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Abstract. In this paper, we highlight our recent work [9] considering the
safe learning scenario where we need to restrict the exploratory behav-
ior of a reinforcement learning agent. Specifically, we treat the problem
as a form of Bayesian reinforcement learning (BRL) in an environment
that is modeled as a constrained MDP (CMDP) where the cost func-
tion penalizes undesirable situations. We propose a model-based BRL
algorithm for such an environment, eliciting risk-sensitive exploration in
a principled way. Our algorithm efficiently solves the constrained BRL
problem by approximate linear programming, and generates a finite state
controller in an off-line manner. We provide theoretical guarantees and
demonstrate empirically that our approach outperforms the state of the
art.

1 Introduction

In reinforcement learning (RL), the agent interacts with the unknown environ-
ment to maximize the long-term return defined by real-valued reward signals [13].
Due to the uncertain nature of the environment, the agent faces an exploration-
exploitation trade-off, a fundamental challenge in RL: the agent has to weigh be-
tween the action that yields the best return based on past experience and other
actions that facilitate new experiences towards discovering better actions. This
paper considers model-based Bayesian reinforcement learning (BRL) [2, 3, 12],
which provides a principled way of optimally balancing between exploration and
exploitation in the Bayesian perspective, with the goal of obtaining sample-
efficient learning behaviours.

Still, in many situations, the notion of safety or risk avoidance is crucial and
should be considered as another prime objective to the RL agent [10, 6, 4, 5].
For example, a Mars rover has to reach a target position as fast as possible, but
at the same time, it should avoid navigating into dangerous ditches, which can
potentially render it irrecoverable.

In this paper, we consider the constrained MDP (CMDP) [1] as the frame-
work for modeling the safe exploration requirement. CMDP assumes that actions
incur costs as well as rewards, where the goal is to obtain a behaviour policy that
maximizes the expected cumulative rewards while the expected cumulative costs
are bounded. Under these circumstances we can naturally encode the risks of spe-
cific behaviours as cost functions and the degree of risk taking as cost constraints



respectively. Specifically, following [7], we model BRL as a planning problem
with the hyper-state constrained partially observable MDP (CPOMDP) [8] and
adopt constrained approximate linear programming (CALP) [11] to compute
Bayes-optimal policies in an off-line manner.

Most of the successful approximate planning algorithms for (constrained)
POMDPs confine the whole set of infinitely many beliefs to a finite set. This
technique was also adopted in CALP [11] to treat other beliefs as convex com-
binations of finite samples of beliefs. However, doing so for model-based BRL
can be problematic as it is not straightforward to represent a distribution over
the transition probabilities as a finite convex combination. As will be described
in the later part of the paper, one of our contributions is in introducing the no-
tion of ‘slip to ε-close beliefs’, which enables a theoretical analysis and provides
empirical support.

2 Background

We model the environment as a CMDP, defined by a tuple 〈S,A, T,R,C =
{Ck}1..K , c = {ck}1..K , γ, s0〉 where S is the set of states s, A is the set of
actions a, T (s′|s, a) = Pr(s′|s, a) is the transition probability, R(s, a) ∈ R is the
reward function which denotes immediate reward incurred by taking action a in
state s, Ck(s, a) ∈ R is the kth cost function upper bounded by ck ∈ R of kth

cost constraint, γ ∈ [0, 1) is the discount factor, and s0 is the initial state. The
goal is to compute an optimal policy π∗ that maximizes expected cumulative
rewards while expected cumulative costs are bounded.

max
π

V πR (s0) = Eπ

[ ∞∑
t=0

γtR(st, at)|s0

]

s.t. V πCk
(s0) = Eπ

[ ∞∑
t=0

γtCk(st, at)|s0

]
≤ ck ∀k

The optimal policy of a CMDP is generally stochastic and can be obtained
by solving the following linear program (LP) [1].

max
{y(s,a)}∀s,a

∑
s,a

R(s, a)y(s, a) (1)

s.t.
∑
a′

y(s′, a′) = δ(s0, s) + γ
∑
s,a

T (s′|s, a)y(s, a) ∀s′

∑
s,a

Ck(s, a)y(s, a) ≤ ck ∀k and y(s, a) ≥ 0 ∀s, a

where y(s, a) can be interpreted as a discounted occupancy measure of (s, a),
and δ(x, y) = 1 if x = y and 0 otherwise. Once the optimal solution y(s, a)
is obtained, an optimal stochastic policy and the corresponding optimal value
are computed as π∗(a|s) = y(s, a)/

∑
a′ y(s, a′) and V ∗R(s0) =

∑
s,aR(s, a)y(s, a)

respectively.



