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Abstract

Many real-world sequential decision problems involve multiple action variables
whose control frequencies are different, such that actions take their effects at differ-
ent periods. While these problems can be formulated with the notion of multiple
action persistences in factored-action MDP (FA-MDP), it is non-trivial to solve
them efficiently since an action-persistent policy constructed from a stationary
policy can be arbitrarily suboptimal, rendering solution methods for the standard
FA-MDPs hardly applicable. In this paper, we formalize the problem of multiple
control frequencies in RL and provide its efficient solution method. Our proposed
method, Action-Persistent Policy Iteration (AP-PI), provides a theoretical guar-
antee on the convergence to an optimal solution while incurring only a factor of
|A| increase in time complexity during policy improvement step, compared to the
standard policy iteration for FA-MDPs. Extending this result, we present Action-
Persistent Actor-Critic (AP-AC), a scalable RL algorithm for high-dimensional
control tasks. In the experiments, we demonstrate that AP-AC significantly out-
performs the baselines on several continuous control tasks and a traffic control
simulation, which highlights the effectiveness of our method that directly optimizes
the periodic non-stationary policy for tasks with multiple control frequencies.

1 Introduction

In recent years, reinforcement learning (RL) [23] has shown great promise in various domains, such
as complex games [14, 21, 22] and high-dimensional continuous control [11, 19]. These problems
have been mostly formulated as discrete-time Markov decision processes (MDPs) [17], assuming
all decision variables are simultaneously determined at every time step. However, many real-world
sequential decision-making problems involve multiple decision variables whose control frequencies
are different by requirement. For example, when managing a financial portfolio of various assets, the
frequency of rebalancing may need to be different for each asset, e.g. weekly for stock and monthly
for real estate. Similarly, robotic systems typically consist of a number of controllers operating at
different frequencies due to their system specification.

Different control frequencies can be formulated with the notion of different action persistence in the
discrete-time factored-action MDP (FA-MDP), where the base time interval is determined by the
reciprocal of the least common multiple of the control frequencies. However, while algorithms for
single action persistence has been proposed in order to improve the empirical performance of online
[9] or offline [13] RL agents, to the best of our knowledge, addressing multiple action persistences
in RL has been mostly unexplored due to its difficulty involved in the non-stationarity nature of the
optimal policy.

In this paper, we formalize the problem of multiple action persistences in FA-MDPs. We first show
that any persistent policy induced by a stationary policy can be arbitrarily bad via a simple example.
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Then, we introduce efficient methods for FA-MDPs that directly optimize a periodic non-stationary
policy while circumventing the exponential growth of time complexity with respect to the periodicity
of action persistence. We first present a tabular planning algorithm, Action-Persistent Policy Iteration
(AP-PI), which provides the theoretical guarantee on the convergence to an optimal solution while
incurring only a factor of |A| time complexity increase in the policy improvement step compared to
the policy iteration for standard FA-MDPs. We then present Action-Persistent Actor-Critic (AP-AC),
a scalable learning algorithm for high-dimensional tasks via practical approximations to AP-PI, with
a neural network architecture designed to facilitate the direct optimization of a periodic non-stationary
policy. In the experiments, we demonstrate that AP-AC significantly outperforms a number of
baselines based on SAC, from the results on modified Mujoco continuous control benchmarks [3, 26]
and the SUMO traffic control simulation [8], which highlights the effectiveness of our method that
directly optimizes the periodic non-stationary policy for tasks with multiple control frequencies.

2 Preliminaries

We assume the environment modeled as discrete-time factored-action MDP (FA-MDP) M =
〈S,A, P,R, γ〉 where S is the set of states s, A is the set of vector-represented actions a =
(a1, . . . , am), P (s′|s, a) = Pr(st+1 = s′|st = s, at = a) is the transition probability, R(s, a) ∈ R
is the immediate reward for taking action a in state s, and γ ∈ [0, 1) is the discount factor. A
policy π = (πt)t≥0 ∈ Π is a sequence of functions where πt : H → ∆(A) is a mapping from
history ht = (s0, a0, . . . , st−1, at−1, st) to a probability distribution over A, πt(at|ht) = Pr(at|ht).
We call πt Markovian if πt depends only on the last state st and call it stationary if πt does
not depend on t. The policy πt is called deterministic if it maps from history to some action
with probability 1 and can be denoted as πt : H → A. For simplicity, we will only con-
sider the fully factorized policy πt(a

1
t , . . . , a

m
t |ht) =

∏m
k=1 π

k
t (akt |ht), which comprises the

set Π of all fully factorized policies. The action-value function Qπt of policy π is defined as
Qπt (s, a) = Eπ [

∑∞
τ=t γ

τ−tR(sτ , aτ )|st = s, at = a].

We consider the sequential decision problem where each action variable ak has its own control
frequency. The notion of control frequency can be formulated in terms of action persistence with
FA-MDPM by considering how frequently ak should be decided inM. Specifically, we let ck be the
action persistence of k-th action variable ak, i.e. ak is decided every ck time step inM. The overall
action persistence of the decision problem is then described as a vector c = (c1, . . . , cm) ∈ Nm.
Finally, we define the c-persistent policy π as follows:
Definition 1. (c-persistent policy) Let π = (πt)t≥0 ∈ Π be a policy. Given the action persistence
vector c ∈ Nm, the c-persistent policy π̄c = (π̄c,t)t≥0 induced by π is a non-stationary policy where

∀t, π̄c,t(a|ht) =

m∏
k=1

π̄kc,t(a
k|ht) s.t. π̄kc,t(a

k|ht) =

{
πkt (ak|ht) if t mod ck = 0

δak
t−(t mod ck)

(ak) otherwise (1)

where δx(y) = 1 if x = y and 0 otherwise. Additionally, we define the set of c-persistent policies
Πc = {(π̄c,t)t≥0 : π ∈ Π}.

Our goal is to find the c-persistent policy π∗c that maximizes expected cumulative rewards:

π̄∗c = arg max
π̄∈Πc

Eπ̄

[ ∞∑
t=0

γtR(st, at)

]
(2)

Remark. When c = (1, . . . , 1), we have Πc = Π. Thus, Eq. (2) is reduced to the standard objective
function of FA-MDP, which is known to always have a deterministic and Markovian stationary
policy as an optimal solution [17]. Also, the c-persistent policy of Definition 1 is different from the
k-persistent policy [13] in that our definition considers multiple action persistences and is not limited
by Markovian policy π while [13] considers single action persistence and a non-stationary policy
induced only by a Markovian policy.

The agent with c-persistent policy π̄c induced by π interacts with the environment as follows: At
time step t = 0, all action variables are selected according to π̄c,0 = π0, i.e. (a1

0, . . . , a
m
0 ) ∼∏m

k=1 π
k
0 (·|h0). Then, each action variable ak is kept persistent for the subsequent ck − 1 time steps.

