce some definitions and assumptions to use, mostly from (Asadi, Misra, and Littman 2018).
Definition 1. Given two metric spaces (M1, d1) and (M2, d2) consisting of a space and a distance metric, a function f : M1 →
M2 is Lipschitz continuous (or simply Lipschitz) if the Lipschitz constant, defined as

Kd1,d2(f) := sup
s1∈M1,s2∈M1

d2(f(s1), f(s2))

d1(s1, s2)

is finite.
Definition 2. (Wasserstein metric)
(Primal definition) Given a metric space (M,d) and the set P(M) of all probability measures on M , the Wasserstein metric
between two probability distributions µ1 and µ2 in P(M) is defined as

W (µ1, µ2) := inf
j∈Λ

∫∫
j(s1, s2)d(s1, s2)ds2ds1

where Λ denotes the collection of all joint distributions j on M ×M with marginals µ1 and µ2.
(Dual definition) Wasserstein distance is linked to Lipschitz continuity using duality:

W (µ1, µ2) = sup
f :Kd,dR (f)≤1

∫ (
f(s)µ1(s)− f(s)µ2(s)

)
ds

Definition 3. (Lipschitz Model Class) (Asadi, Misra, and Littman 2018) Given a metric state space (S, dS) and an action
space A, let Φq as a collection of functions Φq = {φ : S → S} distributed according to q(φ|a) where a ∈ A. We say that Φq
is a Lipschitz model class if there exists a finite Ls such that

sup
φ∈Φg

sup
s1∈S,s2∈S

dS
(
φ(s1), φ(s2)

)
dS(s1, s2)

≤ Ls

We will refer to Ls as a Lipschitz constant of Φq .
Assumption 1. Transition function P(·|s, a), induced by a Lipschitz model class Φq with Lipschitz constant Ls, satisfies
P(s′|s, a) =

∫
q(φ|a)1(φ(s) = s′)dφ. Also, for all s ∈ S, a1 ∈ A and a2 ∈ A, the following inequality holds:

W
(
P(·|s, a1),P(·|s, a2)

)
d
(
a1, a2

) ≤ La (13)

Also, reward function r(s, a) is Lr-Lipschitz continuous: for all (s1, a1) ∈ S ×A and (s2, a2) ∈ S ×A,

|r(s1, a1)− r(s2, a2)|
d
(
(s1, a1), (s2, a2)

) ≤ Lr



Finally, for all t, policy πt is Lπ-Lipschitz continuous: for all s1 ∈ S and s2 ∈ S,

d(πt(s1), πt(s2))

d(s1, s2)
≤ Lπ

Definition 4. µt(s|π0:t−1) = Pr(st = s|s0, π0:t−1) and d(π1, π2) = sups∈S dA(π1(s), π2(s)).
Lemma 1. For all t ≥ 1, the difference of two state distributions at time step t is bounded by policy perturbation:

W (µt(·|π0:t−1), µt(·|π̂0:t−1)) ≤ La
t−1∑
i=0

Lt−i−1
s d(πi, π̂i)

Proof. We provide the proof by induction. When t = 1,

W (µ1(·|π0), µ1(·|π̂1)) = W (p(·|s0, π0), p(·|s0, π̂0))

= W (P(·|s0, π0(s0)),P(·|s0, π̂0(s0)))

≤ Lad(π0, π̂0)

We now prove the inductive step. Assume that W (µt(·|π0:t−1), µt(·|π̂0:t−1)) ≤ La
∑t−1
i=0 L

t−i−1
s d(πi, π̂i). Then,

W (µt+1(·|π0:t), µt+1(·|π̂0:t))

≤W (µt+1(·|π0:t), µt+1(·|π0:t−1π̂t))︸ ︷︷ ︸
(a)

+W (µt+1(·|π0:t−1π̂t), µt+1(·|π̂0:t))︸ ︷︷ ︸
(b)

Here, (a) is bounded by:

(a) = W (µt+1(·|π0:t), µt+1(·|π0:t−1, π̂t))

= sup
f

∫ (
µt+1(s|π0:t−1, πt)− µt+1(s|π0:t−1, π̂t)