The constrained partially observable Markov decision process (CPOMDP)
generalizes the CMDP by allowing partial observability and is defined by the tu-
ple 〈S,A,O, T, Z,R,C, c, γ, b0〉. Additional components are O, Z, and b0, where
O is the set of observations o and Z(o|s′, a) = Pr(o|s′, a) is the observation
probability of observing o when taking action a and moving to state s′, and
b0(s) = Pr(s0 = s) is the initial belief at time step 0, respectively. Since the cur-
rent Markovian state is not directly observable, the agent infers a belief bt(s) =
Pr(st = s) at every time step using the Bayes rule: upon executing a in b and
observing o, the updated belief bao is bao(s′) ∝ Z(o|s′, a)

∑
s T (s′|s, a)b(s) ∀s′.

A CPOMDP is equivalent to a constrained belief state CMDP 〈S̄, A, T̄ , R̄, C̄, c,
γ, s̄0〉. Here s̄0 = b0 and S̄ = B is the set of reachable beliefs starting from b0.
Transition probability T̄ (b′|b, a) is constructed from components of the original
CPOMDP and is expressed in terms of beliefs.

T̄ (b′|b, a) =
∑
o

[∑
s,s′

Z(o|s′, a)T (s′|s, a)b(s)

]
δ(b′, bao) (2)

Similarly, the reward and cost functions are represented as R̄(b, a) =
∑
s b(s)R(s, a)

and C̄k(b, a) =
∑
s b(s)Ck(s, a). Although the resulting constrained belief MDP

can be solved by LP (1) in principle, the cardinality of B is usually very large or
even infinite, which makes the problem computationally intractable. To tackle
the intractability, several approximate algorithms have been proposed, such as
CPBVI, which is based on dynamic programming [8], and CALP, which is based
on linear programming [11]. CALP has been shown to perform much better than
CPBVI.

3 Constrained BRL via Approximate LP

3.1 Constrained BRL as CPOMDP Planning

Model-based BRL computes a full posterior distribution over the transition mod-
els and uses it to make decisions. We can formulate model-based BRL in a CMDP
environment 〈S,A, T,R,C, c, γ, s0〉 as a hyper-state CPOMDP planning prob-
lem [3, 12, 7], which is formally defined by the tuple 〈S+, A,O+, T+, Z+, R+,C+

, c, γ, b+0 〉. Assuming finite state and action spaces, each component is specifically

S+ = S×{θsas′}, O+ = S, T+(〈s′, θ′〉|〈s, θ〉, a) = θsas
′
δ(θ, θ′), Z+(o|〈s′, θ′〉, a) =

δ(o, s′), R+(〈s, θ〉, a) = R(s, a), C+
k (〈s, θ〉, a) = Ck(s, a), and b+0 = (s0, b0).

A belief distribution over S+ in a hyper-state CPOMDP is a pair (s, b) con-
sisting of a Markovian state s of the original CMDP and the posterior dis-
tribution b(θ) over unknown parameters θ. Here b(θ) is commonly chosen to
be a product of Dirichlet distributions since Dirichlets are conjugate priors of
the multinomial transition probabilities: b(θ) =

∏
s,a Dir(θsa∗|nsa∗). When the

agent in belief (s̄, b) takes an action ā and observes the successor state s̄′, the
belief is updated to (s̄′, b′), where b′ is defined as b′(θ) = bs̄ās̄

′
(θ) = ηb(θ)θs̄ās̄

′
=∏

s,a Dir
(
θsa∗|nsa∗+δ((s̄, ā, s̄′), (s, a, s′))

)
where η is a normalizing constant. The



hyper-state CPOMDP can also be easily understood as an equivalent belief-state
CMDP 〈S̄+, A, T̄+, R̄+, C̄+, c, γ, s̄+

0 〉. Here S̄+ = S ×B and s̄+
0 = (s0, b0) where

B is the set of possible posterior distributions over θsas
′

from initial prior b0.
Transition probabilities among belief states (s, b) are defined as

T̄+(〈s′, b′〉|〈s, b〉, a) = Pr(s′|s, b, a) Pr(b′|s, b, a, s′) = Eb
[
θsas

′
]
δ(b′, bsas

′
) (3)