At time step t = ck, the action variable ak is set by π̄kc,t(·|ht) = πkt (·|ht), and continue into the next
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Figure 1: An illustrative example of FA-MDP with two action persistence where the initial state is s0

and γ = 0.95. The arrows indicate transitions and rewards for each action. In this simple example,
every c-persistent policy induced by any stationary policy is suboptimal.

time step. In other words, the agent decides the value for ak only at the time steps t that are multiples
of ck, i.e. t mod ck = 0. Figure 1b illustrates an example of c-persistent policy π̄c. For the remainder
of this paper, we will omit the subscript c in π̄c for notational brevity if there is no confusion. All the
proofs of theorems are available in the Appendix.

3 Action-Persistence in FA-MDPs

Finding the optimal policy via Eq. (2) is non-trivial since any c-persistent policy naively constructed
from a stationary policy can be suboptimal, unlike in standard FA-MDPs where there always exists a
stationary optimal policy. To see this, consider the FA-MDP depicted in Figure 1, where there are
two action variables with action persistences 2 and 3, respectively. In this example task, in order to
obtain a positive reward, the agent should take an action a = (1, 1) at state s0 to go to the rightmost
state. However, when we use this to form a stationary deterministic policy with π(s0) = (1, 1) and
construct a c-persistent policy in a naive manner, we see that the policy can never reach s3 due to
the inherent action persistence c = (2, 3): The action (1, 1) taken at s0 when t = 0 will persist at
the next time step t = 1 in s1, making the agent go back to s0. Then, the agent will select an action
(1, 1) again by π(s0), and this will be repeated forever. As a consequence, the agent visits only s0

and s1, and thus cannot reach the rightmost state. In contrast, the non-stationary deterministic policy
π̄ described in Figure 1b reaches s3. Careful readers may notice that a c-persistent policy "projected"
from some stationary but stochastic policy can eventually reach s3, but its expected return is clearly
less than the non-stationary deterministic policy in Figure 1b, thus suboptimal.

Therefore, obtaining a c-persistent policy by ignoring the action persistence requirement and solving
the corresponding standard FA-MDP would not work. However, one can observe that the action
persistence scheme is repeated periodically at every L , LCM(c1, . . . , cm) time steps. From this
observation, a naive approach to solving Eq. (2) would be redefining the action space to have L-step
actions as elements. After redefining the transition and reward function corresponding to these
actions, standard solution methods for FA-MDP such as dynamic programming can be applied. Still,
this approach not only has exponential time complexity with respect to L due to the increase in the
size of action space, i.e. |A|L, but also can be suboptimal unless the underlying transition dynamics
is nearly deterministic due to the open-loop decision-making nature of L-step actions [27]. A more
principled approach is to consider an L-Markovian policy that memorizes which action was taken
during the last L steps, but its straightforward conversion to the standard MDP via state augmentation
still suffers from the exponential time complexity with respect to L.

3.1 Policy evaluation for c-persistent policy: c-persistent Bellman operators

As discussed in the previous section, augmenting state or action space for storing L-step information
results in exponential complexity with respect to L. Instead, we take a more direct approach that
optimizes the c-persistent policy via composition of Bellman operators within the space of L-periodic,
non-stationary and deterministic policies ΠL:

ΠL = {π ∈ Π : ∀t, πt = πt+L and πt : A× S → A} (3)

We will later prove that there always exists an optimal policy for Eq. (2), which is induced by π ∈ ΠL.
The policy in ΠL will be denoted as π = (π0, . . . , πL−1) in the remainder of the paper.
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As the first step of the derivation of our algorithm, we define function Γct,a(a′):

Γct,a(a′) = (ā1, . . . ām) where āk ,

{
ak if t mod ck 6= 0

a′k if t mod ck = 0
(4)

which projects action a′ into a feasible action at time step t if the action taken at t− 1 is assumed to
be a. This is done by extracting dimensions of "effectable" action variables at time step t from a′ and
extracting dimensions of "uneffectable" variables at time step t from a.

For the L-periodic non-stationary deterministic policy π = (π0, . . . , πL−1) ∈ ΠL, we first define the
one-step c-persistent Bellman operator T̄ πt induced by π. Specifically, for t ∈ {0, . . . , L− 1},

(T̄ πt Q)(s, a) , R(s, a) + γE s′∼P (s′|s,a)
a′=πt+1(a,s′)

[
Q(s′,Γct+1,a(a′))

]
(5)

Then, we define an L-step c-persistent Bellman operator H̄π
t by making the composition of L one-step

c-persistent Bellman operators:

(H̄π
0 Q)(s, a) , (T̄ π0 T̄ π1 · · · T̄ πL−2T̄ πL−1Q)(s, a) (6)

(H̄π
1 Q)(s, a) , (T̄ π1 T̄ π2 · · · T̄ πL−1T̄ π0 Q)(s, a)

...

(H̄π
L−1Q)(s, a) , (T̄ πL−1T̄ π0 · · · T̄ πL−3T̄ πL−2Q)(s, a)

The following theorem and corollary state that each L-step c-persistent Bellman operator H̄π
t is a

contraction mapping, and each of the fixed points Qπ̄0 , . . . , Q
π̄
L−1 has a recursive relationship with

another by one-step c-persistent Bellman operators T̄ π0 , . . . , T̄ πL−1.

Theorem 1. For all t ∈ {0, . . . , L − 1}, the L-step c-persistent Bellman operators H̄π
t is γL-

contraction with respect to infinity norm, thus H̄π
t Q

π̄
t = Qπ̄t has the unique fixed point solution. In

other words, for any Q0
t : S ×A → R, define Qn+1

t = H̄π
t Q

n
t . Then, the sequence Qnt converges to

t-th c-persistent value function of π̄ as n→∞.
Corollary 1. Qπ̄t = T̄ πt Qπ̄(t+1) mod L holds for all t ∈ {0, . . . , L − 1}, thus c-persistent value
functions can be obtained by repeatedly applying 1-step c-persistent backup in a L-cyclic manner.

Note that the c-persistent value function of the policy π obtained by H̄π
t , has the following form:

Qπ̄t (s, a) =E ∀τ, sτ+1∼P (·|sτ ,aτ )
āτ+1=Γcτ+1,āτ

(πτ+1(āτ ,sτ+1))

[ ∞∑
τ=t

γτ−tR(sτ , āτ )
∣∣∣ st = s, āt = a

]
(7)

which is obtained by unfolding the L-step c-persistent Bellman recursion from H̄π
t . Here, one

can easily show that every action taken at every time step t, which is projected by Γct,ā(·), abides
by c-persistence, by mathematical induction. As a result, Qπ̄t (s, a) has the intended interpretable
meaning, i.e. the expected sum of rewards that can be obtained when following the c-persistent policy
π̄ which is induced by π, except for the initial action a, starting from the state s at time step t.