)
f(s)ds

= sup
f

∫∫
µt(s0|π0:t−1)

(
p(s|s0, πt)− p(s|s0, π̂t)

)
ds0f(s)ds

≤
∫
µt(s0|π0:t−1) sup

f

∫ (
p(s|s0, πt)− p(s|s0, π̂t)

)
f(s)dsds0

=

∫
µt(s0|π0:t−1)W (P(·|s0, πt(s0)),P(·|s0, π̂t(s0)))ds0

≤
∫
µt(s0|π0:t−1)Lad(πt(s0), π̂t(s0))ds0

≤ La
∫
µt(s0|π0:t−1)d(πt, π̂t)ds0

= Lad(πt, π̂t)

Also, (b) is bounded by:

(b) = W (µt+1(·|π0:t−1, π̂t), µt+1(·|π̂0:t))

= sup
f :KdS ,R(f)≤1

∫ (
µt+1(s|π0:t−1, π̂t)− µt+1(s|π̂0:t−1, π̂t)

)
f(s)ds

= sup
f :KdS ,R(f)≤1

∫∫ (
µt(s0|π0:t−1)− µt(s0|π̂0:t−1)

)
p(s|s0, π̂t)ds0f(s)ds

= sup
f :KdS ,R(f)≤1

∫∫ (
µt(s0|π0:t−1)− µt(s0|π̂0:t−1)

)
P(s|s0, π̂t(s0))f(s)dsds0

= sup
f :KdS ,R(f)≤1

∫∫ (
µt(s0|π0:t−1)− µt(s0|π̂0:t−1)

)∫
q(φ|π̂t(s0))1(φ(s0) = s)f(s)dφdsds0

= sup
f :KdS ,R(f)≤1

∫∫ (
µt(s0|π0:t−1)− µt(s0|π̂0:t−1)

)
q(φ|π̂t(s0))f(φ(s0))dφds0



f(φ(s0)) is composition of Ls-Lipschitz and 1-Lipschitz⇒ Ls-Lipschitz.

= Ls sup
f :KdS ,R(f)≤1

∫∫ (
µt(s0|π0:t−1)− µt(s0|π̂0:t−1)

)
q(φ|π̂t(s0))

f(φ(s0))

Ls
dφds0

≤ Ls sup
g:KdS ,R(f)≤1

∫∫ (
µt(s0|π0:t−1)− µt(s0|π̂0:t−1)

)
q(φ|π̂t(s0))g(s0)dφds0

= Ls sup
g:KdS ,R(f)≤1

∫ (
µt(s0|π0:t−1)− µt(s0|π̂0:t−1)

)(∫
q(φ|π̂t(s0))dφ

)
g(s0)ds0

= Ls sup
g:KdS ,R(f)≤1

∫ (
µt(s0|π0:t−1)− µt(s0|π̂0:t−1)

)
g(s0)ds0

= LsW (µt(·|π0:t−1), µt(·|π̂0:t−1))

Therefore,

W (µt+1(·|π0:t), µt+1(·|π̂0:t))

≤ (a) + (b)
≤ Lad(πt, π̂t) + LsW (µt(·|π0:t−1), µt(·|π̂0:t−1))

≤ Lad(πt, π̂t) + Ls

(
La

t−1∑
i=0

Lt−i−1
s d(πi, π̂i)

)
(inductive hypothesis)

= La

(
d(πt, π̂t) +

t−1∑
i=0

Lt−is d(πi, π̂i)

)

= La

(
t∑
i=0

Lt−is d(πi, π̂i)

)
which concludes the proof.

Theorem 1. Assume transition function is induced by a Lipschitz model class (Asadi, Misra, and Littman 2018) Φg , and reward
function is Lipschitz continuous. If two Lipschitz policies π0:T and π̂0:T are ε-close (i.e. supt,s d(πt(s), π̂t(s)) ≤ ε), then for
all s0, the gap between two value functions are bounded by ε:

|V (s0, π0:T )− V (s0, π̂0:T )| ≤ Lvε

where Lv = Lr

(
1 + T + La(1+Lπ)

1−Ls

(
T − Ls(1−LTs )

1−Ls

))
, Ls, La are Lipschitz constant for transition function, Lr is Lipschitz

constant for reward function, and Lπ is Lipschitz constant for policies.

