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Abstract

We consider a general class of K-armed ban-
dits that adapt to the actions of the player.
A single continuous parameter characterizes
the “attitude” of the bandit, ranging from
stochastic to cooperative or to fully adversar-
ial in nature. The player seeks to maximize
the expected return from the adaptive ban-
dit, and the associated optimization problem
is related to the free energy of a statistical
mechanical system under an external field.
When the underlying stochastic distribution
is Gaussian, we derive an analytic solution
for the long run optimal player strategy for
different regimes of the bandit. In the fully
adversarial limit, this solution is equivalent
to the Nash equilibrium of a two-player, zero-
sum semi-infinite game. We show how opti-
mal strategies can be learned from sequen-
tial draws and reward observations in these
adaptive bandits using Bayesian filtering and
Thompson sampling. Results show the quali-
tative difference in policy regret between our
proposed strategy and other well-known ban-
dit algorithms.

1 Introduction

As a standard model for sequential decision making,
the multi-armed bandit has attracted much interest
from the machine learning community in recent years.
In both the stochastic and adversarial settings, there
has been much progress in understanding the limits of
achievable performance along with concrete algorithms
that approach those limits [Bubeck and Cesa-Bianchi,
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2012]. In this work, we introduce a class of multi-
armed bandits that react to the actions of the player.
We demonstrate how standard bandit algorithms can
fail to maximize reward against this bandit and intro-
duce a novel Bayesian bandit algorithm that explicitly
models the reaction of the bandit.

The K-armed bandit problem can be described as a
sequential game between a player and the environ-
ment. At each round t, the player chooses an arm
It from the action set {1..K}, and the bandit chooses
a vector of rewards ~rt ∈ <K from the distribution
~rt ∼ Qt(~r). In the partial information setting, the
player only observes and receives the single reward rtIt
and uses that information to update her strategy for
subsequent rounds. The player’s goal is to accumulate
the largest amount of rewards over the rounds of play.

In the stochastic bandit model, the distribution of re-
wards that the bandit samples from is stationary and
does not change with time: Qt(~r) = Q0(~r). In this
simple model, the player needs to determine the arm
with the greatest expected reward, and then repeat-
edly pull that arm to maximize her total reward. This
illustrates the dilemma between exploring arms that
have not been sampled enough, and exploiting arms
that appear to give better rewards. The notion of
regret, or more properly pseudo-regret [Bubeck and
Cesa-Bianchi, 2012], is central to quantifying how ef-
ficiently the player performs both exploration and ex-
ploitation by measuring the difference in rewards from
the optimal policy of always pulling the best arm:

RT = max
i=1..K

〈
T∑
t=1

rti

〉
−

〈
T∑
t=1

rtIt

〉
(1)

More recently, there have been a number of extensions
to the K-armed stochastic bandit model. These in-
clude contextual bandits [Langford and Zhang, 2008,
Li et al., 2010], (generalized) linear bandits [Dani et al.,
2008, Filippi et al., 2010], X -armed bandits [Bubeck
et al., 2008], online convex programming [Zinkevich,
2003], and tree bandits [Kocsis and Szepesvári, 2006,
Bubeck and Munos, 2010].

726



Reactive bandits with attitude

The adversarial bandit model drops the requirement
that the reward distribution is stationary: Qt(~r) 6=
Qt′(~r). In the oblivious setting, the distribution Qt
can change in time but cannot depend upon the past
history of the player’s actions {I1, I2, ..., It−1}. In this
setting, it has been shown that it is possible to achieve
sublinear regret RT = O(

√
T ) [Auer et al., 2002].

In our work we consider a reactive bandit, where
the distribution may depend upon the history of the
player: Qt(~r|{I1, I2, ...It−1}). In general, it has pre-
viously been shown that this type of reactive ban-
dit can always have linear regret [Pucci de Farias and
Megiddo, 2006, Arora et al., 2012].

In this work, we introduce a class of reactive ban-
dits, which modulates their reward distributions based
upon the past actions of the player. The bandit
changes its reward distribution depending upon the
past player’s actions by shifting the rewards to be ad-
versarial, stationary stochastic, or cooperative. The
bandit is governed by a continuous parameter β which
shifts its “attitude” from fully adversarial in the zero-
sum game sense to fully cooperative in the pure co-
ordination game sense. We then analyze the optimal
mixed strategy against such a bandit in the long run
limit.