Remark. The time complexity of applying the one-step c-persistent Bellman backup T̄ πt of Eq. (5)
for a deterministic policy π is O(|S|2|A|) for each t, which is identical to the time complexity of the
non-persistent standard Bellman backup.

Now, we have a complete policy evaluation operator for c-persistent policy induced by L-periodic
non-stationary deterministic policy π.

3.2 Policy improvement for c-persistent policy

The remaining step for full policy iteration is policy improvement using Qπ̄t (s, a).
Theorem 2. Given aL-periodic, non-stationary, and deterministic policy π = (π0, . . . , πL−1) ∈ ΠL,
let Qπ̄t be the c-persistent value of π̄ denoted in Eq. (7). If we update the new policy πnew =
(πnew

0 , . . . , πnew
L−1) ∈ ΠL by

∀t, a, s′, πnew
t (a, s′) = arg max

a′
Qπ̄t (s′,Γct,a(a′)) (8)

then Qπ̄
new

t (s, a) ≥ Qπ̄t (s, a) holds for all t, s, a.
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Remark. The time complexity of policy improvement step defined by Eq. (8) is O(|S||A|2) for
each t, which has |A| times worse time complexity compared to the standard non-persistent policy
improvement whose complexity is O(|S||A|). Note also that the new policy πnew is not necessarily
c-persistent, i.e. πnew /∈ Πc is possible, but the performance of its inducing c-persistent policy is
always improved.

Finally, Theorems 1 and 2 lead us to a full algorithm, action-persistent policy iteration (AP-PI). AP-PI
iterates between c-persistent policy evaluation by Eq. (6) and the c-persistent policy improvement of
Eq. (8), and it is guaranteed to converge to the optimal c-persistent policy π̄∗ ∈ Πc. The pseudo-code
of AP-PI can be found in Appendix D.
Theorem 3. Starting from any π̄0 ∈ Πc induced by L-periodic non-stationary deterministic policy
π0 ∈ ΠL, the sequence of value functions Qπ̄

n

and the improved policies π̄n+1 induced by πn+1

converge to the optimal value function and the optimal c-persistent policy π̄∗, i.e. Qπ̄
∗

t (s, a) =
limn→∞Qπ̄

n

t mod L(s, a) ≥ Qπ̄t (s, a) for any π̄ ∈ Πc, t ∈ N0, s ∈ S, and a ∈ A.
Corollary 2. There always exists a c-persistent optimal policy π̄∗c , which is induced by a L-periodic,
non-stationary, and deterministic policy π ∈ ΠL.

The policy π̄∗ = (π̄∗0 , . . . , π̄
∗
L−1) obtained by AP-PI is executed as follows. First, ā is initialized

randomly. Then, at every step t, at = Γct,ā(π̄∗t mod L(ā, st)) is executed, and ā is updated by ā← at.

To the best of our knowledge, AP-PI is the first algorithm that addresses multiple action persistences,
extending the single action persistence model that has been recently analyzed in [13]. AP-PI can be
readily made scalable using the actor-critic architecture, to cope with large action spaces such as
continuous actions, which we describe in the next section. This is a non-trivial extension of Persistent
Fitted Q-iteration (PFQI) [13] which only applies to finite action spaces with single action persistence.

4 Action-Persistent Actor-Critic

In this section, we present Action-Persistent Actor-Critic (AP-AC), an off-policy RL algorithm that
can be applied to high-dimensional tasks via practical approximation to AP-PI. AP-AC extends Soft
Actor-Critic (SAC) [4] to perform iterative optimization of the parametric models of an L-periodic
non-stationary policy (i.e. actor), and its c-persistent action-value function (i.e. critic). We assume
that the action persistence vector c = (c1, . . . , cm) is given as a part of the environment specification.

As discussed in Section 3, the optimal c-persistent policy π̄ can be induced by an L-periodic non-
stationary policy π = (π0, . . . , πL−1), where πt : A× S → ∆(A) for all t. The corresponding opti-
mal value function is also represented by the L-periodic action-value functionQπ̄ = (Qπ̄0 , . . . , Q

π̄
L−1)

with Qπ̄t : S ×A → R for all t. We exploit this structure of the optimal solution in the neural network
architecture. Specifically, the parameterized actor network πφ(ā, s) and the critic network Qθ(s, a)
are designed to have L heads, whose t-th head represents πt and Qπ̄t respectively, thus sharing the
parameters of the lower layers among different t. The t-th head of the critic recursively references
the ((t+ 1) mod L)-th head for the target value, reflecting the result of Corollary 1.

The c-persistent value function is trained to minimize the squared temporal difference error:

JQ(θ) =
1

L

L−1∑
t=0

E (s,a,r,s′)∼D
a′∼πφ,(t+1) mod L(·|a,s′)

[(
Qθ,t(s, a)− yt(a, r, s′, a′)

)2
]

(9)

s.t. yt(a, r, s′, a′) = r + γQθ̄,(t+1) mod L

(
s′,Γct+1,a(a′)

)
− α log πφ,(t+1) mod L(a′|a, s′),

where D denotes the replay buffer, θ̄ is the parameters of the target network, and Γct,a(a′) is the
action projection function defined in Eq. (4). This objective function is obtained from Eq. (5) with
an (optional) entropy regularization term α log πφ,t(a

′|a, s′), following the SAC formulation. Note
that every term in Eq. (9) is agnostic to the actual time step when (s, a, r, s′) was collected, which is
due to the way we calculate yt using Q(t+1) mod L and Γ. Thus every (s, a, r, s′) sample in D can be
used to train Qθ,t regardless of t.

The policy parameters are then optimized by maximizing:

Jπ(φ) =
1

L

L−1∑
t=0

E (s,a,r,s′)∼D
a′∼πφ,t(·|a,s′)

[
Qθ,t(s

′,Γct,a(a′))− α log πφ,t(a
′|a, s′)

]
(10)
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Figure 2: Overview of the network architectures and computational graphs for AP-AC training, given
the (s, a, r, s′) sample. The left figure corresponds to actor training of, Eq. (10), and the right figure
to critic training of Eq. (9).

where the (optional) α log πφ,t(a
′|a, s′) term comes from SAC formulation. In essence, maximizing

Jπ(φ) with respect to φ corresponds to c-persistent policy improvement by implementing Eq. (8)
approximately. As with the case with critic, every term in Eq. (10) is agnostic to the actual time
step t of when (s, a, r, s′) was collected, thus every sample in D can be used to train πφ,t for all t.
The overall network architecture and the computational graph for training AP-AC are visualized
in Figure 2. In order to obtain lower-variance gradient estimate ∇̂φJπ(φ), we adopt the exact
reparameterization [7] for continuous action tasks and the relaxed reparameterization with Gumbel-
softmax [5, 12] for discrete action tasks. The rest of the design choices follows that of SAC such
as the clipped double Q trick and soft target update. The pseudo-code for AP-AC can be found in
Appendix E.

