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Abstract
Monte-Carlo Tree Search (MCTS) is the state-of-
the-art online planning algorithm for very large
MDPs. However, many real-world problems in-
herently have multiple goals, where multi-objective
sequential decision models are more natural. The
constrained MDP (CMDP) is such a model that
maximizes the reward while constraining the cost.
The common solution method for CMDPs is lin-
ear programming (LP), which is hardly applicable
to large real-world problems. In this paper, we
present CCUCT (Cost-Constrained UCT), an on-
line planning algorithm for large constrained MDPs
(CMDPs) that leverages the optimization of LP-
induced parameters. We show that CCUCT con-
verges to the optimal stochastic action selection in
CMDPs and it is able to solve very large CMDPs
through experiments on the multi-objective version
of an Atari 2600 arcade game.

1 Introduction
Monte-Carlo Tree Search (MCTS) [Kocsis and Szepesvári,
2006; Coulom, 2006; Browne et al., 2012] is a generic on-
line planning algorithm that effectively combines random
sampling and tree search, and has shown great success in
many areas such as online Bayesian reinforcement learning
[Guez et al., 2013] and computer Go [Gelly and Silver, 2011;
Silver et al., 2016]. MCTS efficiently explores the search
space by investing more search effort in promising states and
actions while balancing exploration and exploitation in the di-
rection of maximizing the cumulative (scalar) rewards. Due
to its outstanding performance without prior domain knowl-
edge or heuristic function, MCTS has become the de-facto
standard method for solving very large MDPs.

However in many situations, reward maximization alone
is insufficient. For example, consider the budget allocation
problem of an online advertiser [Archak et al., 2012]. In this
problem, the advertiser should determine how to advertise op-
timally while constraining the total cost within the budget.
The constrained MDP (CMDP) [Altman, 1999] is an appeal-
ing framework for dealing with this kind of multi-objective
sequential decision making problems. The model assumes
that the action incurs not only rewards, but also K different

types of costs, and the goal is to find an optimal policy that
maximizes the expected cumulative rewards while bounding
each of K expected cumulative costs to certain levels.

Although the CMDP is an attractive framework, the com-
mon solution method still remains to be linear program-
ming [Altman, 1999; Zadorojniy et al., 2009]. This is in
contrast to MDPs, where dynamic programming and MCTS
are readily applicable to large problems. One exception is
the seminal work on dynamic programming for CMDPs [Pi-
unovskiy and Mao, 2000], but the method is intractable even
for small state spaces, sharing a lot of similarity with partially
observable MDPs. As such, the CMDP has not been a practi-
cal model for very large state spaces.

In this paper, we present MCTS for CMDPs, which pre-
cisely addresses the scalability issue. To the best of our
knowledge, extending MCTS to CMDPs has remained mostly
unexplored since it is not straightforward to handle the con-
strained optimization in CMDPs. This challenge is com-
pounded by the fact that optimal policies can be stochastic.

There exists some prior work on MCTS for multi-objective
problems, e.g. [Wang and Sebag, 2012; Liebana et al., 2015],
which focused on computing Pareto-optimal policies with
multiple reward functions. The main idea was to scalarize the
rewards using the hyper-volume indicator [Zitzler and Thiele,
1998] and performing vanilla UCT on the resulting single-
objective problem. In contrast, we focus on the problem of
finding a single optimal policy satisfying the cost constraints,
yielding a solution that would be more useful in practice.

In order to develop MCTS for CMDPs, we first show that
solving CMDPs is essentially equivalent to jointly solving an
unconstrained MDP while optimizing its LP-induced param-
eters that control the trade-off between the reward and the
costs. From this result, we describe our algorithm, Cost-
Constrained UCT (CCUCT), for solving large CMDPs that
combine traditional MCTS with LP-induced parameter op-
timization. In the experiments, we show that CCUCT con-
verges to the optimal stochastic actions using a synthetic do-
main, and also show that it scales to very large CMDP prob-
lems using a multi-objective version of an Atari 2600 arcade
game.

2 Background
Constrained Markov decision processes (CMDPs) [Altman,
1999] provide a framework for modeling sequential decision



making problems with cost-constrained situations. It is for-
mally defined by tuple 〈S,A, T,R,C, ĉ, γ, s0〉, where S is
the set of states s, A is the set of actions a, T (s′|s, a) =
Pr(s′|s, a) is the transition probability of reaching s′ when
the agent takes action a in state s, R(s, a) ∈ R+ is the reward
function that returns the immediate reward incurred by taking
action a in state s, C = {Ck}1..K is the set of K cost func-
tions with individual thresholds ĉ = {ĉk}1..K , γ ∈ [0, 1) is
the discount factor, and s0 ∈ S is the initial state. We assume
that cost functions are non-negative, i.e. Ck(s, a) ∈ [0,+∞).