We describe our work in the following sections. In Sec-
tion 2, we give a mathematical definition of the bandit
which can be analyzed from a statistical mechanics
perspective. In Section 3, we introduce a Gaussian
version of the reactive bandit that can be solved ana-
lytically. Then in Section 4 we show how current ban-
dit learning algorithms for the player fail to converge
to the optimal mixed policy for a range of finite values
of β. We then derive a Bayesian bandit algorithm that
explicitly models the response of the bandit along with
the means and variances of the rewards, and demon-
strate how that algorithm can converge to the optimal
player policies for different values of β in Section 5.
We extend our analysis to correlated bandits and fin-
ish with concluding remarks and suggestions for future
work in this area.

2 Bandits with attitude

We first review the stochastic multi-armed bandit, and
describe the optimal policy for the player in terms of
an optimization problem over mixed strategies. The
rewards at each round ~rt ∈ <K are sampled from a
stationary distribution Q0(~r). Typically, this distri-
bution is considered to be independent, i.e. Q0(~r) =∏
iQ0,i(ri) but, in general, we can consider correlated

reward distributions as well. The player chooses an
arm It at round t, receiving the reward rIt . A general
mixed strategy for the player is described by proba-

bilities pi such that pi ≥ 0 and
∑
i pi = 1, and where

pIt is the probability for selecting arm It. The optimal
policy is then determined by maximizing the expected
reward:

max
pi

∑
i

pi 〈ri〉Q0(~r)
(2)

where the expected reward is given by integrating over
the distribution Q0: 〈ri〉Q0(~r)

=
∫
d~r Q0(~r) ri.

For the stochastic bandit, the optimal policy is deter-
ministic:

p?i = arg max
~p
~p · 〈~r〉Q0(~r)

= δi,i? (3)

and the optimal arm i? is given by:

i? ∈ arg max
i
〈ri〉Q0(~r)

(4)

2.1 Adaptive distribution

We now introduce our model for an adaptive ban-
dit. At round t, the bandit estimates the policy of
the agent p̂t from the past history of player actions
{I1, I2, ..., It−1}. The bandit responds by drawing the
rewards ~rt from the time-dependent distribution:

Qp̂t(~r) =
1

Zp̂t
Q0(~r)eβp̂

t·~r (5)

where the normalization constant for the distribution
is given by the partition function:

Zp̂t =

∫
d~r Q0(~r)eβp̂

t·~r (6)

The parameter β ∈ (−∞,+∞) modulates the response
of the bandit to the agent. In particular, when β =
0, we recover as a special case the definition of the
stochastic bandit with stationary reward distribution
Q0(~r).

The objective of the agent playing the bandit is to
maximize the expected reward under this adaptive re-
ward distribution. Consider when the player plays a
mixed strategy ~p and the bandit has fully adapted to
this strategy p̂t = ~p. The expected reward is then
given by: 〈rt〉 = ~p · 〈~r〉Q~p(~r). Under these conditions,
the optimal policy for the player is given by maximiz-
ing:

~p? = arg max
~p
~p · 〈~r〉Q~p(~r) (7)

2.2 Free energy interpretation

We can relate this bandit model to a statistical me-
chanical interpretation. The expected reward under
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the adaptive reward distribution can be expressed as
a derivative of the free energy F~p = logZ~p:

~p · 〈~r〉Q~p(~r) =

∫
d~r Q~p(~r) ~p · ~r (8)

=

∫
d~r

1

Z~p
Q0(~r)eβ~p·~r (~p · ~r) (9)

=
1

Z~p

∂Z~p
∂β

(10)

=
∂

∂β
F~p (11)

The reactive reward distribution can also be under-
stood in terms of the variational principle. From the
perspective of the bandit, the free energy is determined
by maximizing over all reward distributions:

F~p = max
Q(~r)

[
β~p · 〈~r〉Q(~r) −DKL(Q(~r)||Q0(~r)

]
(12)

where the Kullback-Leibler divergence is given by

DKL(Q(~r)||Q0(~r) =
∫
d~rQ(~r) log Q(~r)

Q0(~r)
. In this inter-

pretation, the free energy is determined by the ban-
dit shifting the reward distribution to maximize the
response to an external field given by the vector β~p.
However, for finite β, the bandit is constrained to keep
the reward distribution close to the stationary stochas-
tic distribution Q0(~r) as measured by the Kullback-
Leibler divergence [Ortega and Braun, 2011]. The
player seeks to extract the maximal reward from this
shifted reward distribution.