5 Related Works

Action Repetition in RL Recent deep RL algorithms have adopted action repetition to improve
learning efficiency by reducing control granularity. Static action repetition, which repeats the same
action over a fixed k time step, has been widely adopted in both on-policy [15] and off-policy [14] RL.
Dynamic action repetition [9, 20] has also been explored to further improve the learning efficiency
of online RL agents by adaptively changing the time scale of repeating actions per state. Recently,
the notion of a single action-persistence has been formalized by introducing persistent Bellman
operators, and its corresponding offline RL algorithm has been proposed along with a heuristic
method for finding good persistence for empirical performance [13]. In contrast to the existing works
that consider a single action-persistence, we deal with arbitrarily multiple action-persistence where
each decision variable has its own persistence, and our goal is to provide an efficient solution method
for the given action persistence c rather than finding a proper c to speed up learning.

Temporal Abstraction in RL The notion of action persistence is also naturally related to tempo-
rally abstract actions [16, 25] and semi-MDP framework [2]. Specifically, persisting actions with
multiple frequencies can be seen as a particular instance of a semi-Markov option as follows: initia-
tion set is the set of all states I = S, an internal policy is c-persistent π ∈ Πc, and the termination
condition is defined as β(ht) = 1{t mod L=0}. Then, our off-policy learning scheme that exploits
every transition sample to update every timestep’s actor and critic in Eq. (9-10) can also be understood
as an intra-option learning [24] method in the constructed semi-Markov option framework. Still, the
cardinality of the set of possible options has an exponential growth with respect to L, thus obtaining
an optimal policy over the set of options will be computationally inefficient compared to AP-PI that
enjoys a linear complexity with respect to L.

6 Experiments

We conducted a set of experiments in order to evaluate the effectiveness of AP-AC on high-
dimensional tasks with different control frequencies. To the best of our knowledge, this work
is the first to address multiple control frequencies in RL. Since there are no existing RL methods
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(a) Hopper (b) Walker2d (c) HalfCheetah (d) Ant

Figure 3: Description of Mujoco continuous control tasks with multiple control frequencies. The
number on each joint indicates the degree of persistence of each action. In other words, the action
persistence vector for each domain is given as: c = (4, 2, 1) for Hopper, c = (4, 2, 1, 4, 2, 1) for
Walker2d and HalfCheetah, and c = (4, 2, 4, 2, 4, 2, 4, 2) for Ant.

(a) Domain description (b) Actions available for each junction.

Figure 4: Description of traffic light control problem. (a) We consider a 2x2 traffic simulation
consisting of two rows and two columns of roads, where the traffic lights for the top-left and the
bottom-right junctions have action persistence 2 while other junctions have action persistence 3, i.e.
c = (2, 3, 3, 2). (b) For each junction, there are 22 actions (i.e. the traffic light) where the green light
allows the traffic to proceed and the red light prohibits any traffic from proceeding.

designed for multiple control frequencies, we take the variants of SAC as baselines for performance
comparison, which are listed as follows: (1) SAC: this agent is trained on the standard non-persistent
environment, while being evaluated on the environment where the action-persistence is enforced. This
is intended to show the suboptimality of simply projecting a stationary policy to an action-persistent
policy. (2) SAC in AP-Env: this agent is trained and evaluated on the action-persistent version
of the environment, using the standard RL algorithm. This is to demonstrate the suboptimality of
a stationary Markovian policy. (3) SAC-L: this agent takes a current observation, past L actions,
and the one-hot indicator of the current time step (t mod L), which are sufficient for the optimal
decision-making for the corresponding state augmentation approach discussed in Section 3. Still,
this does not exploit the structure of the c-persistent optimal solution such as periodically recurrent
policy/value representation and can take redundant information which is not fully compact. As a
consequence, it is expected to show relatively weak performance. (4) SAC-L-compact: this agent
takes a current observation, the last action which was actually taken, and the one-hot indicator of
the current time step (t mod L), which is a compact representation of SAC-L. Still, this is unable to
exploit every transition sample to update every timestep’s actor and critic, while AP-AC is capable of
doing it in Eq. (9-10). Therefore, it is expected to be less sample-efficient than AP-AC.

We conducted experiments on both continuous and discrete tasks, which will be detailed in the
following section. The experimental setups including hyperparameters can be found in Appendix G.

6.1 Task description

Mujoco tasks (continuous action space) In many real-world situations, complex robotic systems
consist of a number of controllers whose operating control frequencies vary due to the system
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Figure 5: The results of experiments on the continuous control benchmarks and the traffic light
control problems, which are averaged over 10 trials. The shaded area represents the standard error.

specification. In order to simulate this setting, we first conduct experiments on four OpenAI Gym
continuous control tasks based on the Mujoco physics simulator [3, 26], where the controllable joints
are modified to have different action persistence. Figure 3 depicts the detailed experimental setup
for different action persistence for each task. For Hopper and Walker2d, action persistence for the
thigh(s), the leg(s), and the foot(feet) are set to 4, 2, and 1 respectively. For HalfCheetah, action
persistence for the thighs, the shins, and the feet are set to 4, 2, and 1 respectively. Finally, for Ant,
the persistence for the hips and ankles are set to 4 and 2. We represent the policy πt as the Gaussian
with diagonal covariance matrix and tanh-squashing function to bound the output in range [−1, 1]
for each dimension [4].

Traffic light control (discrete action space) We also tested AP-AC on a traffic control task, a
realistic discrete-action sequential decision scenario with action persistence: in the traffic system, the
control frequency of each traffic light can be different, for example depending on the number lanes
and the speed limit. We use SUMO (Simulation of Urban MObility) [8] as the traffic simulator and
SUMO-RL [1] for the environment interface. The specific instance we use is the implementation
of 2X2GRID in SUMO-RL, which is depicted in Figure 4. The goal is to manipulate traffic lights
located at each junction to improve the overall traffic flow, where the vehicles are generated randomly
with a probability of 0.1 for every second at the end of the road.

