
Batch Reinforcement Learning with Hyperparameter Gradients

Byung-Jun Lee * 1 Jongmin Lee * 1 Peter Vrancx 2 Dongho Kim 2 Kee-Eung Kim 2 3

Abstract
We consider the batch reinforcement learning
problem where the agent needs to learn only from
a fixed batch of data, without further interaction
with the environment. In such a scenario, we want
to prevent the optimized policy from deviating too
much from the data collection policy since the es-
timation becomes highly unstable otherwise due
to the off-policy nature of the problem. However,
imposing this requirement too strongly will result
in a policy that merely follows the data collection
policy. Unlike prior work where this trade-off
is controlled by hand-tuned hyperparameters, we
propose a novel batch reinforcement learning ap-
proach, batch optimization of policy and hyper-
parameter (BOPAH), that uses a gradient-based
optimization of the hyperparameter using held-out
data. We show that BOPAH outperforms other
batch reinforcement learning algorithms in tabular
and continuous control tasks, by finding a good
balance to the trade-off between adhering to the
data collection policy and pursuing the possible
policy improvement.

1. Introduction
In many real-world applications of reinforcement learn-
ing (RL), exploratory behavior can be very costly when
the agent interacts with the environment. For example, it
would be unreasonable to deploy an ε-greedy policy for
autonomous vehicles, industrial plants, and clinical treat-
ments, let alone many others. One of the common and
straightforward practices in these scenarios is to build a sim-
ulator from collected data, train the agent with the simulated
environment by allowing to make as much exploration as
needed, and then deploy a fully optimized policy into the

*Equal contribution 1School of Computing, KAIST, Daejeon,
South Korea 2PROWLER.io 3Graduate School of AI, KAIST,
Daejeon, South Korea. Correspondence to: Byung-Jun Lee
<bjlee@ai.kaist.ac.kr>, Jongmin Lee <jmlee@ai.kaist.ac.kr>,
Kee-Eung Kim <kekim@kaist.ac.kr>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

real environment. However, this approach requires a lot
of human effort including domain expertise in building a
faithful simulator that warrants a successful performance
in the real environment. This paper concerns with such a
scenario, often referred to as batch RL: optimize policy only
from a fixed batch of data, without further interaction with
the environment or a high-fidelity simulator.

Since the policy being optimized would be different from
the policy used for data collection, batch RL algorithms
are mostly founded on techniques in off-policy RL algo-
rithms. They are designed to learn when the behavior policy
(policy used to collect experience) differs from the esti-
mation policy (policy we aim to learn). Recent off-policy
policy optimization algorithms, e.g. (Lillicrap et al., 2016;
Munos et al., 2016; Haarnoja et al., 2018), have shown to
achieve remarkable sample efficiency in standard bench-
mark tasks. However, they still assume continuous interac-
tion with the environment with the behavior policy being
improved closely together with the estimation policy. On the
other hand, the batch RL setting assumes the behavior policy
being fixed throughout the policy optimization. This differ-
ence is considered a fundamental challenge for batch RL: as
we optimize the estimation policy, it would differ more from
the behavior policy, leading to severe covariate shift in the
batch data. As the policy optimization frequently relies on
function approximators trained on the data distributed by the
behavior policy, the optimization could actually get worse
due to the inevitable generalization error of the function
approximators. Thus the challenge is about estimating how
much we can trust the policy evaluation and safely optimize
the policy, rather than about improving the sample efficiency
as in standard off-policy RL scenarios, as exemplified by
recent work on batch RL (Laroche et al., 2019; Fujimoto
et al., 2019).

In this paper, we introduce a novel batch RL framework that
uses the validation data to estimate the reliability of policy
updates. Model selection and hyperparameter tuning with a
held-out dataset is a standard practice in supervised learning,
but has not been adapted to RL, to the best of our knowledge.
The contribution of this paper is two-fold: first, we present
a generalized KL-regularized RL framework that effectively
constrains the distance of the estimation policy from the be-
havior policy differently per state and stabilizes the training
process. Second, we present BOPAH (batch optimization of

Batch Reinforcement Learning with Hyperparameter Gradients

policy and hyperparameter) that optimizes the hyperparame-
ter in the KL-regularized RL objective via the hypergradient
(i.e. hyperparameter gradient) on the validation data. We
present a model-based algorithm assuming tabular tasks as
well as a model-free algorithm for continuous control tasks.

2. Related Works
The key concept in recent batch RL algorithms is to improve
upon the baseline policy used for data collection. Petrik
et al. (2016) consider the robust policy improvement over
the baseline policy in the worst-case scenario. Laroche et
al. (2019) presents SPIBB that bootstraps the estimation
policy with the behavior policy in the state-action pairs that
are not observed enough. While both algorithms are proven
to be safe with their finite sample bounds, the hyperparam-
eter values that guarantee a safe improvement with high
probability can be too conservative to be used in practice.

In the case of continuous state and action spaces, Fujimoto
et al. (2019) propose BCQ where the actor can only perturb
the behavior policy by a limited amount. Kumar et al. (2019)
provide a bound on suboptimality of an estimation policy
concerning its support, and present BEAR, which imposes
an MMD constraint between the estimation policy and the
behavior policy. Siegel et al. (2020) use KL constraint
and propose ABM that imposes advantage-weighting when
estimating behavior policy from the batch data, which filters
out trajectories that would lead to worse performance than
the current policy. They have empirically shown to robustly
improve over the baseline policy in continuous control tasks.
However, the hyperparameters that control the risk play a
crucial role in the performance, which must be hand-tuned
in practice.

Reinforcement learning with KL regularization (Todorov,
2007; Kappen et al., 2012; Schulman et al., 2017; Fox
et al., 2016; Galashov et al., 2019) or KL constraint (Schul-
man et al., 2015; Achiam et al., 2017; Sun et al., 2018)
have been extensively studied. Theoretical analyses simi-
lar to the bounds we propose have also been presented in
a model-based RL context (Sun et al., 2018; Janner et al.,
2019). State-independent KL regularization has also been
employed in the context of batch RL (Jaques et al., 2019;
Wu et al., 2019) with the hand-tuned hyperparameter. Nev-
ertheless, our generalization of KL-regularized RL to state-
dependent regularization provides a unique insight on how
they apply to batch RL.

Agarwal et al. (2020) demonstrate that recent off-policy
deep RL algorithms, without correcting distribution mis-
match, trained on sufficiently large and diverse offline
datasets can result in high quality policies. In contrast,
the critical assumption we make in this paper is that the
data collection policy is determined by domain-specific re-

quirements, rather than selected freely to mitigate problems
related to batch RL. In this situation, addressing the distri-
bution mismatch is essential.

Lastly, we will adopt the gradient-based hyperparameter
optimization approach in supervised learning. When it
is possible to obtain the gradient of the model selection
criterion with respect to hyperparameters, gradient-based
optimization of hyperparameter (Bengio, 2000; Maclaurin
et al., 2015) is able to efficiently optimize a large number
of hyperparameters, outperforming Bayesian optimization
models (Pedregosa, 2016). We will show how hypergra-
dient computations can be formulated in terms of policy
evaluation in the RL context.

3. Preliminaries
We consider the environment modeled as a Markov decision
process (MDP), M = 〈S,A, P,R, d0, γ〉, where S is the
state space, A is the action space, P (st+1|st, at) is the
transition probability, rt = R(st, at) ∈ R is the immediate
reward function, d0(s) = p(s0 = s) is the initial state
distribution, and γ ∈ (0, 1) is the discount factor. We denote
dπM (s) = (1 − γ)

∑∞
t=0 γ

tp(st = s|π,M) the discounted
state marginal of policy π in the MDP M .

The state and the action value functions of policy π on
MDP M are denoted by V πM (s) and QπM (s, a) respectively.
We adopt the discounted return objective, i.e. V πM (s) =
Eπ,M |s[

∑∞
t=0 γ

trt] and QπM (s, a) = Eπ,M |s,a[
∑∞
t=0 γ

trt].
We measure the performance of a policy π on MDP M
by the expectation of the value function under the ini-
tial state distribution, ρM (π) = Es0∼d0 [V πM (s0)]. The
objective of policy optimization is to find the optimal
policy π∗ that maximizes the expected discounted return,
π∗ = arg maxπ ρM (π).

When the model M is available, the value of policy π can
be computed by iteratively applying the Bellman backup
operator T πM :

T πMQ(s, a) = R(s, a) + γEs′∼P (·|s,a)[V (s′)],

where V (s) = Ea∼π(·|s)[Q(s, a)],

which is a contraction mapping and has a unique fixed point
solution QπM .

In batch RL, the agent learns from the fixed dataset of expe-
riences D = {(si, ai, s′i, ri)}Ni=0 without direct interaction
with the environment. We will refer to the policy µ used
for the data collection as the behavior policy and the policy
π being optimized as the estimation policy, borrowing the
terminology in off-policy RL. If we only use samples in D
to compute the expectation of the Bellman backup operator
T πM , the resulting approximate operator T π

M̂
has a unique

fixed point solution Qπ
M̂

, which is a state-action value func-
tion on a Maximum Likelihood Estimation (MLE) MDP

Batch Reinforcement Learning with Hyperparameter Gradients

M̂ = 〈S,A, P̂ , R, d0, γ〉, where P̂ is the maximum likeli-
hood estimate of P by D. We also use the notation dπ

M̂
to

denote the discounted state marginal of a policy π under the
MLE MDP.

4. Generalized KL-Regularization for Batch
Reinforcement Learning

In a naive approach to batch RL, we could build an MDP
model M̂ from the batch data and optimize the policy using
the model. However, the resulting policy may fail to produce
any improvement over the behavior policy or even perform
severely worse (Petrik et al., 2016; Laroche et al., 2019).
For safe RL with batch data, we will first derive a policy
improvement bound for model-based RL, which naturally
yields a regularization function for batch RL.

Our derivation starts with bounding the policy evaluation
error incurred by the model error and the distribution shift
of the policy.
Theorem 4.1. Let

επM = Es∼dπM
[
TVπ,µs

]
, επ

M̂
= Es∼dπ

M̂

[
TVπ,µs

]
,

εPM = Es∼dµM
a∼µ

[
TVP,P̂s,a

]
where TVp,qx denotes the total variation distance between
p(·|x) and q(·|x). Suppose the reward function is bounded
|R(s, a)| ≤ Rmax for all s, a and known to the agent for
simplicity. For any policies π, µ, and an estimated MLE
MDP M̂ , the difference of policy evaluation is bounded by:

|ρM (π)− ρ
M̂

(π)| ≤c1
(
επM + επ

M̂

)
+ c2ε

P
M (1)

where c1 = 2Rmax

(1−γ)2 and c2 = 2γRmax

(1−γ)2 .

Since the error εPM only depends on the dataset and is not di-
rectly controllable during batch RL policy optimization, we
can gather only relevant terms and formulate the following
constrained optimization similar to (Schulman et al., 2015;
Achiam et al., 2017):

π∗δ = arg max
π

ρ
M̂

(π) (2)

s.t. Es∼dπM [KLπ,µs] ≤ δ,Es∼dπ
M̂

[KLπ,µs] ≤ δ,

where KLp,qx denotes the KL-divergence between p(·|x) and
q(·|x). Then, we can provide a policy improvement bound
for π∗δ in Eq. (2), which can be derived from Theorem 4.1:
Corollary 4.1. The negative baseline regret (Petrik et al.,
2016) of π∗δ , which is the performance improvement by
adopting π∗δ instead of the baseline policy µ on the true
environment M , is lower bounded by:

ρM (π∗δ)− ρM (µ) ≥ ρ
M̂

(π∗δ)− ρ
M̂

(µ)− c1
√

2δ − 2c2ε
P
M

with c1 and c2 defined in Theorem 4.1.