Proof. We first define a function f(s) = r(s,π̂(s))
Lr(1+Lπ) . It can be shown that KdS ,R(f) = 1 as follows:

|f(s)− f(ŝ)| = 1

Lr(1 + Lπ)
|r(s, π̂(s))− r(ŝ, π̂(ŝ))|

≤ 1

Lr(1 + Lπ)
Lr|d(s, ŝ) + d(π̂(s), π̂(ŝ))|

≤ 1

Lr(1 + Lπ)
Lr|d(s, ŝ) + Lπd(s, ŝ)|

= d(s, ŝ)

Then,

V (s0, π0:T )− V (s0, π̂0:T )

=

T∑
t=0

(∫
µt(s|π0:t−1)r(s, πt(s))− µt(s|π̂0:t−1)r(s, π̂t(s))ds

)

=

T∑
t=0

∫
µt(s|π0:t−1)

(
r(s, πt(s))− r(s, π̂t(s))

)
︸ ︷︷ ︸

≤Lrd(πt,π̂t)

+
(
µt(s|π0:t−1)− µt(s|π̂0:t−1)

)
r(s, π̂t(s))ds



=

T∑
t=0

∫
µt(s|π0:t−1)

(
r(s, πt(s))− r(s, π̂t(s))

)
︸ ︷︷ ︸

≤Lrd(πt,π̂t)

+
(
µt(s|π0:t−1)− µt(s|π̂0:t−1)

)
r(s, π̂t(s))ds

≤
T∑
t=0

(
Lrd(πt, π̂t) +

∫ (
µt(s|π0:t−1)− µt(s|π̂0:t−1)

)
r(s, π̂t(s))ds

)

=

T∑
t=0

(
Lrd(πt, π̂t) + Lr(1 + Lπ)

∫ (
µt(s|π0:t−1)− µt(s|π̂0:t−1)

)
f(s)ds

)

≤
T∑
t=0

(
Lrd(πt, π̂t) + Lr(1 + Lπ) sup

f :KdS ,R(f)≤1

∫ (
µt(s|π0:t−1)− µt(s|π̂0:t−1)

)
f(s)ds

)

=

T∑
t=0

(
Lrd(πt, π̂t) + Lr(1 + Lπ)W (µt(·|π0:t−1), µt(·|π̂0:t−1))

)
= Lrd(πt, π̂t) +

T∑
t=1

(
Lrd(πt, π̂t) + Lr(1 + Lπ)W (µt(·|π0:t−1), µt(·|π̂0:t−1))

)
≤ Lrd(πt, π̂t) +

T∑
t=1

(
Lrd(πt, π̂t) + Lr(1 + Lπ)

(
La

t−1∑
i=0

Lt−i−1
s d(πi, π̂i)

))
(Lemma 1)

≤ Lrε+

T∑
t=1

(
Lr + LaLr(1 + Lπ)

t−1∑
i=0

Lis

)
ε

= Lrε+

T∑
t=1

(
Lr + LaLr(1 + Lπ)

1− Lts
1− Ls

)
ε

= Lr

(
1 + T +

La(1 + Lπ)

1− Ls

(
T − Ls(1− LTs )

1− Ls

))
ε

Appendix C Convergence Analysis - Finite Tree and Deterministic Transition Case
Careful readers can notice that the gradient update of VG-UCT may sometimes negatively affect the parent node in terms of
rewards depending on the node selection in the subtree. Fortunately, we can further show that under some assumptions detailed
below, VG-UCT asymptotically improves the best sequence of actions toward the maximally achievable rewards within ∆-
bounded region.