The observation for each junction consists of the following four types of values: (1) the current traffic
light status, represented by (4D one-hot), (2) the elapsed time from the current traffic light status,
normalized within [0, 1] (1D), (3) the density of all vehicles for each lane (8D), and (4) the density
of stopped vehicles for each lane (8D). Therefore, the overall dimension of the observation space is
4× 21 = 81. The action space is described in Figure 4b. The reward in the range [0, 1] is defined
to be mini∈{1,2,3,4} 1/(waiting time of junction i), with the goal of improving traffic flow of the
junction of heaviest traffic. The length of episodes is 1000. We use a factorized (relaxed) categorical
distribution to represent the policy with discrete action space, i.e. πφ,t(a|·) =

∏4
k=1 Cat(ak|pkφ(·))

where pφ(·) denotes the probability vector with size 4. Though the cardinality of the entire joint action
space is |A| = 44 = 256, the input and output dimensions to represent actions in the actor/critic
networks are 4× 4 = 16 (i.e. four one-hot vectors with size 4) since we are assuming fully factorized
policies.

6.2 Results

We performed deterministic evaluation for each algorithm every 10K time steps, i.e. the peformance
of the mean policy for continuous control and the greedy policy with respect to the categorical
probabilities for the traffic control. The results are presented in Figure 5.
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Since SAC (colored in green) is optimized for the non-persistent environment, its naive projection to
the c-persistent policy suffers from severe performance degradation. In contrast, SAC in AP-Env
(colored in cyan) interacts with the c-persistent environment directly while optimizing a stationary
Markovian policy. Still, as discussed in Section 3, stationary Markovian policies can be suboptimal
in general, which resulted in performing worse than AP-AC. SAC-L (colored in magenta) takes the
past L-step actions and indicator of the current time step (t mod L), which is sufficient information
for optimal c-persistent decision-making. Nonetheless, it does not exploit the structure of optimal
c-persistent solution and can take redundant information since not all the past L-step actions are
required for optimal decision-making, resulting in inefficient learning. This can be observed from the
results that as the action dimension increases (Hopper (3)→Walker/Halfcheetah (6)→ Ant (8)→
SUMO2X2GRID (16)), the performance of SAC-L gets relatively worse. SAC-L-compact (colored
in red) takes the last action actually taken, and indicator of the current time step (t mod L), which
is also sufficient as well as compact information for optimal c-persistent decision-making, showing
better performance than SAC-L in high-dimensional action tasks. Still, it is unable to exploit every
transition sample to update every timestep’s actor and critic, which leads to learning inefficiency
compared to AP-AC. Finally, AP-AC significantly outperforms all of the baseline algorithms in all
benchmark domains except for Hopper where AP-AC and baselines are on par. The experimental
results highlight the effectiveness of our method that directly optimizes a periodic non-stationary
policy for the tasks with multiple control frequencies.

7 Discussion and Conclusion

In this work, we formalized the notion of multiple action persistences in RL, which generalizes the
result of [13] that deals with single action persistence. We introduced AP-PI, an efficient tabular
planning algorithm for c-persistent policy for FA-MDP, and showed a formal analysis on its optimal
convergence guarantee while it has only a marginal increase in the time complexity compared to
the standard policy iteration. We then presented AP-AC, an off-policy deep reinforcement learning
algorithm that scales, which directly exploits the structure of the optimal solution from the formal
analysis on AP-PI. We empirically demonstrated that AP-AC significantly outperforms a number
of strong baselines, both on continuous and discrete problems with action persistence. Extending
the results of this work to multi-agent or hierarchical RL would be an interesting direction for future
work.

Broader Impact

In recent years, reinforcement learning (RL) has shown remarkable successes in various areas, where
most of their results are based on the assumption that all decision variables are simultaneously
determined at every discrete time step. However, many real-world sequential decision-making
problems involve multiple decision variables whose control frequencies are different by the domain
requirement. In this situation, standard RL algorithms without considering the control frequency
requirement may suffer from severe performance degradation as discussed in Section 3. This paper
provides a theoretical and algorithmic foundation of how to address multiple control frequencies in
RL, which enables RL to be applied to more complex and diverse real-world problems that involve
decision variables with different frequencies. Therefore, this work would be beneficial for those who
want to apply RL to various tasks that inherently have multiple control frequencies. As we provide a
general-purpose methodology, we believe this work has little to do with a particular system failure
or a particular data bias. On the other hand, this work could contribute to accelerating industrial
adoption of RL, which has the potential to adversely affect employment due to automation.
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REINFORCEMENT LEARNING FOR CONTROL WITH MULTIPLE FREQUENCIES -
SUPPLEMENTARY MATERIAL (Jongmin Lee, Byung-Jun Lee, Kee-Eung Kim)

Appendix A Proof of Theorem 1

Lemma 1. For any π ∈ ΠL, t ∈ {0, . . . , L− 1}, and k ∈ N, the composition of k one-step c-persistent Bellman operators
(T̄ πt · · · T̄ π(t+k−1) mod L) satisfies:

(T̄ πt · · · T̄ π(t+k−1) mod LQ)(s, a) = E∀τ,sτ+1∼P (·|sτ ,āτ )

[
t+k−1∑
τ=t

γτ−tR(sτ , āτ ) + γkQ(st+k, āt+k)
∣∣∣ st = s, āt = a

]
where āτ+1 = Γcτ+1,āτ (π(τ+1) mod L(āτ , sτ+1)) for τ = t, . . . , t+ k − 1

Proof. We give a proof based on induction. For k = 1,

(T̄ πt Q)(s, a) =Est+1∼P (·|st,āt) [R(st, āt) + γQ(st+1, āt+1) | st = s, āt = a]

where āt+1 = Γct+1,āt(π(t+1) mod L(āt, st+1))

holds by the definition of one-step c-persistent Bellman operator T̄ πt (Eq. (5)). Now, assume the induction hypothesis for k.
Then, (

T̄ πt · · · T̄(t+k−1) mod L(T̄ π(t+k) mod LQ)
)
(s, a)

=E∀τ,sτ+1∼P (·|sτ ,āτ )

[
t+k−1∑
τ=t

γτ−tR(sτ , āτ ) + γk(T̄ π(t+k) mod LQ)(st+k, āt+k)
∣∣∣ st = s, āt = a

]
where āτ+1 = Γcτ+1,āτ (π(τ+1) mod L(āτ , sτ+1)) for τ = t, . . . , t+ k − 1

(by the induction hypothesis)

=E∀τ,sτ+1∼P (·|sτ ,āτ )

[
t+k−1∑
τ=t

γτ−tR(sτ , āτ ) + γk
(
R(st+k, āt+k)

+γQ
(
st+k+1,Γ

c
t+k+1,āt+k

(π(t+k+1) mod L(āt+k, st+k+1))
)) ∣∣∣ st = s, āt = a

]
where āτ+1 = Γcτ+1,āτ (π(τ+1) mod L(āτ , sτ+1)) for τ = t, . . . , t+ k − 1

=E∀τ,sτ+1∼P (·|sτ ,āτ )

[
t+k∑
τ=t

γτ−tR(sτ , āτ ) + γk+1Q(st+k+1, āt+k+1)
∣∣∣ st = s, āt = a

]
where āτ+1 = Γcτ+1,āτ (π(τ+1) mod L(āτ , sτ+1)) for τ = t, . . . , t+ k

thus the given statement holds for k + 1, which concludes the proof.

