IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 1

A POMDP Approach to Optimizing
P300 Speller BCI Paradigm

Jaeyoung Park and Kee-Eung Kiember, IEEE

Abstract

To achieve high performance in brain-computer interfa&SI§) using P300, most of the work has
been focused on feature extraction and classification ithgas. Although significant progresses have
been made in such signal processing methods in the lower;, lageissues in the higher layer, specifically
determining the stimulus schedule in order to identify thuget reliably and efficiently, remain relatively
unexplored. In this article, we propose a systematic ambrdaa compute an optimal stimulus schedule
in P300 BCls. Our approach adopts the partially observaldekbl/ decision process (POMDP), which
is a model for planning in partially observable stochastigcimnments. We show that the thus obtained
stimulus schedule achieves a significant performance imepnent in terms of the success rate, bit rate,

and practical bit rate through human subject experiments.

Index Terms

Brain-computer interface (BCI), ElectroencephalograBiG), Partially observable Markov deci-
sion process (POMDP), P300, P300 speller

I. INTRODUCTION

Brain-computer interfaces (BCIs) interpret the electraetivities of the neurons in brain and convey
corresponding messages or commands to the external sy§i¢nmiavasive methods in BClIs directly
record electrical activities by, for example, implantinparodes into the brain, whereas non-invasive
methods in BCIs record indirectly from the outside of theifordon-invasive methods such as using the
electroencephalography (EEG) recorded from the scalp arelyvatvocated for the practicality due to

the user safety, ease of use, and low set-up cost [2].

The authors are with the Department of Computer Science, Korea Addaimstitute of Science and Technology, Daejeon
305-701, Korea (e-mail: jypark@ai.kaist.ac.kr; kekim@cs.kaistrpc

Manuscript received January ?, ?; revised January ?, ?.

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 2

One of the most reliable signal features in EEG for constrgcBCls is the P300 component in the
event-related potential (ERP) [3]. The ERP refers to the measemt of brain response resulting from
a thought or perception, and the P300 is a positive peak coemtan the ERP at about 300ms after
an infrequent and significant stimulus is given [4], [1]. Besa the P300 can be utilized to identify the
user’s intent, one can construct the BCI based on the P300P3088 speller system [4] for the purpose
of emulating a keyboard is one of the most well known applicest of P300 BCls. In a typical setting
of the P300 speller system, the user faces@he6 matrix on a video display terminal with each entry
containing one letter (see Fig. 1). Among 36 letters in therimathe user gazes at the letter that the
user desires to input while all the letters in a row or a coluama flashed (stimulated) in a random order.
If the gazed letter is flashed, the P300 is elicited with somanca of failure at about 300ms after the
flash. Thus, using a method for detecting the P300, we can fdaht letter that the user is gazing
at, i.e. intending to input. However, the elicitation andedt¢ion of the P300 is inherently imperfect,
and therefore each row and column is flashed multiple timestla@dietection results are combined in
order to improve the detection accuracy. The P300 spelldesysises a visual flash as a stimulus but
in general other types of stimuli (e.g. sound) can be usedhierP300 BCI.

The main motivation for the work presented in this paper wasitiefficiency in the flash schedule of
random sequences currently adopted by most of the work o@ B&80s. For example, the P300 speller
system in the literature generates the same number of flashes/éry row and column in a random
order. However, given additional information such as thageral regularities in the user’s intent or the
characteristics of the P300 detection results, we may veaimcorporate this information for determining
the optimal flash schedule that identifies the user’s intentirately while using the smallest number of
flashes. For example, in the P300 speller system, if it is veiikely that the desired letter is in the
first row, flashing the first row may be of little value. In contrai$tit is highly likely that the desired
letter is either in the second or the third row but highly utaim between them, it is desirable to flash
one of these rows in order to resolve the uncertainty. Intamdiit is hard to determine when to stop
generating stimuli and make decision on the user’s intenneSstudies on the P300 speller system have
proposed using thresholds on the sum of detection confidesdoes; but the question remains how this
technique could be integrated into the computation of aimm@tflash schedule.