Similarly, the reward function and the cost functions are R̄+(〈s, b〉, a) = R(s, a)
and C̄+

k (〈s, b〉, a) = Ck(s, a). In theory, this belief-state CMDP can be solved
using the following LP, which is an extension of (1) and the one in [11] to treat
hyper belief states:

max
{y(s,b,a)}∀s,a

∑
s,b,a

R(s, a)y(s, b, a) (4)

s.t.
∑
a′

y(s′, b′, a′) = δ((s0, b0), (s, b)) + γ
∑
s,b,a

T (s′, b′|s, b, a)y(s, b, a) ∀s′, b′

∑
s,b,a

Ck(s, a)y(s, b, a) ≤ ck ∀k and y(s, b, a) ≥ 0 ∀s, b, a

3.2 Approximate Linear Programming

The main challenge in solving the linear program (4) lies in the fact that the
number of beliefs |S ×B| is infinite, yielding infinitely many variables and con-
straints in the LP. We thus approximate (4) using finitely sampled beliefs. In

order to facilitate a formal analysis, we assume a finite set of beliefs B̂ ⊂ B that
covers the entire belief space fairly well. More formally, we assume that there
exists a constant ε such that ∀b ∈ B̂, s, s′ ∈ S, a ∈ A, minb′∈B̂‖b

′−bsas′‖1 ≤ ε
where ‖·‖1 denotes total variance distance ‖b′ − bsas′‖1 =

∫
|b′(θ)− bsas′(θ)|dθ.

Since B̂ does not completely cover B for ε > 0, we need to re-define the transition
function T (s′, b′|s, b, a) among (s, b) and (s′, b′) ∈ S×B̂. From the original, exact
transition probability T (s′, b′|s, b, a) in Eq. (3), we relax δ(b′, bsas

′
) to W (b′|bsas′)

that has non-zero probability only for ε-close beliefs:

T̂ (s′, b′|s, b, a) = Pr(s′|s, b, a)P̂r(b′|s, b, a, s′) = Eb
[
θsas

′
]
W (b′|bsas

′
), (5)

where W is defined as a probability distribution over B̂.

W (b′|bsas
′
) =

{
κK(b′, bsas

′
) if ‖b′ − bsas′‖1 ≤ ε

0 otherwise
(6)

where κ is the normalizing constant
∑
b′∈B̂W (b′|bsas′) = 1 and K(b, b′) ≥ 0 is

a similarity measure between two beliefs b(θ) and b′(θ). This relaxation can be
interpreted as “slipping” to one of the ε-close successor beliefs with probability
W . Thus, we approximate the original LP (4) by using a finite set of beliefs B̂



Algorithm 1 Constrained BRL via Approximate LP

Input: S,A,R,C, c, γ, s0, B̂, b0.
for each s, s′ ∈ S, b ∈ B̂, and a ∈ A do

Compute W (b′|bsas
′
) ∀b′ by Eq (6)

end for
T̂ (s′, b′|s, b, a)← Eb[θ

sas′ ] ·W (b′|bsas
′
) ∀s, b, a, b, b′

y ← solve LP (4) with B̂ and T̂ (s′, b′|s, b, a)

for each s ∈ S, b ∈ B̂, and a ∈ A do
π(a|s, b)← y(s, b, a)/

∑
a′ y(s, b, a′)

end for
V̂ ∗R(s0, b0)←

∑
s,b,a y(s, b, a)R(s, a)

V̂ ∗Ck
(s0, b0)←

∑
s,b,a y(s, b, a)Ck(s, a) ∀k

Output: (π,W ): finite state controller, V̂ ∗R(s0, b0): approximate Bayes-optimal value

and replacing T by T̂ . Algorithm 1 describes the overall process of computing
the approximate Bayes-optimal policy.

The policy (π,W ) obtained from Algorithm 1 constitutes a finite state con-

troller with |S||B̂| nodes and is executed in the real environment as follows: the
initial node of the controller is set to (s0, b0). At every time step, sample an ac-
tion a ∼ π(a|s, b) based on the current node (s, b) for execution. Then, observe
the next state s′ from the environment and sample b′ ∼W (b′|bsas′). Finally, the
new node of the controller is set to (s′, b′) and repeat.

We remark that [11] takes a similar approach to solving CPOMDPs by
considering finitely sampled beliefs. Specifically, they approximate the transi-
tions by relaxing δ(b′, bao) in (2) as interpolation weights w(b′, bao) such that∑
b′∈B̂ w(b′, bao)b′ = bao,

∑
b′∈B̂ w(b′, bao) = 1 and w(b′, bao) ≥ 0. This approach

cannot be directly adopted in the Bayesian learning setting since a belief is no
longer a finite-dimensional probability vector but rather a probability density
function. There is no straightforward way to approximate an arbitrary Dirichlet
using a convex combination of finitely many Dirichlets.