2.3 Discrete distributions

We illustrate how the parameter β affects the reward
distribution by first considering a discrete distribution
Q0(~r). In this case, the rewards consist of a discrete
set of vectors:

Q0(~r) =
L∑
l=1

qlδ(~r − ~rl) (13)

That is, the reward vector can take on one of L poten-
tial vectors {~rl} with weights ql > 0 that sum to unity.
When β = 0, the expected reward is simply given by

〈~p · ~r〉Q0
=

L∑
l=1

ql~p · ~rl (14)

and for arbitrary β,

〈~p · ~r〉Q~p =

∑L
l=1 qle

β~p·~rl~p · ~rl∑L
l′=1 ql′e

β~p·~rl′
. (15)

In the limit that β → +∞, the expected reward is
〈~p · ~r〉Q~p = maxl ~p · ~rl. In other words, the bandit

chooses the reward vector that maximizes the expected
reward of the player. In this limit, the optimal strategy
for the player is given by:

~p? = arg max
~p

max
l
~p · ~rl. (16)

In this case, the optimal policy for the player will be
deterministic. This can be interpreted as a pure coor-
dination game between the player and bandit with a
shared normal form payoff matrix given by rl,i, where
the player has limited information about the payoff
components and bandit’s choices.

Similarly for β → −∞, the expected reward is
〈~p · ~r〉Q~p = minl ~p · ~rl. In this limit, the optimal strat-

egy for the player is given by:

~p? = arg max
~p

min
l
~p · ~rl. (17)

This can be interpreted as a zero-sum game between
the player and bandit, where the payoffs for the player
are given by the matrix rl,i. From von Neumann’s
minimax theorem, we know that in general the optimal
policy for the player will be a mixed strategy [Von
Neumann and Morgenstern, 1945].

For intermediate values of β, we see the expected re-
ward is a soft version of maximum or minimum de-
pending upon the sign of β. When β > 0, the ban-
dit adapts to partially cooperate with the player us-
ing softmax to jointly increase the expected reward.
On the other hand, for β < 0 the bandit adapts to
decrease the expected reward, antagonistically acting
against the agent using the softmin function.

2.4 Semi-infinite S-game

Even with an infinite continuous distribution over re-
wards, we can relate our bandit model in the limit
when β → −∞ to a two-player, zero-sum game. Let
the support of Q0 be S0 = {~r : Q0(~r) > 0} and assume
that it is bounded below: ∃B ∀~r ∈ S0, ri > B. Then
finding the optimal policy in this scenario is equivalent
to finding the Nash equilibrium between the agent and
bandit in a semi-infinite S-game [Blackwell and Gir-
shick, 1954]:

~p? = arg max
~p

min
~r∈S0

~p · ~r (18)

The optimal policy for the player ~p? can be determined
by an interesting geometric construction. It involves
sliding an orthant in <K until it touches the convex
hull of set S0. The normal to the tangent at the in-
tersection then gives the components of the optimal
mixed strategy for the player.
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2.5 Fictitious play

Here we provide a procedural description of how the
reactive bandit chooses its rewards. The bandit is
given the parameter β and the stationary distribu-
tion Q0(~r). At each round t, the bandit tracks the
past plays {I1, I2, ..., It−1} of the player by comput-
ing the number of times each arm has been pulled:
N̂ t
i =

∑
t′<t I{It′ = i}. It computes the estimated

policy vector p̂t via fictitious play: p̂ti = N̂ t
i /t. The

bandit then samples the reward vector from the dis-
tribution:

~rt ∼ 1

Zp̂t
Q0(~r)eβp̂

t·~r. (19)

Sampling from such a distribution can be performed
using rejection or importance sampling. When the
agent pulls arm It, the bandit provides the reward rtIt
and repeats the procedure for the next round.