This article presents a principled and integrated approadhe aforementioned issues in P300 BCls.
Specifically, we use the partially observable Markov decigimtess (POMDP) [5] to model the problem
of achieving the maximum accuracy in identifying the useéntent while minimizing the number of

flashes. The POMDP is a rigorous framework for modeling sedpieth¢cision making problems under

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 3

uncertainty in the dynamics and sensing. It is a natural ifed®300 BCls since the temporal regularities
in the user’s intent and the noisy characteristics in theOP@&ection result can be represented in an
integrated way. Being a decision-theoretic model, the alaspects are modeled using probabilities, and
the rewards (or costs) are specified for each flash and final decikising an algorithm for solving
POMDPs, we can obtain an optimal control strategy that deters where to flash given the past history
of flashes and the corresponding P300 detection results.diti@d the control strategy will determine
whether to continue flashing or stop with a decision on the'siggent, solely based on the maximization
of overall accumulated rewards. We show that the P300 spgjlstem optimized using the POMDP
achieves a significant improvement in the communication Wwidtt. We also provide some speed up
techniques that handle the computational intractabibués in solving the POMDP. Throughout this
paper, we use the P300 speller system to demonstrate ounambprbut we emphasize that it can be
generalized to other P300 BCI paradigms. The preliminarykwetated to this article was presented
in [6], [7].

Il. PRELIMINARIES

Fig. 1 shows the overall architecture commonly adopted bydRp@ller systems. This section describes

our implementation of each component in the system.

A. Flash Epoch Design

Our flash epoch design follows the typical setting in P300lspslystems: the user gazes at the letter
that the user desires to input (i.e., target letter) and thegtérs in a row or column of thé x 6 matrix
are flashed together at the beginning of each flash epoch. A flasth ¢akes a time interval &f50ms.
Each flash turns on the letters in the row or column f@bms and then turns off for the remaining
125ms. A trial is defined to be a sequence of flash epochs for idemgifgne target letter. Each trial is
composed of a row trial for identifying the row containingettarget letter (i.e., target row), followed by
a column trial for identifying the target column. Row trigdse composed of row flashes, and column
trials are composed of column flashes. The target letter ismdated by the identified target row and

target column. A pause interval @f5s is given between consecutive trials (see Fig. 2).

B. Signal Acquisition, Preprocessing, and P300 Detection

We used Biopac MP150 data acquisition system with 16 charatélkHz sampling rate for acquiring

EEG signals. The locations of electrodes, according to thenatenal 10-20 system, were as follows:

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 4

AFz, Fz, F3, F4, Cz, C3, C4, T7, T8, Pz, P3, P4, P7, P8, O1, O2. We teokittdow of the EEG signal
data between 200ms and 450ms after each flash (Fig. 2) sincei$8gpected to appeapproximately
at 300ms after the flash.

This window of data was then fed into the preprocessor to eitte relevant features from the raw
signal data, and subsequently passed to the classifier totdbte existence of the P300. In order to
construct the preprocessor and the P300 classifier, we mepiae training data where each instance was
the window of EEG signal data for either a target or non-targeeft. These training data were collected
on each human subject using the flash epoch design descrilthd previous subsection.

In the preprocessor, the window of raw signal data were hgass$ filtered ({.5-30Hz) and down-
sampled to100Hz. The spatial projection algorithm [8] was then used to attrfeatures from the
signals. This algorithm generates the set of linear filters ti@ximally discriminates between the target
and non-target instances. Formally, given an instaficéan m x n matrix wherem=16 is the number
of channels an&h=25 is the number of signal samples) for t& flash, the spatial projection algorithm
generates a maximum of linear filters. Each filterf; is anm-dimensional vector, and generates one
n-dimensional feature vector by projectig”rJTEl- (an n-dimensional row vector). The number of filters
was determined by cross-validation. In our case, we limitedmaximum number of filters t§, since this
number was sufficiently large for most of the human subjectigiaating in this study and guaranteed
timely processing of data.