The goal is to compute an optimal policy that maximizes
the expected cumulative reward while bounding the expected
cumulative costs:

max
π

V πR (s0) = Eπ

[ ∞∑
t=0

γtR(st, at)|s0

]

s.t. V πCk(s0) = Eπ

[ ∞∑
t=0

γtCk(st, at)|s0

]
≤ ĉk ∀k

The optimal policy of the CMDP is generally stochastic
and can be obtained by solving the following linear program
(LP) [Altman, 1999]:

max
{y(s,a)}∀s,a

∑
s,a

R(s, a)y(s, a) (1)

s.t.
∑
a′

y(s′, a′) = δ(s0, s
′) + γ

∑
s,a

T (s′|s, a)y(s, a) ∀s′

∑
s,a

Ck(s, a)y(s, a) ≤ ĉk ∀k

y(s, a) ≥ 0 ∀s, a

where y(s, a) can be interpreted as a discounted occupancy
measure of (s, a), and δ(x, y) is a Dirac delta function that
has a value of 1 if x = y and 0 otherwise. Once the
optimal solution y∗(s, a) is obtained, an optimal stochas-
tic policy and the corresponding optimal value are com-
puted as π∗(a|s) = Pr(a|s) = y∗(s, a)/

∑
a′ y
∗(s, a′) and

V ∗R(s0; ĉ) =
∑
s,aR(s, a)y∗(s, a) respectively.

UCT [Kocsis and Szepesvári, 2006; Kocsis et al., 2006]
is a Monte-Carlo tree search (MCTS) algorithm for (uncon-
strained) MDPs that adopts UCB1 [Auer et al., 2002] as the
action selection rule in the intermediate nodes of the search
tree:

arg max
a

[
QR(s, a) + κ

√
logN(s)

N(s, a)

]
(2)

where QR(s, a) is the average of the sampled rewards, N(s)
is the number of simulations performed through s, N(s, a)
is the number of times action a is selected in s, and κ is
the exploration constant to adjust the exploration-exploitation
trade-off. UCT expands the search tree non-uniformly, focus-
ing more search efforts into promising nodes. It can be for-
mally shown that QR(s, a) asymptotically converges to the
optimal value Q∗R(s, a) in MDPs with some proper constant
κ.

Unfortunately, it is not straightforward to use UCT for
constrained MDPs since the original UCB1 action selection

rule does not have any notion of cost constraints. If we fol-
low reward-maximizing vanilla UCT without any modifica-
tion, we may obtain cost-violating action sequences. Even
though we could retain the average of sampled cumulative
costs QC , it is not straightforward how to use them. If we
simply prevent action branches that violate the cost constraint
QC(s, a) ≤ ĉ, we obtain policies that are too conservative
and thus sub-optimal: a feasible policy can be rejected from
the search if the Monte-Carlo estimate violates the cost con-
straint.

3 Solving CMDP via an MDP Solver
The derivation of our algorithm starts from the dual of Eq. (1):

min
{V(s)}∀s
{λk}∀k

∑
s

δ(s0, s)V(s) +
∑
k

ĉkλk (3)

s.t. V(s) ≥ R(s, a)−
∑
k

Ck(s, a)λk

+ γ
∑
s′

T (s′|s, a)V(s′) ∀s, a

λk ≥ 0 ∀k

Observe that if we treat λ = [λ1, . . . , λK ] as a constant, the
problem becomes an unconstrained MDP with the scalarized
reward function R(s, a)−λ>C(s, a). Let V∗λ be the optimal
value function of this unconstrained MDP. Then, for any λ,
there exists the corresponding unique V∗λ, and we can com-
pute V∗λ with an MDP solver. Thus, (3) reduces to:

min
λ≥0

[
V∗λ(s0) + λ>ĉ

]
(4)

Moreover, if there is an optimal solution y∗ to the primal LP
in Eq. (1), then there exists the corresponding dual optimal
solution V∗ and λ∗, and the duality gap is zero, i.e.

V ∗R(s0; ĉ) =
∑
s,a

R(s, a)y∗(s, a) = V∗λ∗(s0) + λ∗>ĉ

by the strong duality theorem.
To compute the optimal λ in Eq. (4), we have to consider

the trade-off between the first term and the second term ac-
cording to the given cost constraint ĉ. For example, if the cost
constraint ĉ is very large, the optimal solution λ∗ tends to be
close to zero since the objective function would be mostly
affected by the second term λ>ĉ. On the other hand, if ĉ is
sufficiently small, the first term will be dominant and the opti-
mal solution λ∗ gets larger in order to have a negative impact
on the reward R(s, a) − λ>C(s, a). Thus, it may seem that
Eq. (4) is a complex optimization problem. However, as we
will see in the following proposition, the objective function
in Eq.(4) is actually piecewise-linear and convex over λ, as
depicted in Figure 1.

Proposition 1. Let V∗λ be the optimal value function of
the MDP with the scalarized reward function R(s, a) −
λ>C(s, a). Then, V∗λ(s0) + λ>ĉ is a piecewise-linear and
convex (PWLC) function over λ.
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Figure 1: V∗λ(s0) + λ>ĉ for a simple CMDP, which is piecewise-
linear and convex. Red line represents the trajectory of λ start-
ing from λ = [0, 0]> and sequentially updated by λ ← λ +

αi(V
π∗λ
C (s0)− ĉ) as described in Algorithm 1.

Proof. We give a proof by induction. For all s,

V(0)
λ (s) = max

a

[
R(s, a)− λ>C(s, a)

]
is a piecewise-linear and convex function over λ since the
max of linear functions is piecewise linear and convex.
Now, assume the following induction hypothesis: V(k)

λ (s) is
piecewise-linear and convex function over λ for all s. Then,

V(k+1)
λ (s) = max

a

[
R(s, a)− λ>C(s, a)︸ ︷︷ ︸

linear in λ

+ γ
∑
s′

T (s′|s, a)V(k)
λ (s′)︸ ︷︷ ︸

PWLC in λ

]
is also PWLC since the summation of PWLC functions is
PWLC and max over PWLC functions is again PWLC. As
a consequence, V∗λ(s0) is PWLC over λ and so is V∗λ(s0) +

λ>ĉ.