4 Theoretical Analysis

In this section, we provide the main result that bounds the error in the value
function due to approximate LP incurred by taking a finite set of beliefs and
using the ‘slip to ε-close belief’ approximation. The full proof is provided in [9].

Theorem 1. Suppose that reward function and cost functions of CMDP envi-
ronment are bounded in [0, Rmax] and [0, Cmax] respectively. Let V ∗R(s0, b0, c) be

an optimal value of the original CPOMDP with cost constraint c, and V̂ ∗R(s0, b0, c)
be an optimal value function of approximate CPOMDP with cost constraint c and
‘slip to ε-close beliefs’ approximation. Then, the following inequality holds:

|V ∗R(s0, b0, c)− V̂ ∗R(s0, b0, c)| ≤ γ (τ − τγ + Cmax)Rmax

τ(1− γ)3
ε



domain c algorithm
avg discounted
total reward

avg discounted
total cost

time
(min)

chain-tied

100
CBEETLE 355.85±4.55 99.64±0.08 1.2
CBRL-ALP 339.77±8.01 91.26±2.44 0.1

75
CBEETLE 305.02±3.82 74.96±0.04 2.1
CBRL-ALP 315.22±7.14 71.46±1.75 0.1

50
CBEETLE 243.54±3.29 50.03±0.10 9.7
CBRL-ALP 289.86±6.25 48.37±1.10 0.1

25
CBEETLE 218.54±1.94 25.03±0.04 34.8
CBRL-ALP 235.06±6.03 23.72±1.12 0.1

maze-tied
20

CBEETLE(∗) 1.02±0.02 19.04±0.02 242.5
CBRL-ALP 1.03±0.02 19.09±0.03 39.3

18
CBEETLE(∗) 0.93±0.04 17.96±0.46 733.1
CBRL-ALP 0.96±0.02 17.92±0.22 41.0

cliff-tied

100
CBEETLE 121.21±4.94 91.88±0.54 173.8
CBRL-ALP 166.20±2.32 64.75±3.57 1.5

50
CBEETLE 52.98±3.77 44.41±0.50 180.0
CBRL-ALP 160.89±1.57 44.72±0.90 1.5

30
CBEETLE −104.52±4.58 54.64±0.97 206.8
CBRL-ALP 150.19±1.41 25.99±0.83 1.5

Table 1: Experimental results. The results with (*) are from [7].

where τ represents how much we can reduce the cost constraint without making
the problem infeasible intuitively.

5 Experiments

We conducted experiments on 3 discrete state domains (chain, maze, and cliff)
and 1 continuous domain (cartpole). The detailed domain description and the
experimental setup are presented in [9]. In this paper, we only show some parts
of the whole experimental results due to the page limit.

Table 1 summarizes the experimental results for discrete domains, compar-
ing our algorithm CBRL-ALP to the previous state-of-the-art approach CBEE-
TLE [7]. Overall, our method outperforms CBEETLE in computation speed by
an order of magnitude, while yielding good policies. Besides, we can see from
the table that agent starts to trade-off between reward and cost as we lower c.

6 Conclusion

In this paper, we presented CBRL-ALP, a model-based BRL algorithm in CMDP
environment to deal with the safe exploration in a principled way. We showed
that the constrained BRL problem can be solved efficiently via approximate lin-
ear programming. Our theoretical analysis shows that the algorithm computes
approximate Bayes-optimal value functions and the approximation error can be
bounded by the coverage of sampled beliefs. Experimental results show the cost-
sensitive behaviours and effectiveness of our algorithms empirically, outperform-
ing the previous state-of-the-art approach, CBEETLE by orders of magnitude
in computation time.



Acknowledgments

This research was supported by the MSIT (Ministry of Science and ICT), Korea,
under the ITRC (Information Technology Research Center) support program
(IITP-2017-2016-0-00464) supervised by the IITP (Institute for Information &
communications Technology Promotion) and was conducted at High-Speed Vehi-
cle Research Center of KAIST with the support of Defense Acquisition Program
Administration (DAPA) and Agency for Defense Development (ADD).

References

[1] Eitan Altman. Constrained Markov Decision Processes. Chapman and Hall,
1999.

[2] Richard Dearden, Nir Friedman, and David Andre. Model based Bayesian
exploration. In Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, pages 150–159, 1999.

[3] Michael O’Gordon Duff. Optimal learning: Computational procedures for
Bayes-adaptive Markov decision processes. PhD thesis, University of Mas-
sachusetts Amherst, 2002.
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