This lower bound has two competing factors with respect
to δ: increasing δ would enlarge the feasibility region and
thus increase the objective ρ

M̂
(π), but this will also make

the estimation of expected return under M̂ unreliable since
the estimation error will increase. Most of the off-policy
RL and batch RL algorithms have this trade-off captured by
hyperparameters (Schulman et al., 2015; Petrik et al., 2016;
Laroche et al., 2019).

Now, instead of using KL-divergence as constraints in the
policy optimization, we reformulate the problem as an un-
constrained optimization where the KL-divergence acts as a
regularization:

ρ̃
M̂

(π) = ρ
M̂

(π)− α
(
Es∼dπM [KLπ,µs] + Es∼dπ

M̂
[KLπ,µs]

)
= E

π,M̂

[∞∑
t=0

γt
(
rt − α

(
dπM (st)
dπ
M̂

(st)
+ 1
)
KLπ,µst

)]

This objective is essentially a variation of KL-regularized
RL (Todorov, 2007; Kappen et al., 2012; Schulman et al.,
2017; Fox et al., 2016; Galashov et al., 2019), which consid-
ers the expected KL-divergence both in the true MDP and
the estimated MDP. Note that the term (dπM (st)/d

π
M̂

(st)+1)
is very hard to estimate without access to the true model M .
We thus work with the objective

max
π

Eπ,P̂

[∞∑
t=0

γt
(
rt − αβ(st)KLπ,µst

)]
(3)

where α is the state-independent hyperparameter and β(s)’s
are the state-dependent hyperparameters. We will denote
α(s) = αβ(s) for brevity. In the later part of the paper, we
will automatically tune α(s) using held-out validation set.

4.1. KL-Regularized Policy Iteration

In this section, we derive batch policy iteration with the
generalized KL-regularization that alternates between policy
evaluation and policy improvement, a planning algorithm
for Eq. (3) with fixed yet arbitrary hyperparameters α(s).

We first present the iterative policy evaluation method by
defining KL-regularized Bellman operator T πKL. For fixed
policy π,

T πKLQ̃(s, a) = R(s, a) + Es′
[
Ṽ (s′)

]
(4)

where Ṽ (s) = −α(s)KLπ,µs + Ea∼π
[
Q̃(s, a)

]
Lemma 4.1. (KL-Regularized Policy Evaluation) For a
fixed π with KLπ,µs <∞ ∀s, the backup operator T πKL is a
contraction mapping and has an unique fixed point solution
T πKLQ̃

π = Q̃π. In other words, for any Q̃0 : S × A → R,
define Q̃k+1 = T πKLQ̃

k. Then the sequence Q̃k converges
to KL-regularized Q-value function of π as k →∞.

Batch Reinforcement Learning with Hyperparameter Gradients

KL-regularized value functions have the following interpre-
tations:

Ṽ π(s) = Eπ|s

[∞∑
t=0

γt
(
rt − α(st)KLπ,µst

)]

Q̃π(s, a) = Eπ|s,a

[
r0 +

∞∑
t=1

γt
(
rt − α(st)KLπ,µst

)]
.

In the policy improvement step, we can compute a improved
policy by weighting exponential Q̃π and µ. However, when
dealing with continuous state and action encountered in
the later section, we may want to optimize our policy only
within a set of tractable distributions Π (e.g. a set of Gaus-
sian distributions), which requires a projection of the up-
dated policy distribution onto Π. One of the simple ways is
to adopt the information projection that minimizes the KL-
divergence to the target distribution as in (Haarnoja et al.,
2018):

πnew(·|s) = arg min
π′∈Π

KL

π′(·|s)∥∥∥∥exp
(
Q̃π(s,·)
α(s)

)
µ(·|s)

Zπ(s)


(5)

where Zπ(s) is the normalization constant. The follow-
ing lemma shows that πnew computed by Eq. (5) always
improves the value over π.

Lemma 4.2. (KL-Regularized Policy Improvement) Given
a policy π ∈ Π and its value function Q̃π, if we up-
date the new policy πnew by Eq. (5), then Q̃π

new

(s, a) ≥
Q̃π(s, a) ∀s, a.

Lemma 4.1 and 4.2 suggest a full algorithm: the KL-
regularized policy iteration alternates between the KL-
regularized policy evaluation of Eq. (4) and the KL-
regularized policy improvement of Eq. (5), and it is guaran-
teed to converge to the optimal policy π∗ within the set of
Π.

Theorem 4.2. (KL-Regularized Policy Iteration) Suppose
that |R(s, a)| ≤ Rmax and KLπ,µs <∞. Starting from any
π0 ∈ Π, the sequence of the value functions Q̃πk and the im-
proved policies πk+1 converge to the optimal value function
and the optimal policy π∗ ∈ Π, i.e. limk→∞ Q̃πk(s, a) ≥
Q̃π(s, a) for any π ∈ Π, s ∈ S, and a ∈ A.

Our theoretical result can be seen as an extension of those
in entropy-regularized RL (Haarnoja et al., 2018) to KL-
regularized RL, where the regularization parameter is arbi-
trarily given per state.

5. Batch Optimization of Policy and
Hyperparameter (BOPAH)

In supervised learning, we commonly adopt regularization
to select a model that generalizes well to unseen data. This is
typically captured by a set of hyperparameters that balances
between approximation and generalization (i.e. overfitting
vs. underfitting). Commonly, the model parameters θ are op-
timized using the following objective function with training
data Dtrain:

θ∗α = arg max
θ

[
L(θ,Dtrain)− Eα(θ)

]
(6)

where L measures how well the model performs on Dtrain

(e.g. log-likelihood L(θ,Dtrain) = log p(Dtrain|θ) if prob-
abilistic model), and Eα is a regularization term that penal-
izes complex models to prevent overfitting (e.g. L2 regu-
larization Eα(θ) = α‖θ‖22) where α is the regularization
parameter that balances between approximation and gener-
alization. Then, the regularization parameter α is treated as
a hyperparemter and optimized using the held-out validation
dataset Dvalid which is mutually exclusive to Dtrain:

α∗ = arg max
α

L(θ∗α,Dvalid) (7)

Optimizing the hyperparameter is often done using sim-
ple grid or random search (Bergstra & Bengio, 2012), but
these simple methods scale poorly with the number of hy-
perparameters. Instead, our approach adopts the gradient-
based hyperparameter optimization method (Bengio, 2000;
Maclaurin et al., 2015; Pedregosa, 2016), known to be ca-
pable of many hyperparameters by using local information
about the objective function, assuming that Eq. (7) is differ-
entiable.

In this section, we introduce Batch Optimization of Policy
and Hyperparameter (BOPAH), a method for batch rein-
forcement learning that aims to achieve the best possible
performance improvement on the (not fully known) true
environment. BOPAH adopts KL-regularization in policy
optimization.

5.1. Model-based BOPAH

BOPAH starts by dividing the entire batch data D =
{(si, ai, s′i, ri)}Ni=1 into two mutually exclusive sets Dtrain

and Dvalid. Each of the split datasets constructs the train
(MLE) MDP M̂train and the valid (MLE) MDP M̂valid re-
spectively. The policy is then optimized on the train MDP
M̂train with the state-dependent KL-regularization whose
introduction was justified in Section 4:

π∗α = arg max
π

E
π,M̂train

[∞∑
t=0

γt
(
rt − α(st)KLπ,µst

)]
(8)

Batch Reinforcement Learning with Hyperparameter Gradients

0.0 0.05 0.1

α (scalar)

0.60

0.65

0.70

0.75 ρM (π∗)
ρM (µ)

ρM (πBasicRL)

ρM (π∗α)

ρM̂train
(π∗α)

ρM̂valid
(π∗α)

(a) Single hyperparameter: α(s) = α ∀s.

0.0 0.05 0.1
α1

0.00

0.05

0.10

α
2

Train MDP: ρ
M̂train

(π∗α)

0.0 0.05 0.1
α1

Valid MDP: ρ
M̂valid

(π∗α)

0.0 0.05 0.1
α1

True MDP: ρM(π∗α)

0.67

0.68

0.69

0.7

(b) Two hyperparameters: α(sodd) = α1 and α(seven) = α2.

Figure 1. Experimental result on a random MDP, where S = {s1, . . . s20}, |A| = 4, and α controls the degree of regularization. All the
results are obtained by averaging over 300 trials. The symbol × denotes the value of α that performs the best in the valid MDP. The
symbol ? denotes the optimal value of α for the true MDP.

which can be solved by KL-regularized policy iteration. In
Eq. (8), if the hyperparameters α(s)’s are close to zero, the
resulting policy becomes the optimal policy of the unreg-
ularized train MDP M̂train, which would be overfitting to
Dtrain. In contrast, if α(s)’s become too large, the policy
is reduced to the behavior policy µ, which corresponds to
underfitting. Our goal is to find the optimal hyperparameters
of α(s) that balances between two extremes.

To this end, we optimize the hyperparameters on the valid
MDP M̂valid:

α∗ = arg max
α

E
π∗α,M̂valid

[∞∑
t=0

γtrt

]
(9)

and deploy π∗α∗ to the real environment. Note the similarity
between our framework for batch RL Eq. (8-9), and the hy-
perparameter optimization in supervised learning Eq. (6-7).

Illustrative Example Figure 1 highlights our approach
for batch RL using a synthetic example. We constructed
a single instance of random MDP M with |S| = 20 and
|A| = 4. We collected batch data D consisting of 100
episodes with maximum time step 50 using the behavior
policy µ = 0.7π∗+0.3πunif , where π∗ is the optimal policy
of M and πunif is the uniform random policy. As a baseline,
πBasicRL is obtained by computing the optimal policy of the
MLE MDP using the entire data inD. We divideD into two
mutually exclusive sets Dtrain and Dvalid of same number
of trajectories, and π∗α is computed via Eq. (8) on the M̂train,
the MLE MDP using the data in Dtrain. Finally, ρM(π)
denotes the (reward) performance of policy π on MDPM∈
{M, M̂train, M̂valid}, i.e. ρM(π) =

∑
π,M [

∑∞
t=0 γ

trt].

Figure 1a visualizes the result when we used a global scalar
hyperparameter, i.e. α(s) = α ∀s. As α increases, the
performance of π∗α in M̂train monotonically decreases (cyan)
since α = 0 yields the optimal policy for the M̂train. In
contrast, the performance of π∗α in M̂valid (green) shows an

expected trend, where too large or too small value of α
deteriorates the performance. Note that the performance
trend in M̂valid is strongly correlated with the trend in the
true model M . This justifies the use of M̂valid for selecting
α in order to perform well on (unknown) true model M .

On the other hand, note that π∗α underperforms πBasicRL in
the true model when α = 0. This is expected, since π∗α is
obtained from M̂train using less amount of data. However,
when α∗ = arg maxα ρM̂valid

(π∗α) is used, π∗α∗ significantly
outperforms πBasicRL. This result supports that batch RL
can benefit from hyperparameter tuning approach, a com-
mon practice in supervised learning.

We further extended the experiment setting by allowing
state-dependent hyperparameters α(s). Figure 1b demon-
strates the result when using two hyperparameters instead
of one. We set α(sodd) = α1 to the states of odd index
and α(seven) = α2 to the states of even index. Note that
there is a strong overall correlation between ρ

M̂valid
(π∗α)

and ρM (π∗α), and the optimal hyperparameter does not lie
on the dotted yellow line that corresponds to the case of the
global scalar hyperparameter. This result supports that the
state-dependent hyperparameters can be advantageous over
the global scalar hyperparameter.