Rather than fictitious play, the bandit could use a
weighted filter on the past plays {I1, I2, ..., It−1} to
estimate ~pt. Another option is for the bandit to track
the player policy using a Dirichlet distribution, and
to sample from this distribution to generate p̂t. In
our experiments, we use fictitious play for the bandit,
but other estimators will give asymptotically similar
results as long as the beliefs converge in the time-
average sense [Robinson, 1951]. Given any sequence
of arm pulls {I1, I2, ...} whose frequency counts con-
verge: N̂ t/t → ~p0, then the estimator for the bandit
p̂t = f({I1, I2, ..., It−1}) should also converge p̂t → ~p0.

3 Reactive independent Gaussian
bandit

We now consider the independent Gaussian bandit
with distribution:

Q0(~r) =
∏
i

1√
2πσ2

i

exp

[
− (ri − µi)2

2σ2
i

]
(20)

so that for β = 0, rewards on arm i are drawn inde-
pendently from a Gaussian with mean µi and variance
σ2
i . In this case, Q~p(~r) in (5) is also Gaussian:

Q~p(~r) =
∏
i

1√
2πσ2

i

exp

[
−

(ri −
(
µi + βσ2

i pi
)
)2

2σ2
i

]
(21)

with shifted means µ′i = µi + βσ2
i pi and variances σ2

i .

3.1 Free energy computation

The free energy function can then be computed ana-
lytically:

F~p =
∑
i

βpiµi +
β2

2
p2iσ

2
i (22)

which is a quadratic function on the probability sim-
plex.

The optimal mixed player strategy ~p? for varying β is
determined by optimizing:

~p? = arg max
~p

∂F~p
∂β

= arg max
~p

∑
i

piµi + βp2iσ
2
i (23)

For the stochastic bandit with β = 0, the optimal pol-
icy is deterministic: p?i = I{i = i?} where the optimal
arm i? is determined by maximizing the mean:

i?(β = 0) = arg max
i
µi. (24)

3.2 Optimal policy (β > 0)

When β > 0, the optimal policy is also deterministic:

Proposition 1. The optimal player strategy ~p? for
β > 0 is deterministic, where the optimal arm is given
by:

i? = arg max
i

(
µi + βσ2

i

)
(25)

Proof. Consider any strategy ~p. Then∑
i

piµi+βp
2
iσ

2
i ≤

∑
i

piµi+βpiσ
2
i ≤ µi?+βσ2

i? (26)

where the final inequality is the expected reward of the
optimal deterministic strategy. The inequality is strict
for any stochastic policy where there is a pi such that
0 < pi < 1.

Note that the choice of the optimal arm depends upon
the value of β. In particular, when β → +∞, the
optimal strategy is to choose the arm with the highest
variance rather than the arm with the highest mean.
This is due to the cooperative nature of the bandit
which favors arms that can be exploited in favor of
the agent.

For intermediate values of β > 0, there will be discrete
transitions where the optimal policy will switch from
arms with higher means to arms with greater variance.
This can be seen by plotting the linear functions µi +
βσ2

i as a function of β.

3.3 Optimal policy (β < 0)

On the other hand for β < 0, the optimization is more
complex. We need to analyze the Lagrangian:

max
~p

min
~α≥0,λ

Lβ(~p) =
∑
i

[
piµi + βp2iσ

2
i

]
(27)

+
∑
i

αipi − λ

(∑
i

pi − 1

)
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where the Lagrange multipliers αi ≥ 0 and λ enforce
the non-negativity and sum constraint on ~p. Tak-
ing derivatives, we obtain the Karush-Kuhn-Tucker
(KKT) conditions:

µi + 2βσ2
i pi = λ− αi (28)

αipi = 0 (29)∑
i

pi = 1 (30)

Combining these expressions, we see that the optimal
solution has the form:

p?i (β < 0) = max

{
λ− µi
2βσ2

i

, 0

}
(31)

The Lagrange multiplier λ is chosen such that
∑
i p
?
i =

1. This results in solving a piecewise-linear equation
for λ, similar to the water-filling construction used for
optimizing power allocations in communication chan-
nels [Proakis et al., 1994]. Near β ' 0, the optimal
policy will be deterministic, choosing the arm with the
largest mean exactly as in the stochastic bandit. How-
ever, when β is decreased, arms with lower mean re-
wards will begin to be mixed into the solution. Specif-
ically, when β < − 1

2 (µi? − µi2)/σ2
i? where µi? is the

largest mean and µi2 is the second largest mean, the
optimal policy will no longer be deterministic.