In order to show this, we start from some definitions and well-known facts regarding gradient-ascent.
Definition 5. A differentiable function f(x) is said to be µ-strongly concave if for any x and y,

f(y) ≤ f(x) + 〈∇f(x), y − x〉 − 1

2
µ‖y − x‖22 (14)

Definition 6. A differentiable and concave function f(x) is said to be L-smooth if for any x and y,

f(y) ≥ f(x) + 〈∇f(x), y − x〉 − 1

2
L‖y − x‖22 (15)

Lemma 2. If f is L-smooth, then
‖∇f(x)‖22 ≤ −2L(f(x)− f(x∗)) (16)

where x∗ is the point that maximizes f(x).

Proof. In Eq. (15), by inserting y = x+ 1
L∇f(x),

f

(
x+

1

L
∇f(x)

)
≥ f(x) +

1

L
〈∇f(x),∇f(x)〉 − 1

2
L‖ 1

L
∇f(x)‖22

= f(x) +
1

2L
‖∇f(x)‖22

⇔ 2L

(
f

(
x− 1

L
∇f(x)

)
− f(x)

)
≥ ‖∇f(x)‖22



Therefore, since x∗ is the point that maximizes f(x), we obtain

‖∇f(x)‖22 ≤ 2L

(
f

(
x− 1

L
∇f(x)

)
− f(x)

)
≤ 2L(f(x∗)− f(x)) = −2L(f(x)− f(x∗))

Lemma 3. Let f be µ-strongly concave and L-smooth function. Then, for any xn, ηn = 1
µ(n+α) , and α > 1 such that ηn ≤ 1

L ,
the gradient update xn+1 = xn + ηn∇f(xn) makes the point closer to the optima:

‖xn+1 − x∗‖22 ≤
n+ α− 1

n+ α
‖xn − x∗‖22

Proof. By definition 14 with x→ xn, y → x∗,

2〈∇f(xn), xn − x∗〉 ≤ 2(f(xn)− f(x∗))− µ‖xn − x∗‖22 (17)

‖xn+1 − x∗‖ = ‖xn − x∗ + ηn∇f(xn)‖22
= ‖xn − x∗‖22+2ηn〈∇f(xn), xn − x∗〉+ η2

n‖∇f(xn)‖22 (Eq. (17))

≤ ‖xn − x∗‖22+2ηn(f(xn)− f(x∗))− µηn‖xn − x∗‖22 + η2
n‖∇f(xn)‖22

= (1− µηn)‖xn − x∗‖22 + 2ηn(f(xn)− f(x∗)) + η2
n‖∇f(xn)‖22

≤ (1− µηn)‖xn − x∗‖22 + 2ηn(f(xn)− f(x∗))− 2Lη2
n(f(xn)− f(x∗)) (Lemma 2)

= (1− µηn)‖xn − x∗‖22 + 2ηn(1− Lηn)(f(xn)− f(x∗))

≤ (1− µηn)‖xn − x∗‖22 (∵ ηn ≤ 1/L)

=
n+ α− 1

n+ α
‖xn − x∗‖22 (∵ ηn = 1/(µ(n+ α)))

Then, we make definitions and assumptions about VG-UCT and the underlying environment.
Assumption 2. A finitely but fully (i.e. up to planning horizon) expanded search tree is given. Here, progressive-widening does
not occur. Transition dynamics of the environment is deterministic, i.e. st+1 = ρ(st, at).

Definition 7. We define the followings:

1. For any sequence of actions, a1
0:T , V (s0, a0:T ) means:

V (s0, a0:T ) :=

T∑
t=0

r(st, at) s.t. st+1 = ρ(st, at)

2. For any two sequences of chance nodes selected by VG-UCT, ν1
0:T and ν2

0:T , ν1
0:T < ν2

0:T means:

V (s0, ν
1
0:T ) :=

T∑
t=0

r(s1
t , ACTION(ν1

t )) <

T∑
t=0

r(s2
t , ACTION(ν2

t )) = V (s0, ν
2
0:T )

where s1
t+1 = ρ(s1

t , ACTION(ν1
t )), and s2

t+1 = ρ(s2
t , ACTION(ν2

t )).
3. Let S be the set of all possible sequence of chance nodes that can be selected by VG-UCT.
4. Let ν∗0:T be the action sequence that can be selected by VG-UCT, whose value is the highest, i.e., ν∗0:T :=

arg supν0:T∈S V (s0, ν0:T ).
5. Finally, we define δ∆ as:

δ∆ := inf
ν0:T∈S\{ν∗0:T }

inf
∀t,a∗t :d(INIT-ACTION(ν∗t ),a∗t )≤∆

inf
∀t,at:d(INIT-ACTION(νt),at)≤∆

|V (s0, a
∗
0:T )− V (s0, a0:T )|

which means the value gap between the best possible value and the second best value.