Theorem 1. For all t ∈ {0, . . . , L− 1}, the L-step c-persistent Bellman operator H̄π
t is γL-contraction with respect to

infinity norm, thus H̄π
t Q

π̄
t = Qπ̄t has the unique fixed point solution. In other words, for any Q0

t : S × A → R, define
Qn+1
t = H̄π

t Q
n
t . Then, the sequence Qnt converges to t-th c-persistent value function of π̄ as n→∞.

Proof. By Lemma 1, for any t, s, a, and Q1 : S ×A → R and Q2 : S ×A → R,∣∣∣H̄π
t Q1(s, a)− H̄π

t Q2(s, a)
∣∣∣ =

∣∣∣E∀τ,sτ+1∼P (·|sτ ,āτ )

[
γLQ1(st+L, āt+L)− γLQ2(st+L, āt+L) | st = s, āt = a

] ∣∣∣
where āτ+1 = Γcτ+1,āτ (π(τ+1) mod L(āτ , sτ+1)) for τ = t, . . . , t+ L− 1

≤ γL max
s′,a′

∣∣∣Q1(s′, a′)−Q2(s′, a′)
∣∣∣

∴
∥∥H̄π

t Q1 − H̄π
t Q2

∥∥
∞ ≤ γ

L
∥∥Q1 −Q2

∥∥
∞

Therefore, H̄π
t is γL-contraction with respect to infinity norm, and by Banach fixed-point theorem, H̄π

t Q
π̄
t = Qπ̄t has the

unique fixed point solution for all t.

A deeper discussion on the Bellman operators with a periodic non-stationary policy can be found in [10, 18] though it
analyzes the error in approximate policy/value iterations, rather than considering action persistence.
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Corollary 1. Qπ̄t = T̄ πt Qπ̄(t+1) mod L holds for all t ∈ {0, . . . , L− 1}, thus c-persistent value functions can be obtained
by repeatedly applying 1-step c-persistent backup in a L-cyclic manner.

Proof.

Qπ̄t = H̄π
t Q

π̄
t = H̄π

t H̄
π
t Q

π̄
t = H̄π

t H̄
π
t H̄

π
t Q

π̄
t = · · · (by Theorem 1)

= T̄ πt T̄ π(t+1) mod L . . . T̄
π

(t+L−1) mod L︸ ︷︷ ︸
H̄πt

T̄ πt T̄ π(t+1) mod L . . . T̄
π

(t+L−1) mod L︸ ︷︷ ︸
H̄πt

Qπ̄t

= T̄ πt T̄ π(t+1) mod L . . . T̄
π

(t+L−1) mod LT̄
π
t︸ ︷︷ ︸

H̄π
(t+1) mod L

T̄ π(t+1) mod L . . . T̄
π

(t+L−1) mod LQ
π̄
t︸ ︷︷ ︸

,Q

= T̄ πt H̄π
(t+1) mod LQ = · · · = T̄ πt lim

n→∞
(H̄π

(t+1) mod L)nQ

= T̄ πt Qπ̄(t+1) mod L (by Theorem 1)

Appendix B Proof of Theorem 2

Theorem 2. Given a L-periodic, non-stationary, and deterministic policy π = (π0, . . . , πL−1) ∈ ΠL, let Qπ̄t be the
c-persistent value of π̄ denoted in Eq. (7). If we update the new policy πnew = (πnew

0 , . . . , πnew
L−1) ∈ ΠL by

∀t, a, s′, πnew
t (a, s′) = arg max

a′
Qπ̄t (s′,Γct,a(a′)) (8)

then Qπ̄
new

t (s, a) ≥ Qπ̄t (s, a) holds for all t, s, a.

Proof. For any t, s, a,

Qπ̄t (s, a)

= EP
[
R(st, āt) + γQπ̄(t+1) mod L(st+1,Γ

c
t+1,āt(π(t+1) mod L(āt, st+1))) | st = s, āt = a

]
≤ EP

[
R(st, āt) + γQπ̄(t+1) mod L

(
st+1,Γ

c
t+1,āt(π

new
(t+1) mod L(āt, st+1))

)
| st = s, āt = a

]
(by Eq. (8))

= EP
[
R(st, āt) + γ

(
R(st+1, āt+1) + γQπ̄(t+2) mod L

(
st+2,Γ

c
t+2,āt+1

(π(t+2) mod L(āt+1, st+2))
))
| st = s, āt = a

]
where āt+1 = Γct+1,āt(π

new
(t+1) mod L(āt, st+1))

= EP

[
t+1∑
τ=t

γτ−tR(sτ , āτ ) + γ2Qπ̄(t+2) mod L

(
st+2,Γ

c
t+2,āt+1

(π(t+2) mod L(āt+1, st+2))
)
| st = s, āt = a

]
where āτ+1 = Γcτ+1,āτ (πnew

(τ+1) mod L(āτ , sτ+1)) for τ = t

≤ EP

[
t+1∑
τ=t

γτ−tR(sτ , āτ ) + γ2Qπ̄(t+2) mod L

(
st+2,Γ

c
t+2,āt+1

(πnew
(t+2) mod L(āt+1, st+2))

)
| st = s, āt = a

]
where āτ+1 = Γcτ+1,āτ (πnew

(τ+1) mod L(āτ , sτ+1)) for τ = t

= EP

[
t+2∑
τ=t

γτ−tR(sτ , āτ ) + γ3Qπ̄(t+3) mod L

(
st+3,Γ

c
t+3,āt+2

(π(t+3) mod L(āt+2, st+3))
)
| st = s, āt = a

]
where āτ+1 = Γcτ+1,āτ (πnew

(τ+1) mod L(āτ , sτ+1)) for τ = t, t+ 1

...

≤ EP

[ ∞∑
τ=t

γτ−tR(sτ , āτ ) | st = s, āt = a

]
where āτ+1 = Γcτ+1,āτ (πnew

(τ+1) mod L(āτ , sτ+1)) for τ = t, t+ 1, t+ 2, . . .

= Qπ̄
new

t (s, a)

where each of inequalities holds by Eq. (8), and this concludes the proof.
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Appendix C Proof of Theorem 3

We first define the following one-step c-persistent Bellman optimality operator:

(T̄ ∗t Q)(s, a) , Es′∼P (·|s,a)

[
R(s, a) + γmax

a′
Q(s′,Γct+1,a(a′))

]
(11)

Note that the one-step c-persistent Bellman optimality operators are L-periodic with respect to t due to the L-periodic
nature of the projection operator Γct,a(a′). Therefore, T̄ ∗t Q = T̄ ∗t+LQ always holds for any t andQ. Then, similar to Eq. (6),
we define an L-step c-persistent Bellman optimality operator H̄∗t by making the composition of L one-step c-persistent
Bellman optimality operators:

(H̄∗0Q)(s, a) , (T̄ ∗0 T̄ ∗1 · · · T̄ ∗L−2T̄ ∗L−1Q)(s, a) (12)

(H̄∗1Q)(s, a) , (T̄ ∗1 T̄ ∗2 · · · T̄ ∗L−1T̄ ∗0 Q)(s, a)

...