As β is decreased, the optimal policy employs more
and more arms into the mixed distribution. Finally,
in the limit β → −∞, the optimal policy is given by:

p?i (β → −∞) =

1
σ2
i∑
j

1
σ2
j

(32)

This solution shows that in the fully adversarial case,
the optimal policy is stochastic but favors arms that
have smaller variance regardless of the mean.

To summarize, depending on the parameter β we ob-
tain a diverse set of optimal policies. For β = 0, we
recover the stochastic bandit solution, where the policy
selects the arm with the highest mean reward. How-
ever, the solution changes dramatically when β > 0
or β < 0. In the cooperative case, the optimal policy
remains deterministic but shifts to arms with higher
variance. In the adversarial case, the optimal pol-
icy becomes more stochastic by employing arms with
lower expected rewards. Ultimately, the fully adver-
sarial solution mixes all arms but favors those with
smaller variance.

This is illustrated for a specific K = 3 Gaussian ban-
dit in Figure 1. In the range −0.05 < β < 1.0, the
optimal policy is to deterministically choose the first
arm. Above β > 1.0, the deterministic optimal pol-
icy transitions from arm to arm until the third arm

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

`

p

 

 
p1
p2
p3

Figure 1: Optimal policies for K=3 reactive Gaus-
sian bandit with µ = [0, −0.1, −0.2] and σ2 =
[1.0, 1.1, 1.14] with deterministic and mixed strategy
transitions as a function of β.

becomes optimal for β > 2.5. When β < −0.05, the
optimal policy is a mixed strategy. It only mixes the
first two arms for −0.145 < β < −0.05 and mixes all
three arms when β < −0.145.

4 Bandit algorithms

We investigate how some current bandit algorithms
perform in playing the reactive Gaussian bandit. The
first algorithms we investigated are Upper-Confidence
Bound (UCB) based algorithms which use the princi-
ple of optimism in the face of uncertainty. UCB al-
gorithms compute an upper bound on the expected
reward of an arm by summing the empirical mean re-
ward and the uncertainty in the empirical mean, and
then select the arm with the highest upper bound. The
uncertainty factor increases for arms with less pulls,
thereby encouraging exploration of arms that have not
been sufficiently sampled.
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Figure 2: Convergence of UCB1 for β = −1.0 and
β = −0.09.

Figure 2 shows the results of applying the UCB1 algo-
rithm to the K = 3 Gaussian bandit with the same pa-
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rameters as in Figure 1. The upper confidence bounds
were calculated as a function of time t as:

Bi = µ̂i + η

√
log t

N̂i
(33)

where µ̂i is the empirical mean of the rewards on arm
i and η is a scaling parameter on the uncertainty.
For β = −1.0, the UCB1 algorithm mimics a mixed
strategy with frequencies ~p = [0.45, 0.32, 0.22]. This
is close to but not quite equal to the optimal pol-
icy ~p? = [0.41, 0.32, 0.27]. Compared to the opti-
mal mixed policy, UCB1 suffers a small linear regret
asymptotically.

The performance of UCB1 is even more clear for
β = −0.09. The algorithm converges to a determinis-
tic policy of only choosing the first arm whereas the
optimal mixed policy is to choose the first two arms
with frequencies ~p? = [0.79, 0.21, 0.0]. This asymp-
totic behavior was observed even when tuning various
parameters of the algorithm such as η in Eq. 33. For
β > 0, UCB1 typically will converge to the optimal de-
terministic policy. However, there are situations where
it gets trapped on a non-optimal arm. This is due to
the non-convex nature of the optimization for β > 0
in Eq. 23.

We have also tried other bandit learning algorithms
such as UCB algorithms which explicitly model the
variances of the arms as well as EXP3 which carries
theoretical guarantees on regret in the non-oblivious
setting. However, we observed the same qualitative
asymptotic behavior with those algorithms on this re-
active Gaussian bandit. In particular, we see conver-
gence to a near-deterministic strategy for β = −0.09,
implying asymptotic linear regret compared to the op-
timal mixed strategy.