5.2. Gradient-based Hyperparameter Optimization

Tuning the state-dependent hyperparameter α(s) via black-
box optimization (e.g. grid search or random search) is
intractable due to the curse of dimensionality even for a
handful of states. Thus, BOPAH adopts gradient-based
hyperparameter optimization, whose analytical form is pro-
vided as follows:

Theorem 5.1. Suppose that the state-dependent function
αξ(s) for Eq. (8) is parameterized by ξ 1. Then, the hy-

1For example, if ∀s αξ(s) = ξ such that ∇ξαξ(s) = 1, this
reduces to single hyperparameter α. On the other hand, if αξ(s) =

Batch Reinforcement Learning with Hyperparameter Gradients

pergradient ∇ξρM̂valid
(π∗ξ) = ∇ξEπ∗ξ ,M̂valid

[∑∞
t=0 γ

trt
]

is given by:

∇ξρM̂valid
(π∗ξ) = E

π∗ξ ,M̂valid

[∞∑
t=0

γtχξ(st)

]
(10)

s.t.

π∗ξ , arg max
π

Eπ,M̂train

[
∞∑
t=0

γt
(
rt − αξ(st)KLπ,µst

)]

∇ξQ̃
π∗ξ
M̂train

(s, a) , Eπ∗
ξ
,M̂train

[
∞∑
t=1

γt
(
−∇ξαξ(st)KL

π∗ξ ,µ
st

)]

Q̃
π∗ξ
M̂train

(s, a) , Eπ∗
ξ
,M̂train

[
∞∑
t=0

γt
(
rt − αξ(st)KLπ,µst

)]

Q
π∗ξ
M̂valid

(s, a) , Eπ∗
ξ
,M̂valid

[
∞∑
t=0

γtrt

]
χξ(s) ,

1

αξ(s)2
cova∼π∗

ξ

[
αξ(s)∇ξQ̃

π∗ξ
M̂train

(s, a)

−∇ξαξ(s)Q̃
π∗ξ
M̂train

(s, a), Q
π∗ξ
M̂valid

(s, a)
]

where cova[f(a), g(a)]i = E[fi(a)g(a)]−E[fi(a)]E[g(a)]
denotes element-wise covariance between the vector f(·)
and the scalar g(·).

In the above, π∗ξ can be obtained by KL-regularized policy

iteration, and ∇ξQ̃
π∗ξ

M̂train
(s, a) and ∇ξρM̂valid

(π∗ξ) can be
computed by a standard policy evaluation technique with
auxiliary reward functions R1(s, a) , −∇ξαξ(s)KLπ

∗
ξ ,µ
s

and R2(s, a) , χ(s), respectively. Finally, we can opti-
mize the hyperparameters via the hypergradient by iterating
the following until convergence: ξ ← ξ + η∇ξρM̂valid

(π∗ξ)
where ξ is a parameter for the state-dependent function
αξ(s), and η is a learning rate.

This completes the description of BOPAH, which iteratively
alternates between policy optimization and gradient-based
hyperparameter optimization.

Remark While the definition of χ(s) from Theorem 5.1 is
hard to interpret as is, it can be reduced to simple expression
when αξ(s) is state-independent and provides an additional
intuition on the behavior of the hypergradient. When αξ(s)
is state-independent, i.e. αξ(s) = ξ, the auxiliary value

function∇ξQ̃
π∗ξ

M̂train
(s, a) becomes a simple discounted sum

of KL-divergences:

∇ξQ̃
π∗ξ

M̂train
(s, a) = −E

π∗ξ ,M̂train

[∞∑
t=1

γtKLπ
∗
ξ ,µ
st

]
(11)

which further reduces χ(s) by canceling out the regulariza-
tion term of the KL-regularized value function to become:

ξs such that ∇ξsiαξ(sj) = 1(si = sj), this corresponds to the
fully state-dependent hyperparameters α(s).

χξ(s) = − 1

αξ(s)
cova∼π∗ξ

[
Q
π∗ξ

M̂train
(s, a), Q

π∗ξ

M̂valid
(s, a)

]
(12)

where Q
π∗ξ

M̂train
(s, a) = E

π∗ξ ,M̂train
[
∑∞
t=0 γ

trt], the unregular-
ized value function under train MDP. The auxiliary reward
function χ(s) is now a negative covariance between unreg-
ularized value functions of train and valid MDPs.

Consider a scenario where a learned policy only exploits
reliable state-action pairs (i.e. state-action pairs that appear
frequently in the dataset). In this case, two unregularized
value functionsQ

π∗ξ

M̂train
(s, a) andQ

π∗ξ

M̂valid
(s, a) should be similar

under the policy distribution, resulting in positive covari-
ance. Then, the hypergradient, which is a discounted sum
of negative covariance, will become negative, the alpha will
decrease, and the policy will be less regularized to explore
more state-action pairs. On the other hand, when the pol-
icy tries to explore uncertain state-action pairs where two
unregularized value functions differ, the hypergradient de-
scent will regularize policy more to finally converge to the
appropriate level of regularization.

6. Actor-Critic BOPAH
In this section, we extend BOPAH to control tasks with con-
tinuous state and action spaces via practical approximations
to KL-regularized policy iteration and hypergradient com-
putation. We achieve this goal by adopting the Actor-Critic
framework, where we train the parametric models of poli-
cies (i.e. actor), KL-regularized value functions (i.e. critic),
and state-dependent hyperparameters. The resulting algo-
rithm, Actor-Critic BOPAH (AC-BOPAH), thus performs
alternating updates of the three parametric models.

6.1. Parametric Model of State-dependent
Hyperparameters

Although in principle, we could use any parametric model
to represent state-dependent hyperparameters, we focus on
analyzing the linear model for αξ(s), which particularly
allows for stable training of KL-regularized value functions.
To see this, suppose

αξ(s) ,
dξ∑
i=1

ξiφi(s) = ξ>φ(s) (13)

where ξ = [ξ1, . . . , ξdξ]
>, and φ : S → Rdξ is a feature

function of states such that ξ>φ(s) ≥ 0 for all s (e.g. ξ ≥ 0
and φi(s)’s are RBFs). The feature function φ(s) is prede-
fined and fixed, and only ξ is optimized during training.

This linear parameterization leads to the following decom-

Batch Reinforcement Learning with Hyperparameter Gradients

position of the KL-regularized value function:

Q̃π
M̂train

(s, a) = E
[
r0 +

∞∑
t=1

γt
(
rt − αξ(st)KLπ,µst

)]

=E
[∞∑
t=0

γtrt

]
︸ ︷︷ ︸
, Qπθtrain(s, a)

+ ξ> E
[∞∑
t=1

γt
(
− φ(s)KLπ,µst

)]
︸ ︷︷ ︸

, Qπ
θKL
train

(s, a)

(14)

Note in Eq. (14) that both Qπθtrain(s, a) and Qπ
θKL
train

(s, a) are
not dependent on ξ but only on π. Thus, we could train
the separate models for Qπθtrain(s, a) and Qπ

θKL
train

(s, a) instead

of the single model for Q̃π
M̂train

(s, a), making the training
more stable since they are not affected by the change in the
hyperparameters ξ.

Furthermore, the auxiliary value function ∇ξQ̃
π∗ξ

M̂train
(s, a)

in Theorem 5.1 is also directly derived using Qπ
θKL
train

(s, a)

without any further introduction of parameterized functions
since ∇ξαξ(s) = φ(s):

∇ξQ̃πM̂train
(s, a) = Qπ

θKL
train

(s, a) (15)

We also train the action-value critic for the validation-set
MDP, defined in the standard way:

Qπθvalid(s, a) , E
π,M̂valid

[∞∑
t=0

γtrt

]
(16)

Finally, we define state-value critics V πψtrain
(s), VψKL

train
(s),

and V πψvalid
(s) similarly to Eq. (14) and Eq. (16), which com-

pletes our parameterization of the value functions and the
hyperparameters for AC-BOPAH. As for the actor πω(a|s),
we use the Gaussian policy with its mean and covariance
parameterized by neural networks.

6.2. Objective Functions

We now present the objective functions to train each para-
metric model for the actor and the critic with fixed hy-
perparameters. First, the parameters for the reward value
functions, {ψtrain, θtrain, ψvalid, θvalid}, are trained by min-
imizing the squared residual errors: for each data ∈
{train, valid},

J(ψdata) = Es∼Ddata
a∼πω

[(
Vψdata

(s)−Qθdata
(s, a)

)2]
J(θdata) = E(s,a,r,s′)

∼Ddata

[(
Qθdata

(s, a)− r − γVψ̄data
(s′)
)2]

where ψ̄data is an exponential moving average of ψdata (i.e.
soft target update). Similarly, the parameters for the KL

value functions {ψKL
train, θ

KL
train} are trained by minimizing:

J(ψKL
train) = Es∼Dtrain

a∼πω

∥∥VψKL
train

(s)−QθKL
train

(s, a) + φ(s)KLπ,µs
∥∥2

2

J(θKL
train) = E (s,a,s′)

∼Dtrain

∥∥QθKL
train

(s, a)− γVψ̄KL
train

(s′)
∥∥2

2

where ψ̄KL
train is an exponential moving average of ψKL

train.
Then, the policy parameters are optimized by minimizing
the expected KL-divergence of Eq. (5), which yields:

J(ω) = Es∼Dtrain
a∼πω

[
αξ(s)KLπ,µs −Qπθtrain(s, a)− ξ>Qπ

θKL
train

(s, a)
]

Here, we use the analytic formula for computing the KL-
divergence KLπ,µs and adopt the reparameterization trick
to the Gaussian policy when computing the gradient in
order to reduce the variance of stochastic gradients. We
also perform conservative training with bootstrapped Q
and apply gradient penalty of critic networks. Without
them, the algorithm is prone to divergence during train-
ing due to the overestimation of the uncertain state-action.
Note that other batch RL algorithms (Kumar et al., 2019)
use similar conservative estimation techniques for stabi-
lization of training. The gradient penalty constrains the
Lipschitz constant of the critic, which prevents outputting
extremely high value for the uncertain region that can be
encountered by weak behavior-regularization during hy-
perparameter optimization. More technical details for the
experiments can be found in the Appendix E. Iterative opti-
mization of {J(ψdata), J(θdata), J(ψKL

train), J(θKL
train)} and

J(ω) results in an actor-critic algorithm that performs ap-
proximate KL-regularized policy iteration. We will denote
this actor-critic algorithm as KLAC in the experiments when
we use fixed hyperparameters.