The classifier that detects the existence of the P300 in therqumegsed EEG signal instance was
obtained by the LIBLINEAR package [9]. In order to representltkelihood of the P300 existence, we
used L2-regularized logistic regression which outputs & meaber between 0 and 1. The parameters

for executing LIBLINEAR were determined by 5-fold cross-valithn on the training data.

C. Conventional Flash Scheduleganp)

The P300 speller system conventionally uses a random flasktingn® franp) Where the flash
sequences are generated randomly and the desired lettatdarghed after a prescribed number of
flashes or the confidence reaches above a prescribed thre$heldow and column trials in outranp
implementation use a constant number of flashes. At the endatd,twe take the sum of the output
values of the P300 classifier for each row and column, and méterthe target row and column with

the maximum value.

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 5

D. Partially observable Markov decision processes

The partially observable Markov decision process (POMDP}g[a mathematical model for sequential
decision making problems under uncertainty in the dynararas observation. It is defined by an 8-tuple
(S, A, Z,by, T,0, R,~) where: S is the set of environment stated; is the set of actions available to
the agent;Z is the set of all possible observatiorig; is the initial belief state wheréy(s) denotes the
probability that the environment starts in statel’ is the transition probability wherg,, denotes the
probability that the environment changes from state s’ when executing action; O is the observation
probability whereOs , denotes the probability that the agent makes observatiwhen executing action
a and arriving at state; R is the reward function wher&? denotes the reward received by the agent
when executing action in states; « is the discount factor such that< v < 1.

Since the agent cannot directly know the environment stagetduhe uncertainty in observations, it
maintains the probability distribution over the statesduhsn the history of actions and observations.
The probability distribution over the states is defined as @&ebstate wheré,(s) denotes the probability
that the state ig at time stept. The belief stateéh, can be regarded as the posterior distribution of the

states given the initial beligfy and the history of actions and observations:
bt(S) = P(St = 5|b0,a07 21,0A1, %22, , a1, Zt)

After executing actiof; and making observation , ; in belief statey,, the belief staté, 1 = 7(b¢, at, z141)
at the next time step is updated by the Bayes rule,

b (SI) _ Ozf,tllt ZSES Tsa;ts’bt(s) (1)
T T P [brs ar)

where P(z11]b¢, a;) can be regarded as the normalizing constant.

A policy determines the actions to be executed by the agemat @men belief state. Formally, a policy
« of a POMDP can be defined as a mapping from belief states tonactiee., 7 : AS — A. Every
policy has an associated value function, which is (in thes adsinfinite horizon problems) the expected
cumulative discounted reward by following the policy stagtfrom a given belief state. When solving a
POMDP, we search for an optimal policy that maximizes theiedbr each belief state. The maximum

value for the belief state can be defined recursively
V*(b) = maxq [R(b,a) +7 32, P(z[b,a)V*(7(b,a,2))] ,

where R(b,a) = >, R%b(s). The optimal value functio* can be computed by a series of dynamic

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 6

programming backups
Vo (b) = HV,,—1(b)
= maxq [R(b, a) + 7.z P(2[b,a)Va1(7(b,a,2))],

for every belief staté € AS. We can also derive that value functidf) is piecewise linear and convex,
hence it can be represented as a set of vedigrs- {«a1, -, ay,} and the value at a particular belief

stateb is calculated as
Vi (b) = maxger, > geg (5)b(s).

Once we compute the optimal value functibfi, the optimal policy is obtained by
ﬂ-*(b) = argmax, [R(b> CL) + Zz P(Z‘b7 CL)V* (T(b7 a, Z))] . (2)

It is intractable to exactly compute the optimal value fimetand optimal policy, mainly because there
are infinitely many belief states. Some of the POMDP algoritsath as the witness algorithm [5] exploit
the piecewise linear and convex property of value functitws they are still limited to problems of small
sizes. Instead, approximate algorithms such as pointbeadee iteration (PBVI) [10] or heuristic search
value iteration (HSVI) [11], [12] are used in practice. Theppraximate algorithms are scalable, yet the
solutions found are almost optimal in various benchmark BP\problems. Since a complete review of
POMDP algorithms is outside the scope of this article, werréfe readers to the references mentioned

above.