All these algorithms converge to a strategy ~p for which
the expected rewards on arms with pi > 0 are equal-
ized so that the player is indifferent to the arms that
she is playing. In the case of the Gaussian bandit, this
implies that for arms with pi > 0,

µi + βpiσ
2
i = λ′ (34)

and µj < λ′ for arms with pj = 0. We note that
these asymptotic conditions may be satisfied for β > 0
optimal deterministic policies. However, they do not
match the necessary optimal conditions for mixed poli-
cies in Eqs. 28–30.

More specifically, for the Gaussian bandit with β < 0,
we see that bandit algorithms that match expected
rewards across the arms converge to the optimal mixed
policy with attitude parameter β′ = 1

2β. This implies
these algorithms will exhibit the correct asymptotic

behavior in the fully adversarial situation where β →
−∞. Convergence to optimality in the zero-sum game
was previously known when the algorithms are Hannan
consistent [Cesa-Bianchi and Lugosi, 2006]. However,
we see that current bandit algorithms at β = −0.09
converge to the deterministic β = −0.045 solution, and
bandit algorithms playing against the bandit at β =
−1 approximate the β = −0.5 solution. Thus, they
will all exhibit linear regret compared to the optimal
mixed strategy.

5 Bayesian reactive bandit algorithm

In this section, we propose a novel Bayesian bandit
algorithm for the player that models the bandit reac-
tion, along with the expected means and variances of
each arm. We employ the following conjugate prior on
each arm:

P (µi, τi, β|{ai, bi, Ai}) ∝ τai−1i e−biτi−
τi
2 v

T
i A

ivi (35)

where τi = 1/σ2
i describes the precision of the arm and

vi = [µi, β/τi, 1]. The distribution is parameterized
by shape ai and scale bi gamma parameters and a 3×
3 symmetric matrix Ai. When β = 0 is known and
constrained, the conditional distribution is equivalent
to the conventional Normal-Gamma distribution.

For each time t, the frequency of past actions p̂t is
used along with the reward observation rti to update
the belief of the corresponding pulled arm:

ai ← ai +
1

2
(36)

bi ← bi +
1

2
(rti)

2 (37)

Aiµµ ← Aiµµ + 1 (38)

Aiµβ ← Aiµβ + p̂ti (39)

Aiββ ← Aiββ + (p̂ti)
2 (40)

Aiµ1 ← Aiµ1 + rti (41)

Aiβ1 ← Aiβ1 + p̂tir
t
i (42)

These distributions are then used for Thomp-
son sampling to generate a sample at each
time from the posterior belief about the bandit:
{µ̂1, µ̂2, ..., µ̂K , σ̂

2
1 , σ̂

2
2 , ..., σ̂

2
K , β̂} We use Gibbs sam-

pling to generate samples from this posterior distri-
bution. These samples are then used to solve for the
optimal policy ~pt:

~pt = arg max
~p

∑
i

[
piµ̂i + β̂p2i σ̂

2
i

]
(43)

The solution to this quadratic programming optimiza-
tion is given by our analysis in Section 3. Depending
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upon the posterior samples β̂ and mean and variances
estimates of the arms, the optimal strategy ~pt can be
deterministic or mixed. If ~pt is deterministic, the op-
timal arm is chosen to pull. Otherwise, if ~pt is mixed,
the action It is generated by sampling from the mixed
distribution.

0 2 4 6 8 10
x 104

−0.4

−0.2

0

0.2
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`

Figure 3: Bayesian estimates β̂ over time for the K =
3, β = −0.09 Gaussian bandit.
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Figure 4: Convergence of the mixed strategy from the
Bayesian reactive bandit algorithm over time for the
K = 3, β = −0.09 Gaussian bandit.

In Figure 3, we show how our Bayesian algorithm is
able to estimate the unknown β of the bandit. In this
case, it is able to learn that the bandit is slightly ad-
versarial with a β = −0.09. It uses that estimate to
generate actions that correspond to the optimal mixed
strategy. This is shown in Figure 4 where the Bayesian
algorithm with Thompson sampling achieves the opti-
mal reward by mixing the first two arms.