Assumption 3. We assume the followings:

1. δ∆ > 0.



2. For any two sequences of chance node, ν1
0:T and ν2

0:T , that can be selected by VG-UCT, the order of values functions are
preserved with respect to ∆-perturbation of actions, i.e. if ν1

0:T < ν2
0:T , then the following also holds:

sup
∀t,a1t :d(INIT-ACTION(ν1

t ),a1t )≤∆

V (s0, a
1
0:T ) < inf

∀t,a2t :d(INIT-ACTION(ν2
t ),a2t )≤∆

V (s0, a
2
0:T )

3. The value function V (s0, a0:T ) is differentiable, µ-strongly concave, and L-smooth function within the ∆-bounded region
for all a0:T ∈ {ACTION(ν0:T ) : ν0:T ∈ S}.

4. The step-size sequence for the value-gradient ascent at n-th simulation is ηn = 1
µ(n+α) where α > 1 such that ηn ≤ 1

L .

5. For all a0:T within ∆-bounded region, the norm of gradient is upper bounded by a constant b: ‖∂V (s0, a0:T )/∂a0:T ‖ ≤ b.

We now provide the main theorem as follows.
Theorem 2. Under Assumptions 2 and 3, a sequence of actions selected by VG-UCT, a0:T , converges to the one that receives
the maximally achievable rewards within ∆-bounded region, with probability 1 as the number of simulations goes to infinity:

a0:T → arg sup
∀t,a∗t :d(INIT-ACTION(ν∗t ),a∗t )≤∆

V (s0, a
∗
0:T )

Proof. Let n be the number of simulations performed by VG-UCT. Now, let yn be the gap between the maximally achievable
value and the current value with respect to actions stored in ν∗0:T at n-th simulation:

yn :=

∥∥∥∥ACTION(ν∗0:T )n − arg sup
∀t,a∗t :d(INIT-ACTION(ν∗t ),a∗t )≤∆

V (s0, a
∗
0:T )

∥∥∥∥2

2

By Assumption 3-5, the amount of the worst possible update (by subtree’s node selection) is bounded by:∥∥∥∥ACTION(ν∗0:T )n − ηng − arg sup
∀t,a∗t :d(INIT-ACTION(ν∗t ),a∗t )≤∆

V (s0, a
∗
0:T )

∥∥∥∥2

2

≤ yn + 2ηn‖g‖
√
yn + η2

n‖g‖2

≤ yn + 4∆bηn + b2η2
n

≤ yn + (4∆b+ b2)︸ ︷︷ ︸
:=B

ηn

= yn +Bηn (18)

Then, from Lemma 3 and Eq. (18), we can consider the following sequence:

yn+1 =

{
n+α−1
n+α yn case (A): if the best ν∗0:T is selected by VG-UCT.
yn + B

µ(n+α) case (B): if a suboptimal ν0:T 6= ν∗0:T is selected by VG-UCT.

which corresponds to the sequence of the worst possible update of ν∗0:T .
For sufficiently large n, case (B) becomes increasingly rarely (definitely sublinearly with respect to n) chosen due to δ∆ > 0

and the property of UCT, which concludes that yn → 0 as n→∞.

Note that if ∆ = 0, VG-UCT reduces to UCT, and Assumption 3 can always be satisfied. As ∆ > 0 increases, VG-UCT
starts to have more advantages over UCT by Theorem 2, but Assumption 3 is increasingly difficult to be satisfied, thus the result
of Theorem 2 can be invalidated accordingly.