(H̄∗L−1Q)(s, a) , (T̄ ∗L−1T̄ ∗0 · · · T̄ ∗L−3T̄ ∗L−2Q)(s, a)

Similar to L-step c-persistent Bellman operators, we can show that L-step c-persistent Bellman optimality operators are
contraction mapping.
Lemma 2. For all t ∈ {0, . . . , L − 1}, the L-step c-persistent Bellman optimality operator H̄∗t is γL-contraction with
respect to infinity norm, thus H̄∗t Q

∗̄
t = Q∗̄t has the unique fixed point solution. In other words, for any Q0

t : S ×A → R,
define Qn+1

t = H̄∗t Q
n
t . Then, the sequence Qnt converges to t-th c-persistent optimal value function as n→∞.

Proof. Without loss of generality, it is sufficient to prove when t = 0.

For any Q1 : S ×A → R, Q2 : S ×A → R, and s0 ∈ S, a0 ∈ A,

|(H̄∗0Q1)(s0, a0)− (H̄∗0Q2)(s0, a0)|
= |(T̄ ∗0 T̄ ∗1 · · · T̄ ∗L−1Q1)(s0, a0)− (T̄ ∗0 T̄ ∗1 · · · T̄ ∗L−1Q2)(s0, a0)|

=

∣∣∣∣Es1∼P (·|s0,a0)

[
R(s0, a0) + γmax

a1

(T̄ ∗1 · · · T̄ ∗L−1Q1)(s1,Γ
c
1,a0

(a1))
]

− Es1∼P (·|s0,a0)

[
R(s0, a0) + γmax

a1

(T̄ ∗1 · · · T̄ ∗L−1Q2)(s1,Γ
c
1,a0

(a1))
]∣∣∣∣

= γ

∣∣∣∣EP [max
a1

(T̄ ∗1 · · · T̄ ∗L−1Q1)(s1,Γ
c
1,a0

(a1))−max
a1

(T̄ ∗1 · · · T̄ ∗L−1Q2)(s1,Γ
c
1,a0

(a1))
]∣∣∣∣

≤ γ
∣∣∣∣EP [(T̄ ∗1 · · · T̄ ∗L−1Q1)(s1, a

∗
1)− (T̄ ∗1 · · · T̄ ∗L−1Q2)(s1, a

∗
1)
]∣∣∣∣

where a∗1 = arg max
a

[
(T̄ ∗1 · · · T̄ ∗L−1Q1)(s1,Γ

c
1,a0

(a))− (T̄ ∗1 · · · T̄ ∗L−1Q2)(s1,Γ
c
1,a0

(a))
]

≤ γmax
s,a

∣∣∣∣(T̄ ∗1 · · · T̄ ∗L−1Q1)(s, a)− (T̄ ∗1 · · · T̄ ∗L−1Q2)(s, a)

∣∣∣∣
We can continue to expand the inequality in a similar way,

∀s0, a0, |(H̄∗0Q1)(s0, a0)− (H̄∗0Q1)(s0, a0)| ≤ γmax
s,a

∣∣∣∣(T̄ ∗1 · · · T̄ ∗L−1Q1)(s, a)− (T̄ ∗1 · · · T̄ ∗L−1Q2)(s, a)

∣∣∣∣
≤ γ2 max

s,a

∣∣∣∣(T̄ ∗2 · · · T̄ ∗L−1Q1)(s, a)− (T̄ ∗2 · · · T̄ ∗L−1Q2)(s, a)

∣∣∣∣
...

≤ γL max
s,a

∣∣∣∣Q1(s, a)−Q2(s, a)

∣∣∣∣
∴ ‖H̄∗0Q1 − H̄∗0Q2‖∞ ≤ γL‖Q1 −Q2‖∞

Therefore, H̄∗t is γL-contraction with respect to infinity norm, and by Banach fixed-point theorem, H̄∗t Q
∗̄
t = Q∗̄t has the

unique fixed point solution for all t.
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Therefore, the optimal c-persistent value functions (i.e. the fixed points of each H̄∗0 , . . . H̄
∗
L−1) can be represented by L

values, (Q∗̄0, . . . , Q
∗̄
L−1). Also, the following lemma shows that they have the largest possible value, compared to any

c-persistent value functions of any history-dependent policy π ∈ Π.
Lemma 3. For any t, let H̄∗t mod L = T̄ ∗t mod L . . . T̄ ∗(t+L−1) mod L be L-step c-persistent Bellman optimality operator and
Q∗̄t mod L be its fixed point. Then, for any history-dependent policy π ∈ Π, Q∗̄t mod L(s, a) ≥ Qπ̄t (s, a) holds for all t, s, a.

Proof. For any π ∈ Π, t ∈ N0, s ∈ S, a ∈ A, and Q : S ×A → R, the following inequality holds:

(T̄ πt Q)(st, at) , R(st, at) + γEst+1∼P (·|st,at)
at+1∼π(·|ht+1)

[
Q(st+1,Γ

c
t+1,at(at+1)

]
≤ R(st, at) + γmax

a′
Est+1∼P (·|st,at)

[
Q(st+1,Γ

c
t+1,at(a

′))
]

= (T̄ ∗t mod LQ)(st, at)

which implies

(T̄ πt T̄ πt+1 . . . T̄ πt+L−1Q)(s, a) ≤ (T̄ ∗t mod LT̄ ∗(t+1) mod L . . . T̄
∗

(t+L−1) mod LQ)(s, a) = (H̄∗t mod LQ)(s, a)

Therefore, Qπ̄t (s, a) = limn→∞(T̄ πt T̄ πt+1 . . . T̄ πt+Ln−1Q)(s, a) ≤ limn→∞((H̄∗t mod L)nQ)(s, a) = Q∗̄t mod L(s, a) holds
for any t, s, a and history-dependent policy π, which concludes the proof.

Now, we are ready to provide the proof of Theorem 3.
Theorem 3. Starting from any π̄0 ∈ Πc induced by L-periodic non-stationary deterministic policy π0 ∈ ΠL, the sequence
of value functions Qπ̄

n

and the improved policies π̄n+1 induced by πn+1 converge to the optimal value function and the
optimal c-persistent policy π̄∗, i.e. Qπ̄

∗

t (s, a) = limn→∞Qπ̄
n

t mod L(s, a) ≥ Qπ̄t (s, a) for any π̄ ∈ Πc, t ∈ N0, s ∈ S, and
a ∈ A.