6 Correlated Gaussian bandit

We can extend our previous analysis to the case where
the Gaussian distribution Q0(~r) contains correlations:

Q0(~r) =
1√

(2π)K detC
exp

[
−1

2
(~r − ~µ)TC−1(~r − ~µ)

]
(44)

with means 〈~r〉 = µ and positive definite covariance〈
(~r − ~µ)(~r − ~µ)T

〉
= C.

The free energy can also be calculated analytically:

Fβ(~p) = β~p · ~µ+
β2

2
~pTC~p (45)

With correlations, the optimal policy is given by ana-
lyzing the Lagrangian:

max
~p

min
~α≥0,λ

Lβ(~p) = ~p·~µ+β~pTC~p+~α·~p−λ

(∑
i

pi − 1

)
(46)

Taking derivatives yields the corresponding KKT con-
ditions:

~µ+ 2βC~p = λ~1− ~α (47)

αipi = 0 (48)∑
i

pi = 1 (49)

For the fully stochastic bandit, β = 0, the optimal
policy will depend only upon maximizing the means
µi. In the following, we analyze the optimal player
strategies for non-zero β.

6.1 Optimal deterministic policy

First we show that even with correlations, the optimal
policy for β > 0 is deterministic.

Proposition 2. The optimal player strategy ~p? for
β > 0 is deterministic, where the optimal arm is given
by:

i? = arg max
i

(µi + βCii) . (50)

Proof. We show that this deterministic strategy satis-
fies the KKT conditions. First, we have that:

2βCi?i? = λ− µi? (51)

Then we must show that αi 6=i? > 0. This is obtained
by considering:

αi 6=i? = λ− µi − 2βCii? (52)

= µi? − µi + 2βCi?i? − 2βCii? (53)

= [(µi? + βCi?i?)− (µi + βCii)]

+β [Ci?i? − Cii? − Ci?i + Cii] (54)

> 0 (55)
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The first bracketed term is positive because i? is de-
fined as the maximum in Eq. 50. The second bracketed
term is also positive because C is symmetric positive
definite: vTCv > 0 where v is the sparse vector with
vi? = 1, vi = −1 being the only non-zero components.
Any mixing of arms will result in less reward, so the
deterministic strategy of choosing the arm i? is opti-
mal.

Thus, we see that for β > 0 the correlations are irrel-
evant with respect to determining the optimal policy
~p?. The optimal policy is deterministic, given by maxi-
mizing the linear combination of mean µi and variance
Cii.

6.2 Optimal stochastic policy

What about for β → −∞? The optimal policy is given
by minimizing

~p? = arg min
~p
~pTC~p (56)

on the probability simplex. Naively, we may expect the
optimal policy to be given by ~p? = (C−1~1)/(~1TC−1~1)
as for the independent Gaussian distribution, but this
solution need not contain all positive components. In
general, the optimal ~p? could be sparse with zero com-
ponents.

We need to solve Eq. 56 for a particular covariance ma-
trix C to know exactly how many arms will be mixed
in the optimal solution. Similarly, for intermediate
β < 0, the optimal policy will be obtained by solv-
ing a convex quadratic program over the probability
simplex. This can also be done using projected gradi-
ent descent, or with multiplicative updates [Sha et al.,
2007].

7 Conclusions

In this manuscript, we have introduced a class of reac-
tive bandits that modulate their reward distributions
in response to the past actions of the player. We can
relate this bandit model to a statistical mechanical de-
scription of the rewards reacting to an external field
generated by the player history. For β > 0, the re-
wards partially align with the player actions, and for
β < 0 are anti-aligned with the player actions in the
adversarial regime. We give analytic solutions for this
model when the underlying stochastic distribution is
Gaussian. In particular, we completely characterize
the optimal solution space and show that current ban-
dit algorithms achieve linear regret for finite β < 0
compared to the optimal mixed player strategy. We
propose a novel algorithm with Bayesian estimation
and Thompson sampling and show that it is able to

asymptotically achieve optimal performance on these
bandits.

A more formal analysis of the convergence of the
Bayesian bandit algorithm for this class of bandit
models is left for future work. Further experiments
with other stochastic distributions such as Bernoulli or
Poisson distributions also need to be performed. How-
ever, we anticipate that the analysis of the Gaussian
model will open new avenues for investigation into the
problem of reactive bandits.
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