In addition, we can show that the optimal solution λ∗ is
bounded [Lee et al., 2017].

Proposition 2 (Lemma 4 in [Lee et al., 2017]). Suppose that
the reward function is bounded in [0, Rmax] and there exists
τ > 0 and a (feasible) policy π such that V πC(s0) + τ1 ≤ ĉ.
Then, the following inequality holds:

‖λ∗‖1 ≤
Rmax

τ(1− γ)

Thus, from Propositions 1 and 2, we now know that opti-
mal λ∗ can be obtained by greedily optimizing Eq. (4) with
λk in the range [0, Rmax

τ(1−γ) ]. The remaining question is how
to compute the direction for updating λ. We start with the
following lemma to answer this question.

Lemma 1. Let M1 = 〈S,A, T,R1, γ〉 and M2 =
〈S,A, T,R2, γ〉 be two MDPs and V π1 and V π2 be the value
functions of M1 and M2 with a fixed policy π. Then, the
value function of the new MDPM = 〈S,A, T, pR1+qR2, γ〉
with the policy π is V π(s) = pV π1 (s)+qV π2 (s) for all s ∈ S.

Proof. We give a proof by induction. For all s,

V (0)(s) =
∑
a

π(a|s) [pR1(s, a) + qR2(s, a)]

= p
∑
a

π(a|s)R1(s, a) + q
∑
a

π(a|s)R2(s, a)

= pV
(0)
1 (s) + qV

(0)
2 (s)

Then, assume the induction hypothesis V (k)(s) =

pV
(k)
1 (s) + qV

(k)
2 (s). For all s,

V (k+1)(s)

=
∑
a

π(a|s)
[
pR1(s, a) + qR2(s, a) + γ

∑
s′

T (s′|s, a)V (k)(s′)

]
= p

∑
a

π(a|s)
[
R1(s, a) + γ

∑
s′

T (s′|s, a)V (k)
1 (s′)

]
+ q

∑
a

π(a|s)
[
R2(s, a) + γ

∑
s′

T (s′|s, a)V (k)
2 (s′)

]

= pV
(k+1)
1 (s) + qV

(k+1)
2 (s)

Lemma 1 implies that V∗λ can be decomposed into
V∗λ(s0) = V

π∗λ
R (s0) − λ>V

π∗λ
C (s0) where π∗λ is the opti-

mal policy with respect to the scalarized reward function
R(s, a)− λ>C(s, a), and thus Eq. (4) becomes:

min
λ≥0

[
V
π∗λ
R (s0)− λ>V

π∗λ
C (s0) + λ>ĉ

]
(5)

A possible way to compute the descent direction for λ would
be by taking the derivative of Eq. (5) with respect to λ while
holding π∗λ constant so that we use the direction

V
π∗λ
C (s0)− ĉ. (6)

The following theorem shows that this indeed is a valid
direction.
Theorem 1. For any λ, V π

∗
λ

C (s0) − ĉ is a negative subgra-
dient that decreases the objective in Eq. (4), where π∗λ is the
optimal policy with respect to the scalarized reward function
R(s, a)−λ>C(s, a). Also, if V π

∗
λ

C (s0)− ĉ = 0 then λ is the
optimal solution of Eq. (4).

Proof. For any λ0 and λ1,

(V∗λ1
(s0) + λ>1 ĉ)− (V∗λ0

(s0) + λ>0 ĉ)

=(V
π∗λ1

R (s0)− λ>1 V
π∗λ1

C (s0))− (V
π∗λ0

R (s0)− λ>0 V
π∗λ0

C (s0))

+ (λ1 − λ0)>ĉ (Lemma 1)

≥(V
π∗λ0

R (s0)− λ>1 V
π∗λ0

C (s0))− (V
π∗λ0

R (s0)− λ>0 V
π∗λ0

C (s0))

+ (λ1 − λ0)>ĉ (∵ π∗λ1
is optimal w.r.t. R− λ>1 C)

=(λ1 − λ0)>(ĉ− V
π∗λ0

C (s0)) (7)

Therefore, ĉ − V
π∗λ0

C (s0) is a subgradient of V∗λ(s0) + λ>ĉ

at point λ = λ0, which concludes that V
π∗λ0

C (s0) − ĉ is a
negative subgradient at point λ = λ0.