6.3. Clipped Importance Sampling for Hypergradients

Finally, we compute the approximate hypergradients by
exploiting the current actor and critics as the approximate
solutions of the KL-regularized MDP with respect to the
current hyperparameter ξ. From Eq. (10) and Eq. (14-15),

∇ξρM̂valid
(π) = E

π,M̂valid

[∞∑
t=0

γtχξ(st)

]
(17)

s.t. χξ(s) =
1(

ξ>φ(s)
)2 cova∼π

[
(ξ>φ(s))Qπ

θKL
train

(s, a)

−φ(s)
(
Qπθtrain

(s, a) + ξ>Qπ
θKL
train

(s, a)
)
, Qπθvalid(s, a)

]

Here, for immediate (off-policy) policy evaluation of π
with respect to the auxiliary reward χξ(st) using the val-
idation trajectory collected by µ, we adopt a clipped im-
portance sampling. For the validation dataset Dvalid =
{τ1, . . . , τNτ } such that τn = {(snt , ant , rnt , s′nt)}Tnt=0, we

Batch Reinforcement Learning with Hyperparameter Gradients

1.45 1.50 1.55 100 101

−π −π/2 0 π/2 π

θ

8

4

0

-4

-8

θ̇

Learned αξ(s)

−π −π/2 0 π/2 π

θ

State Visitation

Figure 2. Example of the learned αξ(s) in Pendulum-v0. The
symbol × denotes the representative states for center of RBFs,
obtained from the cover tree algorithm.

estimate the approximate hypergradient as follows:

∇ξρM̂valid
(π) ≈ 1

Nτ

Nτ∑
n=1

Tn∑
t=0

γtwn0:tχξ(st) (18)

s.t. wn0:t , clip

((
t∏

k=0

π(ank |snk)

µ(ank |snk)

)
, wmin, wmax

)
,

and update the hyperparameter via hypergradient ascent. In
practice, we alternate between Hf steps of optimizing the
actor-critic (inner-problem) and one step of optimizing the
hyperparameter (outer-problem). We refer this algorithm as
AC-BOPAH.

Illustrative Example Figure 2 visualizes αξ(·) optimized
by AC-BOPAH in Pendulum-v0. We sampled trajectories
of 103 episodes using a suboptimal behavior policy which
was partially trained for only 104 steps by soft actor-critic
(SAC) (Haarnoja et al., 2018). We selected 10 representative
states within the batch data via the cover tree algorithm
(Beygelzimer et al., 2006) and used them for the basis of
each RBF φi(s) in α(s). Finally, we run AC-BOPAH for
106 steps.

As we can inspect from the left heatmap in Figure 2, the
optimized αξ(·) has lower values in the densely collected
state region while it has higher values in the sparsely col-
lected state region. This is a desirable result: we can be
safely deviate from the behavior policy for optimization in
experience-rich areas but should be conservative and fall
back to the behavior policy in experience-sparse areas of
the state space.

7. Experiments
7.1. Model-based BOPHA on Random MDPs

In order to probe how safely and efficiently BOPAH can
improve performance over the behavior policy with respect
to the varying number of trajectories and optimality of the

behavior policy, we conducted repeated experiments us-
ing randomly generated MDPs. The experimental protocol
follows that of (Laroche et al., 2019), and details can be
found in the Appendix F. In essence, we repeated 10k runs,
where each random MDP M was created with |S| = 50,
|A| = 4, γ = 0.95, where the maximum episode length
was set to 50. The ζ-optimal behavior policy µ denotes
ρM (µ) = ζρM (π∗) + (1− ζ)ρM (πunif).

We compare the model-based BOPAH with four algorithms:
(1) BasicRL (simple baseline appeared in 5.1), (2) Reward-
adjusted MDP (RaMDP) (Petrik et al., 2016), (3) Robust
MDP (Nilim & El Ghaoui, 2005; Iyengar, 2005), (4) SPIBB
(Laroche et al., 2019), using various sizes of trajectories and
two optimalities of behavior policy (near-optimal and near-
random policies). For each run, we measure the normalized
performance of π: ρ̄M (π) = ρM (π)−ρM (µ)

ρM (π∗)−ρM (µ) ∈ (−∞, 1],
which measures how much the algorithm improves its per-
formance over the behavior policy. Finally, we report the
mean (normalized) performance and the conditional value at
risk performance (CVaR). The x%-CVaR denotes the mean
(normalized) performance of the worst x% runs.

Figure 3a-3b presents the result when the behavior policy
is near-optimal (ζ = 0.9), where the behavior policy is
nearly deterministic, thus the collected trajectories could
cover only part of the entire state-action space. On the
other hand, Figure 3c-3d represents the results when the
behavior policy is more randomized (ζ = 0.5), thus the col-
lected trajectories could cover the entire state-action space
fairly well. In both settings, BOPAH with state-dependent
hyperparameters consistently matched or exceeded other
algorithms, which highlights effectiveness and robustness
of our algorithm.

7.2. AC-BOPAH on Continuous Control Tasks

In this experiment, we evaluate the effectiveness of AC-
BOPAH on continuous control tasks, using the MuJoCo
environments in the OpenAI gym (Todorov et al., 2012;
Brockman et al., 2016). We first obtained the behavior pol-
icy by running SAC (Haarnoja et al., 2018) for half-million
steps and then prepared the dataset consisting of 103 trajec-
tories shared by all algorithms. For AC-BOPAH, we held
out 20% of trajectories as the validation set. We compare
our AC-BOPAH with two behavior cloning baselines, one
with the Gaussian policy (BC) and the other one with the
variational autoencoder (VAE-BC). We also compare with
two state-of-the-art batch deep RL algorithms for continuous
control problems, BCQ (Fujimoto et al., 2019) and BEAR-
QL (Kumar et al., 2019). We used their published code
and hyperparameters (Φ = 0.05 for BCQ and ε = 0.05 for

Batch Reinforcement Learning with Hyperparameter Gradients

101 102 103

number of trajectories in D
(a)

0.0

0.5

1.0

n
or

m
al

iz
ed

p
er

fo
rm

an
ce

Mean performance
(behavior optimality=0.9)

101 102 103

number of trajectories in D
(b)

−1

0

1

n
or

m
al

iz
ed

p
er

fo
rm

an
ce

CVaR 5%
(behavior optimality=0.9)

101 102 103

number of trajectories in D
(c)

0.0

0.5

1.0

n
or

m
al

iz
ed

p
er

fo
rm

an
ce

Mean performance
(behavior optimality=0.5)

101 102 103

number of trajectories in D
(d)

0.0

0.5

1.0

n
or

m
al

iz
ed

p
er

fo
rm

an
ce

CVaR 5%
(behavior optimality=0.5)

Behavior Optimal BOPAH BOPAH (single α) SPIBB RobustMDP RaMDP BasicRL

Figure 3. The result from random MDP experiments.

0.0 1.0 2.0 3.0 4.0 5.0

Timesteps (106)

5000

6000

7000

8000

A
ve

ra
ge

R
et

u
rn

HalfCheetah-v2

0.0 1.0 2.0 3.0 4.0 5.0

Timesteps (106)

1000

2000

3000

A
ve

ra
ge

R
et

u
rn

Hopper-v2

0.0 1.0 2.0 3.0 4.0 5.0

Timesteps (106)

2500

3000

3500

4000

4500

A
ve

ra
ge

R
et

u
rn

Walker2d-v2
AC-BOPAH

AC-BOPAH (single α)

KLAC

BCQ

BEAR-QL

BC

VAE-BC

Behavior Policy

Figure 4. The results of continuous control experiments averaged over 5 trials, which are moving-averaged with a window size of 20. The
shaded area represents the standard error.

BEAR-QL) therein for obtaining experimental results.2 We
report two versions of our algorithm, AC-BOPAH (single α)
that uses a global hyperparameter α and AC-BOPAH that
uses state-dependent hyperparameter αξ(s) with |ξ| = 21.
Both versions are initialized to start from αξ(s) = 102 ∀s.
KLAC is the KL-regularized actor-critic with α = 102 held
constant for all tasks.

As presented in Figure 4, AC-BOPAH consistently out-
performed the state-of-the-art algorithms by large margins.
While the KLAC was on a par with other algorithms, AC-
BOPAH made further improvement by optimizing the hyper-
parameters using the held-out validation set. AC-BOPAH
(with state-dependent KL-regularization) shows clear im-
provement over the constant α version, except for the
HalfCheetah-v2 domain where the latter already achieved
near-optimal performance.

8. Conclusion
In this work, we presented the generalized KL-
regularization and the BOPAH framework for batch RL,

2For more thorough comparison, we also conducted additional
experiments with hyperparameter grid-search for BCQ and BEAR
as in (Wu et al., 2019), i.e. Φ ∈ {0.005, 0.015, 0.05, 0.15, 0.5}
for BCQ and ε ∈ {0.015, 0.05, 0.15, 0.5, 1.5} for BEAR-QL.
We observed improvement only for BCQ in Halfcheetah (with
Φ = 0.5), which managed to perform better than AC-BOPAH.
However, such tuning requires access to the true environment,
which is not feasible in the batch RL setting.

which propose the optimization of state-dependent regular-
ization via the hypergradient ascent. We provided a formal
analysis that motivates the objective used in BOPAH, and
presented two concrete versions, (1) model-based BOPAH
that assumes tabular environment and computes exact hy-
pergradients, and (2) AC-BOPAH that uses actor-critic ar-
chitecture to compute approximate hypergradients in more
challenging continuous tasks. We empirically demonstrated
that both model-based BOPAH and AC-BOPAH outperform
the state-of-the-art algorithms, supporting the hypothesis
that batch RL can significantly benefit from hyperparam-
eter optimization. While we introduced BOPAH with the
KL-regularization for batch RL in this work, we believe that
our BOPAH framework can be extended to other related
problems in RL with limited experience data, which shall
be interesting direction for future work.

Acknowledgments
This work was supported by the National Research Founda-
tion (NRF) of Korea (NRF-2019R1A2C1087634 and NRF-
2019M3F2A1072238), the Ministry of Science and Infor-
mation communication Technology (MSIT) of Korea (IITP
No. 2020-0-00940, IITP 2019-0-00075 and IITP No. 2017-
0-01779 XAI), and POSCO.

Batch Reinforcement Learning with Hyperparameter Gradients

References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained

policy optimization. In International Conference on Ma-
chine Learning, pp. 22–31, 2017.

Agarwal, R., Schuurmans, D., and Norouzi, M. An opti-
mistic perspective on offline reinforcement learning. In-
ternational Conference on Machine Learning, 2020.

Bengio, Y. Gradient-based optimization of hyperparameters.
Neural Computation, 12(8):1889–1900, August 2000.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of Machine Learning
Research, 13:281–305, February 2012. ISSN 1532-4435.

Beygelzimer, A., Kakade, S., and Langford, J. Cover trees
for nearest neighbor. In International Conference on
Machine Learning, pp. 97–104, 2006.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Fedus*, W., Rosca*, M., Lakshminarayanan, B., Dai, A. M.,
Mohamed, S., and Goodfellow, I. Many paths to equi-
librium: GANs do not need to decrease a divergence
at every step. In International Conference on Learning
Representations, 2018.

Fox, R., Pakman, A., and Tishby, N. Taming the noise in
reinforcement learning via soft updates. In Proceedings of
the Thirty-Second Conference on Uncertainty in Artificial
Intelligence, pp. 202–211, 2016.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional Conference on Machine Learning, pp. 2052–2062,
2019.

Galashov, A., Jayakumar, S., Hasenclever, L., Tirumala,
D., Schwarz, J., Desjardins, G., Czarnecki, W. M., Teh,
Y. W., Pascanu, R., and Heess, N. Information asymmetry
in KL-regularized RL. In International Conference on
Learning Representations, 2019.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. Improved training of wasserstein gans. In
Advances in Neural Information Processing Systems, pp.
5769–5779, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
Conference on Machine Learning, pp. 1856–1865, 2018.

Hasselt, H. V. Double q-learning. In Advances in Neural
Information Processing Systems, pp. 2613–2621, 2010.

Iyengar, G. N. Robust dynamic programming. Mathematics
of Operations Research, 30(2):257–280, May 2005.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to
trust your model: Model-based policy optimization. In
Advances in Neural Information Processing Systems, pp.
12498–12509, 2019.