Proof. By Lemma 3, it is sufficient to show limn→∞Qπ̄
n

t = Q∗̄t for all t ∈ {0, . . . , L−1}. By Theorem 2, the performance
of c-persistent policy induced by πn is monotonically improved during policy iteration, i.e. Qπ̄

n+1

t (s, a) ≥ Qπ̄
n

t (s, a)

always holds for all t, s, a, n. Now, consider when the policy is no longer improved, i.e. π̄n+1 = π̄n and Qπ̄
n+1

t = Qπ̄
n

t .
In this situation, for all t, s, a,

Qπ̄
n

t (s, a) = Qπ̄
n+1

t (s, a)

= R(s, a) + γEs′∼P (·|s,a)

[
Qπ̄

n+1

(t+1) mod L(s′,Γct+1,a(π̄n+1(a, s′)))
]

= R(s, a) + γEs′∼P (·|s,a)

[
Qπ̄

n

(t+1) mod L(s′,Γct+1,a(π̄n+1(a, s′)))
]

= R(s, a) + γmax
a′

Es′∼P (·|s,a)

[
Qπ̄

n

(t+1) mod L(s′,Γct+1,a(a′))
]

(by Eq. (8))

holds, and this implies that Qπ̄
n

t satisfies the c-persistent Bellman optimality equation. By Lemma 2, the c-persistent
Bellman optimality equation has the unique solution, thus Qπ̄

n

t = Q∗̄t . This concludes that π̄n is the optimal c-persistent
policy.

Corollary 2. There always exists a c-persistent optimal policy π̄∗c , which is induced by a L-periodic, non-stationary, and
deterministic policy π ∈ ΠL.

Proof. Every policy πn encountered during action-persistent policy iteration is within ΠL. Also, by Theorem 3, π̄n ∈ Πc

induced by πn ∈ ΠL eventually converges to the optimal c-persistent policy, which concludes the proof.

Corollary 2 ensures that the optimal c-persistent policy can be always found only through (π0, . . . , πL−1) ∈ ΠL, where
πt : A× S → A.
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Appendix D Pseudo-code of Action-Persistent Policy Iteration (AP-PI)

Algorithm 1 Action-Persistent Policy Iteration (AP-PI)

Input: M: FA-MDP, c: action persistence vector
Randomly initialize π = (π0, . . . , πL−1) where πt : A× S → A for all t = 0, . . . , L− 1.
Randomly initialize Q = (Q0, . . . , QL−1) where Qt : S ×A → R for all t = 0, . . . , L− 1.
repeat

# Policy Evaluation
repeat

for t = 0, . . . , L− 1 do
∀s, a, Qt(s, a)← R(s, a) + γEs′∼P (·|s,a)

[
Q(t+1) mod L

(
s′, a′

)]
where a′ = Γct+1,a(π(t+1) mod L(a, s′))

end for
until Q is converged
# Policy Improvement
∀t, a, s′, πt(a, s′)← arg maxa′ Qt(s

′,Γct,a(a′))
until π does not change

Output: π̄∗ = π̄

The policy π̄∗ = (π̄∗0 , . . . , π̄
∗
L−1) obtained by AP-PI is executed as follows. First, ā is initialized randomly. Then, at every

step t, at = Γct,ā(π̄∗t mod L(ā, st)) is executed, and the reward and the next state is observed: rt, st+1 ∼ p(rt, st+1|st, at).
Finally, ā is updated by ā← at, and this procedure continues.

Appendix E Pseudo-Code of Action-Persistent Actor-Critic

Algorithm 2 Action-Persistent Actor-Critic (AP-AC)

Input: θ1, θ2, φ . Initialize parameters
θ̄1 ← θ1 and θ̄2 ← θ2 . Initialize target network weights
ā ∼ unif(A) . Initialize ā randomly
D ← ∅ . Initialize a replay buffer to an empty set
for each iteration do

for each environment step do
at ∼ πφ,t(·|ā, st) . Sample a non-persistent action from the policy
ā← Γt,ā(at) . Project the sampled action using Eq. (4)
rt, st+1 ∼ p(rt, st+1|st, ā) . Sample reward and transition from the environment
D ← D ∪ {(st, ā, rt, st+1)} . Store the sampled reward and transition into replay buffer

end for
for each gradient step do

θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2} . Update critic weights by minimizing Eq. (9)
φ← φ+ λπ∇̂φJπ(φ) . Update policy weights by maximizing Eq. (10)
θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2} . Update target network weights

end for
end for

Output: θ1, θ2, φ . Optimized parameters
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Appendix F Supplementary Experiments

F.1 Results on SAC
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Figure 6: Results on SAC.

In Figure 5, the baseline SAC agent is trained on the standard non-persistent environments while being evaluated on
c-persistent environments where the action-persistence is enforced. As shown in Figure 61, the performance of SAC
consistently improves in the non-persistent environment that the agent is trained on, but its naïve projection into a
c-persistent policy completely fails since the agent never considers the action-persistence during training.

F.2 Effects of varying c
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Figure 7: Effects of varying action-persistence c.

The goal of this work is to provide an efficient solution method for the given action-persistence c, not finding a proper c to
speed up learning. Still, we conducted additional experiments to present the effects on the resulting policy of varying c. As
can be seen from Figure 7, larger action persistence yields more degradation of asymptotic performance due to a limited
degree of freedom of control. AP-AC consistently works well for various c’s.

1A performance gap exists compared to those reported in the original SAC paper, due to usage of different hyperparameters such as
the number of hidden units per layer, i.e. 100 (ours) / 256 (original SAC paper).
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Appendix G Experimental Setup

G.1 Computing Infrastructure

All experiments were conducted on Google Cloud Platform. Specifically, we used the compute-optimized machines
(c2-standard-4) that provide 4 vCPUS and 16GB memory.

G.2 Hyperparameters

Table 1: AP-AC Hyperaparameters
Parameter Value

optimizer Adam [6]
learning rate 3 · 10−4

discount factor γ 0.99
replay buffer size 106

number of hidden layers (all networks) 2
number of hidden units per layer 100
number of samples per minibatch 100
nonlinearity ReLU
target smoothing coefficient τ 0.005
target update interval 1
gradient steps 1
(discrete only) temperature of relaxed categorical 0.1

The hyperparameters we used in the experiments are listed in Table 1. Also, for Mujoco continuous control tasks, we used
automatic entropy adjustment with the entropy target −dim(A), and for the discrete action task (i.e. traffic light control),
we used the fixed entropy coefficient α = 0.01. We simply tried the listed hyperparameters and not tuned them further.
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