Algorithm 1 CMDP dual solver via MDP solver

Input: CMDPMC = 〈S,A, T,R,C, ĉ, γ, s0〉
1: λ is initialized randomly.
2: π is initialized randomly.
3: for i = 1, 2, ... and λ has not converged do
4: π ← SolveMDP(〈S,A, T,R− λ>C, γ〉)
5: VC ← PolicyEvaluation(〈S,A, T,C, γ〉, π)
6: λ← λ + αi(VC(s0)− ĉ)
7: Clip λk to range [0, Rmax

τ(1−γ) ] ∀k = {1, 2, ...K}
8: end for

Output: λ: optimal solution of Eq. (4)

In addition, suppose λ1 = λ0 + α(V
π∗λ0

C (s0) − ĉ). Then,
for sufficiently small α > 0, the new reward function R −
λ>1 C which is slightly changed from the old rewardR−λ>0 C
still satisfies the reward optimality condition with respect to
policy π∗λ0

[Oh and Kim, 2011]. In this situation, π∗λ0
= π∗λ1

and we obtain:

(V∗λ0
(s0) + λ>0 ĉ)− (V∗λ1

(s0) + λ>1 ĉ)

≥ (λ0 − λ1)>(ĉ− V
π∗λ1

C (s0))
(
by result of (7)

)
= −α(V

π∗λ0

C (s0)− ĉ)>(ĉ− V
π∗λ1

C (s0))

= α‖ĉ− V
π∗λ1

C (s0))‖22
≥ 0

Also, if V π
∗
λ

C (s0) − ĉ = 0, then the dual objective in
Eq. (5) becomes V π

∗
λ

R (s0). By the weak duality theorem,
V
π∗λ
R (s0) ≥

∑
s,aR(s, a)y∗(s, a) = V ∗R(s0; ĉ) holds where

y∗(s, a) is the optimal solution of the primal LP (1). As-
suming that V π

∗
λ

C (s0) = ĉ, π∗λ is a feasible policy that satis-
fies the cost constraints, and V π

∗
λ

R (s0) cannot be larger than
V ∗R(s0; ĉ). That is, V π

∗
λ

R (s0) = V ∗R(s0; ĉ) and the duality gap
is zero, which means that λ is the optimal solution.

We can interpret the direction V π
∗
λ

C (s0) − ĉ as follows: if
the current policy violates the k-th cost constraint (i.e. V π

∗
λ

Ck
>

ĉk), λk increases so that incurring the cost is penalized more
in the scalarized reward function R(s, a) − λ>C(s, a). On
the other hand, if the current policy is too conservative in the
k-th cost constraint (i.e. V π

∗
λ

Ck
< ĉk), λk decreases so that the

cost is less penalized.
Algorithm 1 summarizes our idea, which solves the dual of

LP for CMDPs, iteratively solving MDPs with the scalarized
reward R − λ>C using any unconstrained MDP solver and
updating λ to minimize the objective (4). By Theorem 1, the
algorithm is a subgradient method, guaranteed to converge to
the optimal solution by using a step-size sequence αi such
that

∑
i αi =∞ and

∑
i α

2
i <∞ as depicted in Figure 1.

4 Cost-Constrained UCT
Although Algorithm 1 avoids using an LP solver, it still re-
lies on exactly solving MDPs via SolveMDP in each itera-

tion, which is not practical for large CMDPs. Fortunately, we
can further show that even when SolveMDP does not solve
MDPs exactly, λ still converges to the optimal λ∗ as long as
it monotonically improves the policy. For example, suppose
that we substitute Lines 4-5 in Algorithm 1 with

[QR, QC]←PolicyEvaluation(〈S,A, T, [R,C], γ〉, π)

π(s)← arg max
a

[
QR(s, a)− λ>QC(s, a)

]
∀s

VC(s0)←QC(s0, π(s0)) (8)

which performs a single policy improvement step with the
current λ. The following theorem supports that the optimal
λ∗ still can be obtained:

Theorem 2. For any λ0, there exists ε > 0 such that if
‖λ1 − λ0‖1 < ε then ∀s, Vπ1

λ0
(s) > Vπ0

λ0
(s)⇒ ∀s, Vπ1

λ1
(s) >

Vπ0

λ1
(s). In other words, for a sufficiently small change of λ,

the ordering of the policies is preserved.

Proof. Let ∆λ = λ1 − λ0. Then, for any s and π,

Vπλ1
(s) = V πR (s)− λ>1 V

π
C(s) (Lemma 1)

= V πR (s)− (λ0 + ∆λ)>V πC(s)

= Vπλ0
(s)−∆λ>V πC(s)

Now assume ∀s, Vπ1

λ0
(s) > Vπ0

λ0
(s), let ε =

mins

[
1−γ
Cmax

(Vπ1

λ0
(s)− Vπ0

λ0
(s))

]
> 0, and suppose

‖∆λ‖1 = ‖λ1 − λ0‖1 < ε. Then, for any s,

Vπ1

λ1
(s)− Vπ0

λ1
(s)

= Vπ1

λ0
(s)− Vπ0

λ0
(s)−∆λ>(V π1

C (s)− V π0

C (s))

≥ Vπ1

λ0
(s)− Vπ0

λ0
(s)− ‖∆λ‖1‖V π1

C (s)− V π0

C (s)‖∞

> Vπ1

λ0
(s)− Vπ0

λ0
(s)− εCmax

1− γ
= Vπ1

λ0
(s)− Vπ0

λ0
(s)−min

s′

[
(Vπ1

λ0
(s′)− Vπ0

λ0
(s′))

]
≥ 0

Based on Theorem 2, we can observe that even when
Eq. (8) is used instead of Lines 4-5 in Algorithm 1, the al-
gorithm still converges to the optimal solution according to
the following argument: since the step-size αi is strictly de-
creasing, we can eventually meet the condition ‖∆λ‖1 < ε,
and the policy ordering will be preserved in the local region
of the λ. Thus, in that local region, the policy converges to
the optimal policy π∗λ via finite policy improvement steps.