Jaques, N., Ghandeharioun, A., Shen, J. H., Ferguson, C.,
Lapedriza, À., Jones, N., Gu, S., and Picard, R. W. Way
off-policy batch deep reinforcement learning of implicit
human preferences in dialog. CoRR, abs/1907.00456,
2019.

Kappen, H. J., Gómez, V., and Opper, M. Optimal control as
a graphical model inference problem. Machine Learning,
87(2):159–182, 2012.

Kodali, N., Abernethy, J., Hays, J., and Kira, Z. On conver-
gence and stability of gans, 2017.

Kumar, A., Fu, J., Tucker, G., and Levine, S. Stabilizing
off-policy q-learning via bootstrapping error reduction.
In Advances in Neural Information Processing Systems,
pp. 11761–11771, 2019.

Laroche, R., Trichelair, P., and Des Combes, R. T. Safe pol-
icy improvement with baseline bootstrapping. In Interna-
tional Conference on Machine Learning, pp. 3652–3661,
2019.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous con-
trol with deep reinforcement learning. In International
Conference on Learning Representations, 2016.

Maclaurin, D., Duvenaud, D., and Adams, R. P. Gradient-
based hyperparameter optimization through reversible
learning. In International Conference on Machine Learn-
ing, pp. 2113–2122, 2015.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. Safe and efficient off-policy reinforcement learning.
In Advances in Neural Information Processing Systems,
pp. 1054–1062, 2016.

Nilim, A. and El Ghaoui, L. Robust control of markov
decision processes with uncertain transition matrices. Op-
erations Research, 53(5):780–798, September 2005.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep
exploration via bootstrapped dqn. In Advances in Neural
Information Processing Systems, pp. 4026–4034, 2016.

Pedregosa, F. Hyperparameter optimization with approxi-
mate gradient. In International Conference on Machine
Learning, pp. 737–746, 2016.

Batch Reinforcement Learning with Hyperparameter Gradients

Petrik, M., Ghavamzadeh, M., and Chow, Y. Safe policy
improvement by minimizing robust baseline regret. In
Advances in Neural Information Processing Systems, pp.
2298–2306, 2016.

Pfau, D. and Vinyals, O. Connecting generative adversarial
networks and actor-critic methods, 2016.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
Conference on Machine Learning, pp. 1889–1897, 2015.

Schulman, J., Chen, X., and Abbeel, P. Equivalence between
policy gradients and soft q-learning, 2017.

Siegel, N., Springenberg, J. T., Berkenkamp, F., Abdol-
maleki, A., Neunert, M., Lampe, T., Hafner, R., Heess,
N., and Riedmiller, M. Keep doing what worked: Behav-
ior modelling priors for offline reinforcement learning. In
International Conference on Learning Representations,
2020.

Sun, W., Gordon, G. J., Boots, B., and Bagnell, J. Dual
policy iteration. In Advances in Neural Information Pro-
cessing Systems, pp. 7059–7069, 2018.

Todorov, E. Linearly-solvable markov decision problems.
In Advances in Neural Information Processing Systems,
pp. 1369–1376, 2007.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In International Confer-
ence on Intelligent Robots and Systems, pp. 5026–5033,
2012.

Wu, Y., Tucker, G., and Nachum, O. Behavior regularized
offline reinforcement learning. ArXiv, abs/1911.11361,
2019.

Batch Reinforcement Learning with Hyperparameter Gradients
-Supplementary Material-

A. Proof for Theorem 4.1
For the proof of Theorem 4.1, we additionally define the following terms:

[d0]s , d0(s), the initial state probability vector
[dπM]s , dπ(s), the marginal discounted state probability vector induced by π and P
[dπ
M̂

]s , dπ
M̂

(s), the marginal discounted state probability vector induced by π and P̂
[Pπ]s,s′ ,

∑
a P (s′|s, a)π(a|s), the transition matrix following policy π

[P̂π]s,s′ ,
∑
a P̂ (s′|s, a)π(a|s), the approximate transition matrix following policy π

[rπ]s ,
∑
aR(s, a)π(a|s), the reward vector following policy π

Lemma A.1. Given that all rewards are bounded |R(s, a)| ≤ Rmax, the error of the estimate based on an approximate
model, i.e. ρ

M̂
(µ), is bounded by:

∣∣ρM (µ)− ρ
M̂

(µ)
∣∣ ≤ 2γRmax

(1− γ)2
Es∼dµM
a∼µ

[
TV
(
P (s′|s, a)

∣∣∣∣P̂ (s′|s, a)
)]
. (19)

Proof. Here, for simplicity, we omit the subscript µ in r,P, and P̂.∣∣ρM (µ)− ρ
M̂

(µ)
∣∣ =

∣∣∣r> [(I − γP)−1 −
(
I − γP̂

)−1
]
d0

∣∣∣ =
∣∣∣r>(I − γP̂)−1

[
γP− γP̂

]
(I − γP)−1d0

∣∣∣
= γ

∣∣∣∣r> (I − γP̂)−1 [
P− P̂

] dµM
1− γ

∣∣∣∣
≤ γ

1− γ

∥∥∥r> (I − γP̂)−1 ∥∥∥
∞

∥∥∥ [P− P̂
]
dµM

∥∥∥
1

≤ γRmax

(1− γ)2

∥∥∥[P− P̂
]
dµM

∥∥∥
1

=
γRmax

(1− γ)2

∑
s′

∣∣∣∣∣∑
s,a

[
P (s′|s, a)− P̂ (s′|s, a)

]
µ(a|s)dµM (s)

∣∣∣∣∣
≤ γRmax

(1− γ)2

∑
s′,a,s

∣∣∣P (s′|s, a)− P̂ (s′|s, a)
∣∣∣µ(a|s)dµM (s)

=
2γRmax

(1− γ)2
Es∼dµM
a∼µ

[
TV
(
P (s′|s, a)

∣∣∣∣P̂ (s′|s, a)
)]

Lemma A.2. Given that all rewards are bounded |R(s, a)| ≤ Rmax, we can bound the difference of the evaluations of two
policies π, µ as:

|ρM (π)− ρM (µ)| ≤ 2Rmax

(1− γ)2
Es∼dπM [TV(π(a|s)||µ(a|s))] . (20)

Batch Reinforcement Learning with Hyperparameter Gradients

Proof.

|ρM (π)− ρM (µ)| =
∣∣[(rπ)>(I − γPπ)−1 − (rµ)>(I − γPµ)−1

]
d0

∣∣
≤
∣∣∣∣(rπ − rµ)

> dπM
1− γ

∣∣∣∣+
∣∣(rµ)>

[
(I − γPπ)−1 − (I − γPµ)−1

]
d0

∣∣
∣∣∣∣(rπ − rµ)

> dπM
1− γ

∣∣∣∣ ≤ 2Rmax

1− γ
Es∼dπM [TV(π(a|s)||µ(a|s))]

∣∣(rµ)>
[
(I − γPπ)−1 − (I − γPµ)−1

]
d0

∣∣ ≤ γRmax

(1− γ)2
‖[Pπ −Pµ]dπ‖1

=
γRmax

(1− γ)2

∑
s′

∣∣∣∣∣∑
s,a

P (s′|s, a) [π(a|s)− µ(a|s)] dπM (s)

∣∣∣∣∣
≤ γRmax

(1− γ)2

∑
a,s

|π(a|s)− µ(a|s)| dπM (s)

=
2γRmax

(1− γ)2
Es∼dπM [TV(π(a|s)||µ(a|s))]

Theorem 4.1. Define the errors επM = Es∼dπM [TV(π(a|s)||µ(a|s))], επ
M̂

= Es∼dπ
M̂

[TV(π(a|s)||µ(a|s))] and εPM =

Es∼dµM
a∼µ

[
TV
(
P (s′|s, a)

∣∣∣∣P̂ (s′|s, a)
)]

. Given that all rewards are bounded |r| ≤ Rmax, the error of an approximate

model’s policy evaluation estimate ρ
M̂

(π) is bounded by:

|ρM (π)− ρ
M̂

(π)| ≤c1
(
επM + επ

M̂

)
+ c2ε

P
M (21)

where c1 = 2Rmax

(1−γ)2 and c2 = 2γRmax

(1−γ)2 .

Proof. By the triangular inequality,∣∣ρM (π)− ρ
M̂

(π)
∣∣ ≤ |ρM (π)− ρM (µ)|+

∣∣ρM (µ)− ρ
M̂

(µ)
∣∣+
∣∣ρ
M̂

(µ)− ρ
M̂

(π)
∣∣ .

By applying Lemma A.1 for second term, and applying Lemma A.2 for first and third term, we recover the result.

Corollary 4.1. The negative baseline regret (Petrik et al., 2016) of π∗δ , which is the performance improvement by adopting
π∗δ instead of the baseline policy µ on the true environment M , is lower bounded by:

ρM (π∗δ)− ρM (µ) ≥ ρ
M̂

(π∗δ)− ρ
M̂

(µ)− c1
√

2δ − 2c2ε
P
M

with c1 and c2 defined in Theorem 4.1.

Proof. According to the constraints of Eq. (2), Pinsker’s inequality and Jensen’s inequality, we have

E
s∼d

π∗
δ
M

[
TVπ

∗
δ ,µ
s

]
≤ E

s∼d
π∗
δ
M

[√
1

2
KLπ

∗
δ ,µ
s

]
≤
√

1

2
E
s∼d

π∗
δ
M

[
KLπ

∗
δ ,µ
s

]
≤
√
δ

2
,

E
s∼d

π∗
δ

M̂

[
TVπ

∗
δ ,µ
s

]
≤ E

s∼d
π∗
δ

M̂

[√
1

2
KLπ

∗
δ ,µ
s

]
≤

√
1

2
E
s∼d

π∗
δ

M̂

[
KLπ

∗
δ ,µ
s

]
≤
√
δ

2
.

We substitute them into Theorem 4.1 to get:

ρM (π∗δ)− ρ
M̂

(π∗δ) ≥ −c1
√

2δ − c2εPM .

Similarly, ρM (µ) − ρ
M̂

(µ) ≥ −c2εPM holds as επM and επ
M̂

are zero in this case. Adding two equations completes the
proof.

Batch Reinforcement Learning with Hyperparameter Gradients

B. Proofs for KL-regularized Policy Iteration
B.1. Proof of Lemma 4.1

Lemma 4.1. For a given π with KLπ,µs < ∞ ∀s, the backup operator T πKL is a contraction mapping and has an unique
fixed point solution T πKLQ̃

π = Q̃π. In other words, for any Q̃0 : S × A → R, define Q̃k+1 = T πKLQ̃
k. Then the sequence

Q̃k converges to KL-regularized Q-value function of π as k →∞.

Proof. We first show the monotonicity of T πKL. Note that if Q̃(s, a) ≤ Q̃′(s, a) for s ∈ S, a ∈ A,(
T πKLQ̃

π
)

(s, a) = R(s, a)− Es′∼p(s′|s,a) [α(s′)KLπ,µs] + Es′∼p(s′|s,a)
a′∼π(a′|s′)

[
Q̃(s′, a′)

]
≤ R(s, a)− Es′∼p(s′|s,a) [α(s′)KLπ,µs] + Es′∼p(s′|s,a)

a′∼π(a′|s′)

[
Q̃′(s′, a′)

]
=
(
T πKLQ̃

π
)

(s, a)

holds for s ∈ S, a ∈ A.