Appendix D Experimental Setup
We used a computing server with Intel(R) Xeon(R) CPU E5-2660 v3 and 96GB RAM for all the experiments. For the experi-
ments, we did not parallelize Eq. (12). We performed value-gradient ascent with probability 1/4 at each simulation, instead of
always performing it at every simulation, as a trade-off between gradient-update and more simulations.

D.1 Detailed Reward Description of Illustrative 2D Example
The reward is 0.5 for s0 = (1, 1), 10 for sg = (5, 5), and their values decreases exponentially in the squared distance to these
locations. Similarly, the negative reward of -15 are given for locations s1

− = (1, 5), s2
− = (3, 3), s3

− = (5, 1) with exponential
decay (but with relatively larger bandwidth).

r(s) = 0.5 exp

(
−‖s− s0‖2

0.5

)
+ 10 exp

(
−‖s− sg‖

2

0.05

)
−

3∑
i=1

15 exp

(
−
‖s− si−‖2

0.3

)



dimension state (n) observation (o) action (m)
Pendulum 2 3 1
Acrobot 4 6 1

Reacher-v2 8 11 2
Pusher-v2 22 23 7

Table 1: Dimesion of target environments

D.2 Experimental Setup
Let s̄′ = f(s, a) be an underlying deterministic transition function of each task. We made the transition be stochastic by adding
Gaussian white-noises ξa ∼ N (0, ε2

aIm) and ξs ∼ N (0, ε2
sIn). With ξ = (ξa, ξs), the stochastic transition used for black-box

simulation was defined as ρ(s, a, ξ) = f(s, a+ ξa) + ξs.
The followings are the experimental setup for each task, where PW stands for progressive-widening, ∆ is the maximum

amount of action perturbation. For the step-size η of VG-UCT, we tested {0.001, 0.01, 0.05} and 0.01 was chosen. For ∆, we
did not perform a parameter search and just selected a simple value.

(εa, εs) (0.1, 0.05)
UCB constant c 0.5

PW constant (α, β) (0.5, 0.5)
search time {0.01, 0.05, 0.1, 0.3, 0.5}

# of runs 300
planning horizon 20
KR bandwidth σ 0.5

step-size η 0.01
∆ 0.5

Table 2: Pendulum

(εa, εs) (0.2, 0.1)
UCB constant c 1

PW constant (α, β) (0.5, 0.5)
search time {0.05, 0.1, 0.3, 0.5, 1}

# of runs 300
planning horizon 20
KR bandwidth σ 0.5

step-size η 0.01
∆ 0.5

Table 3: Acrobot

(εa, εs) (0.5, 0.05)
UCB constant c 1

PW constant (α, β) (0.5, 0.5)
search time {0.05, 0.1, 0.3, 0.5, 1}

# of runs 300
planning horizon 15
KR bandwidth σ 0.5

step-size η 0.01
∆ 0.5

Table 4: Reacher

(εa, εs) (1, 0.05)
UCB constant c 1

PW constant (α, β) (0.5, 0.5)
search time {0.3, 0.5, 1, 3, 5}

# of runs 500
planning horizon 15
KR bandwidth σ 0.5

step-size η 0.01
∆ 1

Table 5: Pusher

For the experiments of MCTS as a Policy Improvement Operator, the learning rate and the number of iterations per epoch
were chosen to be 0.005 and 100, respectively, with the size of minibatches being 200.

The results in Figure 2 were obtained by averaging 300 runs for {Pendulum, Acrobot, Reacher} and 500 runs for Pusher. For
Figure 3, the results were obtained by averaging 300 runs for {Pendulum, Acrobot, Reacher} and 100 runs for Pusher.



Appendix E Pseudo-code of KR-VG-UCT
In this section, we provide the pseudo-code of VG-KR-UCT, which is our extended version of KR-UCT, and it integrates our
core idea on updating action particles via value-gradient ascent. Here, K(a, b) is a kernel function, where we use a Gaussian
kernel: K(a, b) ∝ exp

(
−‖a−b‖

2

2σ2

)
. For brevity, we use a notation K(νC1 , ν

C
2 ) to denote K(ACTION(νC1 ), ACTION(νC2 )), and

K(νC , a) for K(ACTION(νC), a). KR-UCT parts are highlighted as red.