We are now ready to present our online algorithm for large
CMDPs, named Cost-Constrained UCT (CCUCT), shown in
Algorithm 2. CCUCT is an extension of UCT with cost con-
straints and can be seen as an anytime approximation of Al-
gorithm 1 using Eq. (8): the policy is sequentially evaluated
via the averaged Monte-Carlo return

QR(s, a)← QR(s, a) +
R−QR(s, a)

N(s, a)

QC(s, a)← QC(s, a) +
C−QC(s, a)

N(s, a)



Algorithm 2 Cost-Constrained UCT (CCUCT)
function SEARCH(s0)

λ is randomly initialized.
repeat

SIMULATE(s0, 0)
π ← GREEDYPOLICY(s0, 0)
a ∼ π(·|s0)
λ← λ+ αt [QC(s0, a)− ĉ]
Clip λk to range [0, Rmax

τ(1−γ) ] ∀k = {1, 2, ...K}
until TIMEOUT()
return GREEDYPOLICY(s0, 0)

end function
function ROLLOUT(s, d)

if d = (maximum-depth) then
return [0, 0]

end if
a ∼ πrollout(·|s) and (s′, r, c) ∼ G(s, a)
return [r, c] + γ· ROLLOUT(s′, d+ 1)

end function
function GREEDYPOLICY(s, κ)

Let Q+
λ (s, a) = QR(s, a)− λ>QC(s, a) + κ

√
logN(s)
N(s,a)

A∗ ← {a∗i | Q
+
λ (s, a∗i ) ' maxa∗ Q+

λ (s, a∗)}
Compute a policy π(a∗i |s) = wi such that

min
wi

K∑
k=1

λk

( ∑
i:a∗i∈A∗

wiQCk(s, a∗i )− ĉk
)2

s.t.
∑

i:a∗i∈A∗
wi = 1 and wi ≥ 0

return π
end function

function SIMULATE(s, d)
if d = (maximum-depth) then

return [0, 0]
end if
if (s, d) /∈ T then

T (s, d)← (Ninit, VC,init)
T (s, d, a)← (Ninit, QR,init, QC,init) ∀a ∈ A
return ROLLOUT(s, d)

end if
π ← GREEDYPOLICY(s, κ)
a ∼ π(·|s) and (s′, r, c) ∼ G(s, a)
[R,C]← [r, c] + γ· SIMULATE(s′, d+ 1)
N(s)← N(s) + 1
N(s, a)← N(s, a) + 1

VC(s)← VC(s) + C−VC(s)
N(s)

QR(s, a)← QR(s, a) + R−QR(s,a)
N(s,a)

QC(s, a)← QC(s, a) + C−QC(s,a)
N(s,a)

return [R,C]
end function
function MAINLOOP()

s← (initial state)
ĉ← (cost constraint)
while s is not terminal do

π ← SEARCH(s)
a ∼ π(·|s) and (s′, r, c) ∼ G(s, a)
ĉ← VC(s′)
s← s′

end while
end function

and the policy is implicitly improved by the UCB1 action se-
lection rule, which increases the scalarized value QR(s, a)−
λ>QC(s, a):

arg max
a

[
QR(s, a)− λ>QC(s, a) + κ

√
logN(s)

N(s, a)

]
(9)

Finally, λ is updated simultaneously using the current esti-
mate of VC(s0) − ĉ, which is the descent direction of the
convex objective function:

λ← λ + αt(QC(s0, a)− ĉ) where a ∼ π(·|s0) (10)

The following theorem states that using this update with
CCUCT is guaranteed to improve λ, under some mild as-
sumptions:

Theorem 3. Under the following assumptions, the direction
VC(s0)− ĉ estimated by CCUCT becomes a descent direction
of the objective in Eq. (4) within finitely large number of
simulations T , i.e. (VC(s0)− ĉ)>(V

π∗λ
C (s0)− ĉ) > 0:

1. ‖Cmax

1−γ + ĉ‖1
∑t0+T
t=t0

αt ≤ ε where ε is defined in Theo-
rem 2 with respect to the current λ, t0 is the current time
step.

2.
∣∣∣(V π∗λR (s0)− λ>V

π∗λ
C (s0)

)
−
(
VR(s0)− λ>VC(s0)

)∣∣∣ =

O
(

logN(s)
N(s)

)
(Asymptotic bias of UCT holds.)

Proof. Without loss of generality, there exists a policy π∗λ
such that CCUCT’s policy asymptotically approaches to that
π∗λ as long as Assumption 1 holds (i.e. the policy order-
ing is preserved). Since VR and {VCk}Kk=1 are evaluated by
Monte-Carlo return of the identical CCUCT’s policy, asymp-
totic convergence rate of VR(s0) and {VCk(s0)}Kk=1 can be
considered as same:

O
(
|V π

∗
λ

R (s0)− VR(s0)|
)

= O
(
|V π

∗
λ

Ck
(s0)− VCk(s0)|

)
∀k

From this, Assumption 2 of∣∣∣(V π∗λR (s0)− λ>V
π∗λ
C (s0)

)
−
(
VR(s0)− λ>VC(s0)

)∣∣∣
=
∣∣∣(V π∗λR (s0)− VR(s0)