The additivity of T πKL can also be proved. For d ∈ R and 1 ∈ RS (the vector of all ones),(
T πKL(Q̃π + d1)

)
(s, a) = R(s, a)− Es′∼p(s′|s,a) [α(s′)KLπ,µs] + Es′∼p(s′|s,a)

a′∼π(a′|s′)

[
Q̃(s′, a′) + d

]
= R(s, a)− Es′∼p(s′|s,a) [α(s′)KLπ,µs] + Es′∼p(s′|s,a)

a′∼π(a′|s′)

[
Q̃(s′, a′)

]
+ γd

=
(
T πKLQ̃

π
)

(s, a) + γd

holds for s ∈ S, a ∈ A.

Finally, let d = ‖Q̃(s, a)− Q̃′(s, a)‖∞. Then, for s ∈ S, a ∈ A,

Q̃(s, a)− d ≤ Q̃′(s, a) ≤ Q̃(s, a) + d

=⇒
(
T πKL(Q̃− d1)

)
(s, a) ≤

(
T πKLQ̃

′
)

(s, a) ≤
(
T πKL(Q̃+ d1)

)
(s, a) (monotonicity)

=⇒
(
T πKLQ̃

)
(s, a)− γd ≤

(
T πKLQ̃

′
)

(s, a) ≤
(
T πKLQ̃

)
(s, a) + γd (additivity)

=⇒
∥∥∥(T πKLQ̃

)
(s, a)−

(
T πKLQ̃

′
)

(s, a)
∥∥∥
∞
≤ γ‖Q̃(s, a)− Q̃′(s, a)‖∞.

Therefore, T πKL is a γ-contraction. By Banach fixed point theorem, it admits a unique fixed point T πKLQ̃
π = Q̃π .

Note that, if we deal with the two non-degenerate, normally distributed policies π and µ, then KLπ,µs <∞ always holds.

B.2. Proof of Lemma 4.2

Lemma 4.2. Given a policy π ∈ Π and its value function Q̃π, if we update the new policy πnew by πnew(·|s) =

arg minπ′∈Π KL
(
π′(·|s)

∥∥∥∥ 1
Zπ(s) exp

(
Q̃π(s,·)
α(s)

)
µ(·|s)

)
where Zπ(s) is the normalization constant, then Q̃π

new

(s, a) ≥

Q̃π(s, a) ∀s, a.

Proof. Note that KL
(
πnew(·|s)

∥∥∥∥ 1
Zπ(s) exp

(
Q̃π(s,·)
α(s)

)
µ(·|s)

)
≤ KL

(
π(·|s)

∥∥∥∥ 1
Zπ(s) exp

(
Q̃π(s,·)
α(s)

)
µ(·|s)

)
must hold as

Batch Reinforcement Learning with Hyperparameter Gradients

we can always choose πnew = π ∈ Π. Then,

Ea∼πnew(·|s)

[
log πnew(a|s)− Q̃π(s, a)

α(s)
− logµ(a|s) + logZπ(s)

]

≤ Ea∼π(·|s)

[
log π(a|s)− Q̃π(s, a)

α(s)
− logµ(a|s) + logZπ(s)

]
=⇒ α(s)KLπ

new,µ
s − Ea∼πnew(·|s)

[
Q̃π(s, a)

]
≤ α(s)KLπ,µs − Ea∼π(·|s)

[
Q̃π(s, a)

]

Then, we can show that

Q̃π(s0, a0) = R(s0, a0) + γEs1
[
Ea1∼π [Qπ(s1, a1)]− α(s1)KLπ,µs1

]
≤ R(s0, a0) + γEs1

[
Ea1∼πnew [Qπ(s1, a1)]− α(s1)KLπ

new,µ
s1

]
...

≤ R(s0, a0) + Eπnew

[∞∑
t=1

γt
(
R(st, at)− α(st)KLπ

new,µ
st

]
= Q̃π

new

(s0, a0)

Theorem 4.2. (KL-Regularized Policy Iteration) Suppose that |R(s, a)| ≤ Rmax and KLπ,µs < ∞. Starting from any
π0 ∈ Π, the sequence of the value functions Q̃πk and the improved policies πk+1 converge to the optimal value function and
the optimal policy π∗ ∈ Π, i.e. limk→∞ Q̃πk(s, a) ≥ Q̃π(s, a) for any π ∈ Π, s ∈ S, and a ∈ A.

Proof. By Lemma 4.2, the sequence of the value functions Q̃πk is monotonically increasing. Since the reward and KL are
bounded, Q̃π is bounded, and the sequence converges to some π∗. At convergence,

KL
(
π∗(·|s)

∥∥∥∥ 1

Zπ(s)
exp

(
Q̃π(s,·)
α(s)

)
µ(·|s)

)
< KL

(
π(·|s)

∥∥∥∥ 1

Zπ(s)
exp

(
Q̃π(s,·)
α(s)

)
µ(·|s)

)
should hold for all π ∈ Π, π 6= π∗. Using the argument as in Lemma 4.2, we get Q̃π

∗
(s, a) > Q̃π(s, a) for all s ∈ S, a ∈ A.

Therefore, π∗ is optimal in Π.

Batch Reinforcement Learning with Hyperparameter Gradients

C. Proof of Theorem 5.1
Throughout this section, suppose αξ(s) is parameterized by ξ. Let π∗ξ = arg max

π,M̂train
E
[∑∞

t=0 γ
trt − αξ(st)KLπ,µst

]
be the optimal policy of the generalized KL-regularized MDP M̂train with a fixed yet arbitrary ξ.

Lemma C.1. (KL-Regularized Bellman Optimality Equation (Fox et al., 2016)) KL-regularized optimal value function of
M̂train is defined recursively as:

Q̃
π∗ξ

M̂train
(s, a) = R(s, a) + γEs′

[
Ṽ
π∗ξ

M̂train
(s′)
]

Ṽ
π∗ξ

M̂train
(s) = αξ(s) logEa∼µ(·|s)

exp

 Q̃π∗ξM̂train
(s, a)

αξ(s)



Proof. Note that in the tabular case, the optimal policy and its value function Q̃
π∗ξ

M̂train
should satisfy the following relationship

by Lemma 4.1 and Lemma 4.2:

π∗ξ (a|s) =

exp

(
Q̃
π∗ξ
M̂train

(s,a)

αξ(s)

)
µ(a|s)

∑
a′ exp

(
Q̃
π∗
ξ

M̂train
(s,a′)

αξ(s)

)
µ(a′|s)

By rearranging this, we obtain:

log
π∗ξ (a|s)
µ(a|s)

=
Q
π∗ξ

M̂train
(s, a)

αξ(s)
− log

∑
a′

exp

 Q̃π∗ξM̂train
(s, a′)

αξ(s)

µ(a′|s)


By taking expectation on both sides,

Ea∼π∗ξ (·|s)

[
log

π∗ξ (a|s)
µ(a|s)

]
=

Ea∼π∗ξ (·|s)

[
Q̃
π∗ξ

M̂train
(s, a)

]
αξ(s)

− log

∑
a′

exp

 Q̃π∗ξM̂train
(s, a′)

αξ(s)

µ(a′|s)


∴ Ṽ

π∗ξ

M̂train
(s) = −αξ(s)KL

(
π∗ξ (·|s)||µ(·|s)

)
+ Ea∼π∗ξ (·|s)

[
Q̃
π∗ξ

M̂train
(s, a)

]
= log

∑
a′

exp

 Q̃π∗ξM̂train
(s, a′)

αξ(s)

µ(a′|s)



We remark that Lemma C.1 implies:

π∗ξ (a|s) = exp

 Q̃π∗ξM̂train
(s, a)− Ṽ π

∗
ξ

M̂train
(s)

αξ(s)

µ(a|s) (22)

Lemma C.2. Let Q̃
π∗ξ

M̂train
(s, a) be the optimal KL-regularized value function of M̂train. Then, the following holds:

∇ξQ̃
π∗ξ

M̂train
(s, a) = E

π∗ξ ,M̂train

[∞∑
t=1

γt
(
−KL

(
π∗ξ (·|st)||µ(·|st)

)
∇ξαξ(st)

)
| s0 = s, a0 = a

]

∇ξṼ
π∗ξ

M̂train
(s) = E

π∗ξ ,M̂train

[∞∑
t=0

γt
(
−KL

(
π∗ξ (·|st)||µ(·|st)

)
∇ξαξ(st)

)
| s0 = s

]

Batch Reinforcement Learning with Hyperparameter Gradients

Proof. We use the recursive form of the KL-regularized Bellman optimality equation by Lemma C.1:

∇ξQ̃
π∗ξ

M̂train
(s, a)

= ∇ξ

(
R(s, a) + γEs′

[
αξ(s

′) logEa′∼µ(·|s′)

[
exp

(
Q̃
π∗ξ
M̂train

(s′,a′)

αξ(s′)

)]])

= γEs′

∇ξαξ(s′) logEa′∼µ(·|s′)

[
exp

(
Q̃
π∗ξ
M̂train

(s′,a′)

αξ(s′)

)]
+ αξ(s

′)

Ea′∼µ(·|s′)

[
exp

(
Q̃
π∗ξ
M̂train

(s′,a′)

αξ(s′)

)
∇ξ
(
Q̃
π∗ξ
M̂train

(s′,a′)

αξ(s′)

)]

Ea′∼µ(·|s′)

[
exp

(
Q̃
π∗ξ
M̂train

(s′,a′)

αξ(s′)

)]


= γEs′

∇ξαξ(s′)
αξ(s′)

Ṽ
π∗ξ

M̂train
(s′) + αξ(s

′)Ea′∼π∗ξ (·|s′)

∇ξ(Q̃π
∗
ξ

M̂train
(s′, a′)

αξ(s′)

)
= γEs′

∇ξαξ(s′)Ṽ π∗ξM̂train
(s′)

αξ(s′)
+ αξ(s

′)Ea′∼π∗ξ (·|s′)

∇ξQ̃π∗ξM̂train
(s′, a′)αξ(s

′)− Q̃π
∗
ξ

M̂train
(s′, a′)∇ξαξ(s′)

αξ(s′)2


= γEs′,a′∼π∗ξ (·|s′)

∇ξαξ(s′)Ṽ π∗ξM̂train
(s′) +∇ξQ̃

π∗ξ

M̂train
(s′, a′)αξ(s

′)− Q̃π
∗
ξ

M̂train
(s′, a′)∇ξαξ(s′)

αξ(s′)


= γEs′,a′∼π∗ξ (·|s′)

 Ṽ π∗ξM̂train
(s′)− Q̃π

∗
ξ

M̂train
(s′, a′)

αξ(s′)
∇ξαξ(s′) +∇ξQ̃

π∗ξ

M̂train
(s′, a′)


= γEs′,a′∼π∗ξ (·|s′)

[
−KL

(
π∗ξ (·|st)||µ(·|st)

)
∇ξαξ(s′) +∇ξQ̃

π∗ξ

M̂train
(s′, a′)

]
Finally, we obtain the result by repeatedly expanding the recursion. We can obtain the result for∇ξṼ

π∗ξ

M̂train
(s) in a similar

manner.

The result of Lemma C.2 is natural. As α is increased, the KL-regularized return in train MDP M̂train is penalized more.
Lemma C.3. The following inequality holds:

∇ξπ∗ξ (a|s)
π∗ξ (a|s)

=

(
∇ξQ̃

π∗ξ

M̂train
(s, a)−∇ξṼ

π∗ξ

M̂train
(s)
)
αξ(s)−

(
Q̃
π∗ξ

M̂train
(s, a)− Ṽ π

∗
ξ

M̂train
(s)
)
∇ξαξ(s)

αξ(s)2

Proof. We start from Eq. (22).