Algorithm 2 Value-Gradient Kernel-Regression UCT (VG-KR-UCT)

function SEARCH(s0)
Create a root node νD .
repeat

SIMULATE(s0, νD , 0)
until TIMEOUT()
νC ← arg maxνC∈CHILDREN(νD)Q(νD, νC)

a∗ ← ACTION(νC)
return a∗

end function

function SIMULATE(s, νD , t)
if t = (planning horizon T ) then

return
[
0, ∅, ∅

]
end if
[νC , a, rollout]←SELECTACTION(s, νD , c)
[νD′, ξ]←SAMPLENOISE(νD , νC )
[r, s′]← G(s, a, ξ)
if rollout then

[R′, {at+1:T }, {ξt+1:T }]←ROLLOUT(s′, t+ 1)
else

[R′, {at+1:T }, {ξt+1:T }]←SIMULATE(s′, νD′, t+ 1)
end if
R← r +R′

N(νD)← N(νD) + 1
N(νD, νC)← N(νD, νC) + 1

Q(νD, νC)← Q(νD, νC) + R−Q(νD,νC)

N(νD,νC)

// After simulation, perform value-gradient ascent.
for j = 1, . . . ,m do
ãj ← a+ εej

[g]j =
RETURN(s,{ãj ,at+1:T },{ξ,ξt+1:T })−R

ε
(Eq. (12))

end for
ACTION(νC)← ACTION(νC) + ηg // a remains same.
ACTION(νC) is clipped within:

{â ∈ A : ‖â− INIT-ACTION(νC)‖ ≤ ∆}
return

[
R, {a, at+1:T }, {ξ, ξt+1:T }

]
end function

function NEWACTION(W , νD , a∗)
// a ≈ arg mina:K(a,a∗)>τ W (a)

A← ∅
Sample k actions fromN (a∗, σ2I) and add them to A
return arg min

a∈A

∑
νC∈CHILDREN(νD)K(νC , a)N(νD, νC)

end function

function SELECTACTION(s, νD , c)
for ν1 ∈ CHILDREN(νD) do
W (ν1) :=

∑
ν2∈CHILDREN(νD)

K(ν1, ν2)N(νD, νC)

V (ν1) :=

∑
ν2∈CHILDREN(νD)

K(ν1,ν2)N(νD,ν2)Q(νD,ν2)∑
ν2∈CHILDREN(νD)

K(ν1,ν2)N(νD,ν2)

end for
W (νD) :=

∑
ν1∈CHILDREN(νD)

W (ν1)

ν∗ ← arg max
νC∈CHILDREN(νD)

V (νC) + c
√

logW (νD)

W (νC)

a∗ ← ACTION(ν∗)
if bN(νD)αc ≥ |CHILDREN(νD)| then

Create a new chance node νC

Add νC to CHILDREN(νD)
a←NEWACTION(W , νD , a∗)
ACTION(νC)← a, INIT-ACTION(νC)← a
N(νD, νC)← 0, Q(νD, νC)← 0
rollout← true

else
νC ← ν∗, a← a∗

rollout← false
end if
return [νC , a, rollout]

end function
function SAMPLENOISE(νD , νC )

if bN(νD, νC)cβ ≥ |CHILDREN(νC)| then
Create a new decision node νD′

Add νD′ to CHILDREN(νC)
NOISE(νD′)← p(ξ) and N(νD′)← 0

else
νD′ ← (least visited node in CHILDREN(νC))

end if
ξ ← NOISE(νD′)
return [νD′, ξ]

end function
function ROLLOUT(s, t)

if t = (planning horizon T ) then
return

[
0, ∅, ∅

]
end if
a ∼ πrollout(·|s) and ξ ∼ p(ξ)
[r, s′]← G(s, a, ξ)
[R′, {at+1:T }, {ξt+1:T }]←ROLLOUT(s′, t+ 1)
R← r +R′

return
[
R, {a, at+1:T }, {ξ, ξt+1:T }

]
end function