)
− λ>

(
V
π∗λ
C (s0)− VC(s0)

)∣∣∣
= O

(
logN(s)

N(s)

)



implies that

|V π
∗
λ

R (s0)− VR(s0)| = O

(
logN(s)

N(s)

)
and

|V π
∗
λ

Ck
(s0)− VCk(s0)| = O

(
logN(s)

N(s)

)
∀k

, which means ∃n0 > 0, ∃M > 0 such that ∀N(s0) ≥ n0,

‖V π
∗
λ

C (s0)− VC(s0)‖2 ≤M
logN(s0)

N(s0)
(11)

Let T = N(s0) − t0 be a large enough number so that satis-
fies:

log(t0 + T )

t0 + T
=

logN(s0)

N(s0)
<
‖V π

∗
λ

C (s0)− ĉ‖2
M

(12)

Then, after the simulation time steps more than T , we get the
result:

(VC(s0)− ĉ)>(V
π∗λ
C (s0)− ĉ)

= (V
π∗λ
C (s0)− ĉ + VC(s0)− V π

∗
λ

C (s0))>(V
π∗λ
C (s0)− ĉ)

= (V
π∗λ
C (s0)− ĉ)>(V

π∗λ
C (s0)− ĉ)

+
(
VC(s0)− V π

∗
λ

C (s0)
)>(

V
π∗λ
C (s0)− ĉ

)
≥ ‖V π

∗
λ

C (s0)− ĉ‖22 − ‖VC(s0)− V π
∗
λ

C (s0)‖2‖V
π∗λ
C (s0)− ĉ‖2

(∵ −‖a‖2‖b‖2 ≤ a>b ≤ ‖a‖2‖b‖2)

≥ ‖V π
∗
λ

C (s0)− ĉ‖22 −M
logN(s0)

N(s0)
‖V π

∗
λ

C (s0)− ĉ‖2(
by (11)

)
> ‖V π

∗
λ

C (s0)− ĉ‖22 −M
‖V π

∗
λ

C (s0)− ĉ‖2
M

‖V π
∗
λ

C (s0)− ĉ‖2(
by (12)

)
= 0.

Note that CCUCT does not require a model of the environ-
ment to solve the CMDP: all we need is a black-box simulator
G of the CMDP, which generates a sample (s′, r, c) ∼ G(s, a)
of the next state s′, reward r, and cost c, given the current
state s and action a. Thus CCUCT is scalable to very large
CMDPs, which we demonstrate through experiments in the
next section.

4.1 Admissible Cost
After the planner takes an action, the cost constraint threshold
ĉ must be updated at the next time step. We reformulate the
notion of admissible cost [Piunovskiy and Mao, 2000], origi-
nally formulated for dynamic programming, for the update.

The admissible cost ĉt+1 at time step t + 1 denotes the
expected total cost allowed to be incurred in future time steps
{t+1, t+2, ...} without violating the cost constraints. Under
dynamic programming, the update is given by [Piunovskiy
and Mao, 2000]:

ĉt+1 =
ĉt − E[C(st, at)|s0, π]

γ

Figure 2: Constrained MDP synthetic domain. In this problem, the
optimal policy is stochastic π∗(a1|s0) = 0.4 and π∗(a2|s0) = 0.6,
and the optimal value is V ∗R(s0; ĉ) = V ∗C (s0; ĉ) = 0.75.

where evaluating E[C(st, at)|s0, π] requires the probability
of reaching (st, at) at time step t, which in turn requires
marginalizing out the past history (a0, s1, a2, ..., st−1). This
is intractable for large state spaces.

On the other hand, under forward search, the admissible
cost at the next time step t+ 1 is simply:

ĉt+1 = V π
∗

C (st+1)

We can access V π
∗

C (st+1) by starting from the root node
of the search tree st, and sequentially following the action
branch at and the next state branch st+1. Here we are assum-
ing that the exact optimal V π

∗

C is obtained, which is certainly
achievable after infinitely many simulations of CCUCT. Note
also that even though ĉt > V π

∗

C (st) is possible in general,
assuming ĉt = V π

∗

C (st) does not change the problem funda-
mentally. If ĉt < V π

∗

C (st) then this means that no feasible
policy exists.

4.2 Filling the Gap: Stochastic vs Deterministic
Policies

Our approach works on the MDP with scalarized rewards, but
care must be taken as the optimal policy of a CMDP is gener-
ally stochastic: given optimal λ∗, let π∗λ be the deterministic
optimal policy for the MDP with the scalarized reward func-
tion R − λ∗>C. Then, by the duality between the primal (1)
and the dual (3),

V ∗R(s0; ĉ) = V∗λ(s0) + λ∗>ĉ

= V
π∗λ
R (s0)− λ∗>(V

π∗λ
C (s0)− ĉ)

This implies that if λ∗k > 0 and V π
∗
λ

Ck
(s0) 6= ck for some k

then π∗λ is not optimal for the original CMDP. This is exactly
the situation where the optimal policy is stochastic. In order
to make the policy computed by our algorithm stochastic, we
make sure that the following optimality condition is satisfied,
derived from V ∗R(s0; ĉ) = V

π∗λ
R (s0):

K∑
k=1

λ∗k(V
π∗λ
Ck

(s0)− ĉk)