∇ξπ∗ξ (a|s) = ∇ξ

exp

 Q̃π∗ξM̂train
(s, a)− Ṽ π

∗
ξ

M̂train
(s)

αξ(s)

µ(a|s)


= π∗ξ (a|s)

∇ξ
(
Q̃
π∗ξ

M̂train
(s, a)− Ṽ π

∗
ξ

M̂train
(s)
)
αξ(s)−

(
Q̃
π∗ξ

M̂train
(s, a)− Ṽ π

∗
ξ

M̂train
(s)
)
∇ξαξ(s)

αξ(s)2


Now we are ready to provide the proof of the main theorem.
Theorem 5.1. Suppose that the state-dependent function αξ(s) for Eq. (8) is parameterized by ξ. Then, the hypergradient
∇ξρM̂valid

(π∗ξ) = ∇ξEπ∗ξ ,M̂valid

[∑∞
t=0 γ

trt
]

is given by:

∇ξρM̂valid
(π∗ξ) = E

π∗ξ ,M̂valid

[∞∑
t=0

γtχξ(st)

]

Batch Reinforcement Learning with Hyperparameter Gradients

s.t. π∗ξ , arg max
π

E
π,M̂train

[∞∑
t=0

γt
(
rt − αξ(st)KLπ,µst

)]

∇ξQ̃
π∗ξ

M̂train
(s, a) , E

π∗ξ ,M̂train

[∞∑
t=1

γt
(
−∇ξαξ(st)KLπ

∗
ξ ,µ
st

)]

Q̃
π∗ξ

M̂train
(s, a) , E

π∗ξ ,M̂train

[∞∑
t=0

γt
(
rt − αξ(st)KLπ,µst

)]

Q
π∗ξ

M̂valid
(s, a) , E

π∗ξ ,M̂valid

[∞∑
t=0

γtrt

]

χξ(s) ,
1

αξ(s)2
cova∼π∗ξ

[
αξ(s)∇ξQ̃

π∗ξ

M̂train
(s, a)−∇ξαξ(s)Q̃

π∗ξ

M̂train
(s, a), Q

π∗ξ

M̂valid
(s, a)

]

where cova[f(a), g(a)]i = E[fi(a)g(a)]− E[fi(a)]E[g(a)] denotes element-wise covariance between the vector f(·) and
the scalar g(·).

Proof. By Lemma C.3,

Ea∼π∗ξ

[
∇ξπ∗ξ (a|s)
π∗ξ (a|s)

Q
π∗ξ

M̂valid
(s, a)

]

= Ea∼π∗ξ


(
∇ξQ̃

π∗ξ

M̂train
(s, a)−∇ξṼ

π∗ξ

M̂train
(s)
)
αξ(s)−

(
Q̃
π∗ξ

M̂train
(s, a)− Ṽ π

∗
ξ

M̂train
(s)
)
∇ξαξ(s)

αξ(s)2
Q
π∗ξ

M̂valid
(s, a)


=

Ea∼π∗ξ
[
∇ξQ̃

π∗ξ

M̂train
(s, a)Q

π∗ξ

M̂valid
(s, a)

]
−∇ξṼ

π∗ξ

M̂train
(s)Ea∼π∗ξ

[
Q
π∗ξ

M̂valid
(s, a)

]
αξ(s)

−
Ea∼π∗ξ

[
Q̃
π∗ξ

M̂train
(s, a)Q

π∗ξ

M̂valid
(s, a)

]
− Ṽ π

∗
ξ

M̂train
(s)Ea∼π∗ξ

[
Q
π∗ξ

M̂valid
(s, a)

]
αξ(s)2

∇ξαξ(s)

=
Ea∼π∗ξ

[
∇ξQ̃

π∗ξ

M̂train
(s, a)Q

π∗ξ

M̂valid
(s, a)

]
− Ea∼π∗ξ

[
−∇ξαξ(s)KL

(
π∗ξ (·|s)||µ(·|s)

)
+∇ξQ̃

π∗ξ

M̂train
(s, a)

]
Ea∼π∗ξ

[
Q
π∗ξ

M̂valid
(s, a)

]
αξ(s)

−
Ea∼π∗ξ

[
Q̃
π∗ξ

M̂train
(s, a)Q

π∗ξ

M̂valid
(s, a)

]
− Ea∼π∗ξ

[
−αξ(s)KL

(
π∗ξ (·|s)||µ(·|s)

)
+ Q̃

π∗ξ

M̂train
(s, a)

]
Ea∼π∗ξ

[
Q
π∗ξ

M̂valid
(s, a)

]
αξ(s)2

∇ξαξ(s)

=
Ea∼π∗ξ

[
∇ξQ̃

π∗ξ

M̂train
(s, a)Q

π∗ξ

M̂valid
(s, a)

]
− Ea∼π∗ξ

[
∇ξQ̃

π∗ξ

M̂train
(s, a)

]
Ea∼π∗ξ

[
Q
π∗ξ

M̂valid
(s, a)

]
+∇ξαξ(s)KL

(
π∗ξ (·|s)||µ(·|s)

)
αξ(s)

−
Ea∼π∗ξ

[
Q̃
π∗ξ

M̂train
(s, a)Q

π∗ξ

M̂valid
(s, a)

]
− Ea∼π∗ξ

[
Q̃
π∗ξ

M̂train
(s, a)

]
Ea∼π∗ξ

[
Q
π∗ξ

M̂valid
(s, a)

]
+ αξ(s)KL

(
π∗ξ (·|s)||µ(·|s)

)
αξ(s)2

∇ξαξ(s)

=
cova∼π∗ξ

[
∇ξQ̃

π∗ξ

M̂train
(s, a), Q

π∗ξ

M̂valid
(s, a)

]
αξ(s)

−
cova∼π∗ξ

[
Q̃
π∗ξ

M̂train
(s, a), Q

π∗ξ

M̂valid
(s, a)

]
αξ(s)2

∇ξαξ(s)

=
cova∼π∗ξ

[
αξ(s)∇ξQ̃

π∗ξ

M̂train
(s, a)−∇ξαξ(s)Q̃

π∗ξ

M̂train
(s, a), Q

π∗ξ

M̂valid
(s, a)

]
αξ(s)2

, χξ(s) (23)

Batch Reinforcement Learning with Hyperparameter Gradients

Then, we use the recursive form of the standard Bellman equation for valid MDP M̂valid.

∇ξV
π∗ξ

M̂valid
(s) = ∇ξ

∑
a

π∗ξ (a|s)
[
R(s, a) + γEs′

[
V
π∗ξ

M̂valid
(s′)
]]

=
∑
a

∇ξπ∗ξ (a|s)
[
R(s, a) + γEs′

[
V
π∗ξ

M̂valid
(s′)
]]

+
∑
a

π∗ξ (a|s)
[
γEs′

[
∇ξV

π∗ξ

M̂valid
(s′)
]]

= Ea∼π∗ξ

[
∇ξπ∗ξ (a|s)
π∗ξ (a|s)

Q
π∗ξ

M̂valid
(s, a) + γEs′

[
∇ξV

π∗ξ

M̂valid
(s′)
]]

= χξ(s) + γEa∼π∗ξ ,s′
[
∇ξV

π∗ξ

M̂valid
(s′)
]

Finally, by repeatedly expanding the recursion, we obtain the result in the theorem.

D. Illustrative Example: Diverse Mixture of Policies

0.0 0.05 0.1

α (scalar)

0.60

0.65

0.70

0.75 ρM (π∗)
ρM (µ)

ρM (πBasicRL)

ρM (π∗α)

ρM̂train
(π∗α)

ρM̂valid
(π∗α)

Figure 5. Experimental result on a random MDP using diverse mixture of policies, where S = {s1, . . . s20}, |A| = 4, and α controls the
degree of regularization. The result is obtained by averaging over 300 trials.

We also conducted experiments on a diverse mixture of policies in the illustrative example in Section 5.1, where the trajectory
is collected by diverse policies of µ = ζπ∗ + (1− ζ)πunif such that ζ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, instead of a single fixed
policy (ζ = 0.7). We collected batch data D consisting of 100 episodes with a maximum time step 50, i.e. 20 episodes
for each ζ. The rest of the experimental settings are identical to those described in Section 5.1. Although the diversity of
trajectories has increased, the overall trend remains the same, as presented in Figure 5.

Batch Reinforcement Learning with Hyperparameter Gradients

E. AC-BOPAH Implementation Details
In this section, we describe the technical details of AC-BOPAH we omitted in the main text due to the space limit.

E.1. Conservative Training with Bootstrapped Q

Using ensembles of Q functions to mitigate the overestimation bias when obtaining maximum Q value is a well-known
strategy in deep reinforcement learning (Hasselt, 2010; Haarnoja et al., 2018). When training with a fixed batch of
experiences, this bias becomes an important issue since the overestimation of Q values for unseen actions accumulates over
updates and leads to a potential divergence (Kumar et al., 2019).

To penalize Q values on unseen actions, we choose to estimate the uncertainty by bootstrapping (Osband et al., 2016), i.e.
learning k independent Q values {Qθ1 , ..., QθK} with their own initialization and training set that each element is sampled
with replacement from original training set. The conservative Q estimate then can be computed based on bootstrap lower
confidence bound (LCB),

LCB
k=1..K

[Qθk] =
1

K

K∑
k=1

Qθk − λc
√

vark[Qθk], (24)

and be used as the target of value function learning. While this plays the similar role as the ensembled Q trained with
same dataset in (Fujimoto et al., 2019), we found that, in practice, using the bootstrap resampled datasets for each Q
values was crucial in estimating accurate uncertainty. Using the conservative estimate also helped the algorithm to compute
hypergradients more reliably by making the train critic and the valid critic more different value predictions. In our
experiments, we used K = 5 and λc = 1 for all experiments.

E.2. Gradient Penalty of Critic Network

The connections between actor-critic methods and generative adversarial networks (GANs) have been discussed (Pfau &
Vinyals, 2016) in that the actor (generator) network is updated using the gradient signal from the critic (discriminator)
network, and both of the models suffer from instability of training. For training GANs, a gradient penalty to the discriminator
has been widely adopted in order to stabilize the overall training dynamics (Gulrajani et al., 2017; Kodali et al., 2017;
Fedus* et al., 2018). Similarly, we introduced the gradient penalty to the critic network, which was helpful in stabilizing the
off-policy learning of actor-critic. We finally use the following penalty (Kodali et al., 2017):

R(θ) = Es∼D,a∼π
[
max

(
0, ‖∇s,aQθ(s, a)‖ − κ

)2]
(25)

R(ψ) = Es∼D,a∼π
[
max

(
0, ‖∇sVψ(s)‖ − κ

)2]
which prevents the magnitude of the critic’s gradient from growing too large, thus making the actor’s learning signal be
more stable. Finally, we optimize the parameters of the critics with Eq. (25), using the following regularized objectives: for
each θ ∈ {θtrain, θ

KL
train, θvalid} and ψ ∈ {ψtrain, ψ

KL
train, ψvalid},

J†(θ) , J(θ) + λgR(θ) (26)

J†(ψ) , J(ψ) + λgR(ψ)

E.3. Design of the Feature Function φ(s)

We subsampled 104 states from the training data Dtrain, and recovered dξ − 1 representative points by building a cover tree
(Beygelzimer et al., 2006)3. The remaining one dimension is reserved for the rest of state space, which is not represented by
any of the representative points. After fixing the representative points {sri }

dξ−1
i=1 , we defined φ(s) = [φ1(s), ..., φdξ(s)]

> as:

ui(s) =

exp
(
−‖s−s

r
i ‖

2
2

2σ2

)
for i = 1, ..., dξ − 1

max
(

1−
∑dξ−1
j=1 uj(s), 0

)
for i = dξ

φi =
ui∑dξ

j=1 uj(s)

3We used the implementation in https://github.com/patvarilly/CoverTree

https://github.com/patvarilly/CoverTree

Batch Reinforcement Learning with Hyperparameter Gradients

such that φi(s) > 0 ∀i and
∑dξ
i=1 φi(s) = 1 are guaranteed. We used the median heuristic to find appropriate σ =

√
Hn/8,

where Hn = Med{‖sri − srj‖2 : 1 ≤ i < j ≤ dξ − 1}, where Med is the empirical median.