=

K∑
k=1

λ∗k

(∑
a

π∗λ(a|s0)Q
π∗λ
Ck

(s0, a)− ĉk

)
= 0 (13)

That is, actions a∗i with equally maximal scalarized action
values Qλ(s, a∗i ) = QR(s, a∗i ) − λ>QC(s, a∗i ) participate



as the support of the stochastic policy, and are selected with
probability π(a∗i |s) that satisfies

∀k : λ∗k > 0,
∑
a∗i

π(a∗i |s)QCk(s, a∗i ) = ĉk

For example, consider the synthetic domain in Figure 2.
In this domain, the optimal λ∗ is 1, and Q∗λ(s0, a1) =
Q∗λ(s0, a2) = 0. Since the two scalarized action values are
maximal, they are the support of the optimal policy which is
stochastic. The probability of executing these two actions can
be obtained from QC , which amount to Q∗C(s0, a1) = 0.375
and Q∗C(s0, a2) = 1. Thus, action 1 is chosen with probabil-
ity 0.4 and action 2 with probability 0.6 to meet the condition
Eq. (13):

∑
a π(a|s0)Q∗C(s0, a) = ĉ = 0.75.

GREEDYPOLICY in Algorithm 2 computes the stochastic
policy according to the above principle. In practice, due to
the randomness in Monte-Carlo sampling, action values in
Eq. (13) are always subject to estimation error, so it is refor-
mulated as a convex optimization problem:

min
wi≥0

K∑
k=1

λk

 ∑
i:a∗i∈A∗

wiQCk(s, a∗i )− ĉk

2

s.t.
∑

i:a∗i∈A∗
wi = 1

where A∗ = {a∗i | Qλ(s, a∗i ) ' maxa∗ Qλ(s, a∗)} and the
solutions are wi = π(a∗i |s).

5 Experiment
In this section, we will empirically demonstrate that CCUCT
converges to the optimal stochastic actions through the syn-
thetic domain, and also show that it scales to a very large
CMDP problem with 21024 states.

Baseline Planner
To the best of our knowledge, this work is the first attempt
to solve constrained MDP using Monte-Carlo Tree Search.
Since there is no algorithm for direct performance compari-
son, we implemented a simple baseline planner. This plan-
ner works as outlined in section 2: it chooses an action via
reward-maximizing UCT while preventing action branches
that violate the cost constraint QC(s, a) ≤ ĉ. If all action
branches violate the cost constraints, the planner chooses an
action uniformly at random.

5.1 Synthetic Domain
The synthetic domain described in Figure 2 is intended to
demonstrate the convergence to the stochastic optimal ac-
tions. It consists of two states and two actions, where the
initial state is denoted as s0. If the action 1 is taken in the
state s0, the agent stays in the same state and receives reward
0 and cost 0. Otherwise, if action 2 is taken, the agent moves
to the next state and starts to receive reward 1 and cost 1 con-
tinuously from the next time step. The discount factor and the
cost constraint are set to γ = 0.5 and ĉ = 0.75 respectively.

In this domain, no deterministic policy can be optimal: if
π(s0) = a1 then it receives no reward V πR (s0) = 0 thus
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Figure 3: The result of synthetic domain (Left: CCUCT. Right:
Baseline). The scattered dots represent the estimates of λ, π(a1|s0),
VC(s0), andQC(s0, a1) at each simulation time step, and the dotted
horizontal lines are the optimal values for these estimates. As for the
colors, blue corresponds to λ, red to stochastic/deterministic policy
π(a1|s0) returned by GREEDYPOLICY in Algorithm 2, orange to
VC(s0), and green to QR(s0, a1) = QC(s0, a1) respectively.

Figure 4: Multi-objective version of Atari 2600 PONG. In this mod-
ified domain, the cost is additionally incurred as well as the reward
according to the position of the planner’s paddle.

suboptimal. Otherwise (π(s0) = a2), the reward is maxi-
mized but the cost constraint is violated V πC (s0) = 1 > ĉ.
Thus the policy should be stochastic, and the optimal solu-
tion is π∗(a1|s0) = 0.4 and π∗(s2|s0) = 0.6. The corre-
sponding optimal value functions are given as V π

∗

R (s0) =

V π
∗

C (s0) = 0.75, Qπ
∗

R (s0, a1) = Qπ
∗

C (s0, a1) = 0.375, and
Qπ
∗

R (s0, a2) = Qπ
∗

C (s0, a2) = 1 respectively. In addition, the
optimal solution of the dual in Eq. (4) is λ∗ = 1.

We use the following parameters for CCUCT: the explo-
ration constant in Eq. (9) κ = 1, clipping constant τ = 0.75,
which is the same as ĉ, and the step-size sequence αt = 10/t.
We run CCUCT with a root node s0 for one million simula-
tion iterations.

Figure 3 presents how the estimates computed by algo-
rithms change over the simulations. At the early stage of
the simulations of CCUCT, λ differs a lot from the opti-
mum λ∗ = 1, which makes the scalarized action values
Qλ(s0, a) = QR(s0, a) − λQC(s0, a) be very different for
each action. As a consequence, GREEDYPOLICY returns a
deterministic policy and π(a1|s0) oscillates between 0 and 1.
However, given enough time, we can see that all the estimates
computed by CCUCT converge to their optima (i.e. λ → 1,
VC(s0) → 0.75, and QC(s0, a1) → 0.375), and so does the
stochastic policy π(a1|s0)→ 0.4. Whereas the baseline plan-
ner always rejects cost-violating action a2, thus the estimates
computed by the planner converges to suboptimal values.