E.4. Pseudo-code of AC-BOPAH

Algorithm 1 Actor-Critic BOPAH

Input: Training data Dtrain, validation data Dvalid

Build a cover tree on Dtrain to construct the RBF feature functions φ(s)
Initialize Q-function parameters {θtrain,k, θvalid,k, θ

KL
train,k}Kk=1

Initialize V-function parameters ψtrain, ψvalid, ψKL
train

Initialize target network parameters ψ̄train ← ψtrain, ψ̄valid ← ψvalid, ψ̄KL
train ← ψKL

train

Initialize policy parameters ωb, ω
Initialize hyperparameters ξ
for k = 1, . . . ,K do

Sample bootstrapped update weights wtrain,k ∼ Mult
(
|Dtrain|, 1

|Dtrain|
1
)

Sample bootstrapped update weights wvalid,k ∼ Mult
(
|Dvalid|, 1

|Dvalid|
1
)

end for
for each iteration do

Sample mini-batches {Btrain,Bvalid} from {Dtrain,Dvalid}
Update Q-function parameters
for k = 1, . . . ,K do
θtrain,k ← θtrain,k − η∇θtrain,kJ†(θtrain,k) with Btrain weighted by wtrain,k

θKL
train,k ← θKL

train,k − η∇θKL
train,k

J†(θKL
train,k) with Btrain weighted by wtrain,k

θvalid,k ← θvalid,k − η∇θvalid,kJ†(θvalid,k) with Bvalid weighted by wvalid,k

end for
Update V-function parameters
ψtrain ← ψtrain − η∇ψtrain

J†(ψtrain) with Btrain

ψKL
train ← ψKL

train − η∇ψKL
train

J†(ψKL
train) with Btrain

ψvalid ← ψvalid − η∇ψvalid
J†(ψvalid) with Bvalid

Update behavior policy parameters
ωb ← ωb + η∇ωb log p(Btrain|ωb) with Btrain

Update policy parameters
ω ← ω − η∇ωJ(ω) with Btrain

Update target network parameters (soft target update)
ψ̄train ← (1− τ)ψ̄train + τψtrain

ψ̄KL
train ← (1− τ)ψ̄KL

train + τψKL
train

ψ̄valid ← (1− τ)ψ̄valid + τψvalid

every Hf iterations after initial warm-up
Compute the hypergradient∇ξρM̂valid

(πω) with Dvalid using Eq. (18)
ξ ← clip(ξ + ηξ∇ξρM̂valid

(πω), ξmin, ξmax)
end for

Batch Reinforcement Learning with Hyperparameter Gradients

F. Random MDP: Experimental Protocol
We conducted experiments on randomly generated MDPs to investigate how safely and efficiently BOPAH can improve
performance over the behavior policy with respect to the varying number of trajectories and the degrees of optimality.
Basically, we follow the experimental protocol of (Laroche et al., 2019).

F.1. Random MDP Generation

For each run, we constructed a random MDP with |S| = 50, |A| = 4, γ = 0.95, and a fixed initial state s0. The
transition probability is constructed randomly in that it has connectivity of 4. More specifically, for each (s, a), we
uniformly sampled 4 states {s′1, s′2, s′3, s′4} without duplicates. Then, the transition probabilities to those states are set to
[p(s1|s, a), p(s2|s, a), p(s3|s, a), p(s4|s, a)] ∼ Dir(1, 1, 1, 1), where Dir denotes a Dirichlet distribution. The reward of 1
is only given to the state that minimizes the optimal value at the initial state, whereas other states have zero rewards. The
design of the reward function can roughly be understood as choosing the farthest state from the initial state as the goal state.

F.2. Behavior Policy Generation

Careful readers may notice that there are infinitely many ways to construct a ζ-optimal behavior policy. Among the infinite
possibilities, we construct the behavior policy µ as the following process, where we referred to the implementation code
of SPIBB (Laroche et al., 2019)4. The process consists of two steps. As the first step, we compute the optimal policy
π∗ and its optimal value function Q∗. Then, we soften the optimal policy to πsoft by softmax

(
Q∗(s, a)/τ

)
and increase

the temperature τ until πsoft reaches ζ+1
2 -optimal performance. As the second step, we repeatedly perturb the πsoft by

discounting the probability of selecting an optimal action until the performance reaches ζ-optimality. The pseudo-code of
this process is provided in Algorithm 2.

Algorithm 2 Behavior Policy Generation

Input: MDP M , Optimality of the behavior policy ζ
Compute the optimal policy π∗ and its value function Q∗(s, a) on the given MDP M .
Initialize πsoft ← π∗

Initialize τ ← 10−7

while ρM (πsoft) >
1
2ρM (π∗) + 1

2

(
ζρM (π∗) + (1− ζ)ρM (πunif)

)
do

Update πsoft to πsoft(a|s) ∝ exp
(
Q∗(s,a)

τ

)
τ ← τ/0.9

end while
Initialize µ← πsoft

while ρM (µ) > ζρM (π∗) + (1− ζ)ρM (πunif) do
Sample s ∈ S uniformly at random.
µ(a∗|s)← 0.9µ(a∗|s) where a∗ = arg maxaQ

∗(s, a).
Normalize µ(·|s) so as to ensure

∑
a µ(a|s) = 1.

end while
Output: The behavior policy µ

After the behavior policy µ is generated, we sample trajectories using µ to form the batch data. Each episode is terminated
either when 50 time steps have passed or the agent reached the rewarding state. We conducted experiments on the settings
(the number of trajectories) ∈ {10, 20, 50, 100, 200, 500, 1000, 2000}. For each setting, we repeated 10k runs and reported
the mean performance and the 5%-CVaR performance.

F.3. Hyperparameter Optimization via k-fold Cross-Validation

For the random MDP experiments, we divide the entire batch data D into 2 folds with the same number of trajectories,
where each fold yields the corresponding MLE MDP pairs {(M̂1

train, M̂
1
valid), (M̂2

train, M̂
2
valid)}. Then, for BOPAH, we

4https://github.com/RomainLaroche/SPIBB

Batch Reinforcement Learning with Hyperparameter Gradients

optimize the hyperparameters to maximize the average performance over 2 valid MDPs:

arg max
ξ

1

2

2∑
k=1

ρ
M̂k

valid
(πkξ)

s.t. πkξ = arg max
π

E
π,M̂k

train

[∞∑
t=0

γt(rt − αξ(st)KLπ,µst)

]

This hyperparameter optimization is performed by the hypergradient ascent:

ξ ← ξ + η

(
1

2

2∑
k=1

[
∇ξρM̂k

valid
(πkξ)

])

where each∇ξρM̂k
valid

(πkξ) is obtained by Eq. (10), and η is a learning rate.

F.4. Hyperparameters of the Comparison Algorithms

We compare BOPAH with BasicRL, RaMDP (Petrik et al., 2016), RobustMDP (Nilim & El Ghaoui, 2005; Iyengar, 2005),
and SPIBB (Laroche et al., 2019). For their hyperparameters, we follow the setting in the public code of SPIBB. For RaMDP,
κ = 0.003 is used for the reward-adjusting hyperparameter. For RobustMDP, δ = 0.001 is used for the confidence interval
parameter to construct an uncertainty set. Finally, N∧ = 5 is used for SPIBB.

Batch Reinforcement Learning with Hyperparameter Gradients

G. Continuous Control Experiment: Hyperparameter Settings
All the actor networks πω and critic networks Qθ, Vψ except for the KL-divergence critics QθKL

train
,VψKL

train
used two hidden

layers of 100 units each. The KL-divergence critics QθKL
train

,VψKL
train

used two hidden layers of 450 units each. Other
hyperparameters are described in Table 1. For the boundary values for importance sampling weight, we simply tested
wmin = exp(−7) ≈ 10−3 and wmax = exp(7) ≈ 103 and not tuned them further. The gradient penalty and boundary values
for KL-coefficient are chosen such that the critic networks do not diverge.

Table 1. List of Hyperparameters

NT
τ = 800 Number of trajectories in training data

NV
τ = 200 Number of trajectories in validation data
γ = 0.99 Discount factor
B = 64 Minibatch size

τ = 5× 10−3 Soft target update rate
Hf = 500 Hypergradient update frequency
Hw = 105 Iterations for warm-up before the hypergradient updates

K = 5 Number of networks for bootstrapping
λc = 1 Conservativeness parameter

Ncov = 20 Number of samples used to evaluate covariances between Q functions
dξ = 21 Number of state-dependent functions {ci(·)}

dξ
i=1 for coefficient learning

κ = 30 Gradient penalty threshold (Hopper, Halfcheetah)
κ = 100 Gradient penalty threshold (Walker)

λg = 2× 10−2 Gradient penalty coefficient
η = 3× 10−4 Actor-critic learning rate

wmin = exp(−7) Clipped importance weight minimum
wmax = exp(7) Clipped importance weight maximum

ξmin = 0.75 Minimum of ξ
ξmax = 500 Maximum of ξ

H. Continuous Control Experiments using Entire Training Experiences

0.0 1.0 2.0 3.0 4.0 5.0

Timesteps (106)

0

2000

4000

A
ve

ra
ge

R
et

u
rn

HalfCheetah-v2

0.0 1.0 2.0 3.0 4.0 5.0

Timesteps (106)

0

1000

2000

3000

A
ve

ra
ge

R
et

u
rn

Hopper-v2

0.0 1.0 2.0 3.0 4.0 5.0

Timesteps (106)

0

1000

2000

A
ve

ra
ge

R
et

u
rn

Walker2d-v2

AC-BOPAH (single α)

BCQ

BEAR-QL

BC

VAE-BC

Final SAC

Figure 6. The results of continuous control experiments averaged over 3 trials, which are moving-averaged with a window size of 20. The
shaded area represents the standard error.

As we only demonstrated the performance of our algorithm using single near-optimal data collection policy, we conducted
additional experiments using different data distributions to complement the experiments shown in the main text. In this
experiment, we evaluate the effectiveness of AC-BOPAH on continuous control tasks similar to the subsection 7.2, but with
differently collected data. We first obtained the behavior policy by running SAC (Haarnoja et al., 2018) for half-million
steps and stored all experienced transitions. This collection procedure, which corresponds to the Final buffer experiment in
(Fujimoto et al., 2019), creates a dataset with a diverse set of states and actions that are sufficient to train an agent without
regularization. We found that the α in AC-BOPAH converged to minimum values due to the diverse and sufficiently large
dataset, and we only report one version of AC-BOPAH since using state-dependent α did not improve from using single α.
As presented in Figure 6, even with differently collected dataset, AC-BOPAH outperforms other baseline algorithms as well.