5.2 Multi-Objective Pong
We also conducted experiments on a multi-objective version
of PONG, an arcade game running on the Arcade Learning
Environment (ALE) [Bellemare et al., 2013], depicted in Fig-
ure 4. In this domain, the left paddle is handled by the default
computer opponent and the right paddle is controlled by our
planner. We use the RAM state feature, i.e. the states are bi-
nary strings of length 1024 which results in |S| = 21024. The
action space is {up, down, stay}. The agent receives a re-
ward of {1,−1} for each round depending on win/lose. The
episode terminates if the accumulated reward is {21,−21}.
We assigned cost 0 to the center area (position ∈ [0.4, 0.6]),
1 to the neighboring area (position ∈ [0.2, 0.4] ∪ [0.6, 0.8]),
and 2 to the area farthest away from the center (position ∈
[0.0, 0.2] ∪ [0.8, 1.0]). This cost function can be seen as en-
couraging the agent to stay in the center. The discount factor
is set to γ = 0.99. We tested with various cost constraint
thresholds ĉ ∈ {200, 100, 50, 30, 20} ranging from the un-
constrained case ĉ = 200 (∵ Cmax

1−γ = 200) to the tightly
constrained case ĉ = 20.

We can see that the agent has two conflicting objectives: in
order to achieve a high reward, it sometimes needs to move
the paddle to positions far away from the center, but if this
happens too often, the cost constraint will be violated. Thus,
it needs to trade off between reward and cost properly de-
pending on the cost constraint threshold ĉ.

We use the following parameters: maximum-depth 100,
the number of simulations 1000, exploration constant κ =
0.1, τ equal to the cost constraint ĉ, and the step-size αt =
1/t. The results are averaged over 40 trials.

Figure 5 summarizes the experimental results for CCUCT
and baseline algorithms with varying ĉ. When ĉ = 200 (un-
constrained case), both algorithms always win the game 21
by 0. As we lower ĉ, CCUCT tends to stay in the center in
order to make a trade off between reward and cost, as shown
in the histograms of Figure 5. We can also see that the agent
gradually performs worse in terms of scores as ĉ decreases.
This is a natural result since it is forced to stay in the center
and thus sacrifice the game score. Overall, CCUCT computes
a good policy while generally respecting the cost constraint.
On the other hand, the baseline fails to show a meaningful
policy except when ĉ = 200 since the Monte-Carlo cost re-
turns at early stage mostly violates cost constraints, resulting
in a random behavior.

6 Conclusion and Future Work
We presented CCUCT, an online planning algorithm for large
CMDPs. We showed that solving the dual LP of CMDPs was
equivalent to jointly solving an unconstrained MDP and op-
timizing its LP-induced parameters λ, and provided theoret-
ical findings that gave insight into the properties of λ and
how to optimize them. We then extended UCT to maximize
the scalarized value while simultaneously updating λ using
the current action-value estimates QC. We also empirically
confirmed that CCUCT converges to the optimal stochastic
actions on a synthetic domain and easily scales to very large
CMDPs through a multi-objective version of PONG.
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̂ĉ30

0 0.5 1

̂ĉ20

ĉ ALGO
avg cumulative avg discounted avg score

rewards cumulative costs FOE vs ALGO

200 CCUCT 21.00±0.00 133.00±4.97 0.0 vs 21.0
Baseline 21.00±0.00 136.66±4.45 0.0 vs 21.0

100 CCUCT 19.27±1.63 99.88±0.13 1.4 vs 20.7
Baseline −15.05±3.83 110.88±3.86 18.9 vs 3.9

50 CCUCT 17.88±1.79 49.95±0.07 2.8 vs 20.7
Baseline −20.45±0.26 130.40±4.99 21.0 vs 0.6

30 CCUCT −0.07±5.23 30.40±0.46 13.2 vs 13.2
Baseline −20.48±0.30 131.37±5.08 21.0 vs 0.5

20 CCUCT −17.80±2.91 25.36±1.25 20.1 vs 2.2
Baseline −20.48±0.30 131.37±5.08 21.0 vs 0.5

Figure 5: Results of the constrained PONG. Above: histogram of the
CCUCT planner’s position, where the horizontal axis denotes the
position of the planner (0: topmost, 1: bottommost) and the vertical
axis denotes the relative discounted visitation rate for each bin.

As for future work, two research directions would be
promising. First, a more formal regret analysis of CCUCT
would strengthen the theoretical aspect of our work. Formu-
lated as a bandit problem, CCUCT faces a non-stationary re-
ward since the LP-induced parameter λ changes over time.
However, we believe that CCUCT can be formally proven
to converge to the optimal stochastic actions asymptotically,
with the help of the convex and bounded properties of the
objective function and the local preservation of the policy or-
dering. Second, extending CCUCT to constrained partially
observable MDPs and constrained Bayesian reinforcement
learning settings. In the similar manner UCT is used for par-
tially observable MDPs [Silver and Veness, 2010] and Bayes-
adaptive MDPs [Guez et al., 2013], we believe that CCUCT
can be used for the constrained versions of the corresponding
problems.
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