I1l. FLASH STRATEGY USING POMDPs
A. POMDP-based Flash Strategyrompp)

The problem of finding an optimal flash schedule for the P300 spsyistem can be naturally modeled
as a POMDP. The optimization objective of the flash schedulefleated in the reward function that
favors a high accuracy in identifying the target letter whiising the minimum number of flashes. Note
also that the flash schedule corresponding to the optimatyoli the POMDP is inherently atrategy
rather than a static schedule:ailaptivelydetermines which row or column to flash in each epoch based
on the history of P300 detection results, which is summdriaethe belief state representing the posterior
probability of each row and column being the target.

We compute two optimal flash strategies by constructing amdngptwo POMDP models, one for
the row trials and the other for the column trials. Once weaobthem, we first execute the row flash

strategy until the target row is determined, and then theiroal flash strategy until the target column

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 7

is determined. We only describe below our POMDP modelingoof trials since the model for column
trials is almost identical.

Let N be the number of rows in the matrix. Note th&it=6 in this article since we consider the P300
speller with a &6 matrix. The states in the POMDP correspond to the candidagett rows, hence a
total of IV states. For each row in the matrix, we can either flash it in thygehof detecting P300/{
flash actions) or claim that it's the target row (select actions), hence a total 2V actions. The output
value from the P300 classifier serves as the observation,enther continuous output value between 0
and 1 was discretized into intervals of sizé (e.g.z; for the output value if0.0,0.1), zo for the output
value in[0.1,0.2), etc.), hence a total of 10 observations.

Since we prefer finding the target row as soon as possible, vwgnasksthe reward of -1 for the flash
actions. In addition, since we want to find the target row asitely as possible, we assigned the reward
of +10 for the select actions that correctly identify thegttrrow (e.g., select row #1 when the target is
row #1), and -100 for those that incorrectly identify thegetrrow (e.g., select row #2 when the target
is row #1).

The transition probabilities for the flash actions were defireedbe the identity matrix based on the
assumption that the target row does not change within a ffia transition probabilities for the select
actions were defined to be the uniform distribution based enagsumption that the target row will be
reset to a new target row with equal probability after eacd.tr

The observation probabilities for the flash actions were oethiusing the classifier output values
for each subject. Specifically, we obtained the histogram afgifier output values when the target
row is flashed from the training data for the P300 classifier, ased this empirical distribution for
the observation probabilities for the flash actions on thgetarow. We followed the same method for
obtaining the observation probabilities for the non-tangevs. Note that if the target row is flashed, it
is likely to obtain one of the observations frog to z;y since we expect a high output value from the
classifier. However, since the classifier is not perfect, tieedso a non-zero probability of obtaining one
of the observations from; to z5. The observation probabilities model these errors in theORBflection
results. Since the training data collected during the piiat ts not perfectly reliable because of various
reasons (e.g., subject fatigue or attentiveness), we $raddhe empirical distribution by mixing it with
the uniform distribution:

Oj,a = (1 - qo)oj,a + QOﬁ

where OAS,a is the empirical distribution from the training data apg is the mixing weight. In the

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 8

experiments, we simply seb=0.3 for all subjects. For select actions, we used the umifdistribution
for the observation probabilities since the P300 classifigpat value is obtained without flash and thus
contains no information.

The initial distributionby on the states was set to the uniform distribution since werassno prior
knowledge about the likelihood of each row containing thgealetter.

We refer to the flash strategy computed from the above POMDR-ggpp.

B. POMDP using Bigram Modelompp-sicrAN

We can incorporate prior knowledge into the POMDP model anthér improve the performance of
the flash strategy. This is especially true for the P300 spsiletem since there is a strong regularity in
the sequence of alphabets in a natural language. There islthwééanguage models for capturing this
regularity [13], and it has been suggested that the P300esmmistem can benefit from them [14]. In
this paper, we show how the bigram language model can be st iPOMDP.

The bigram model is defined by the conditional probability ritistion P(w,|w;—1) over the letters
wy in the speller matrix given the previous lettef_;. We estimated the bigram model usifighovels
available online as a part of the project Gutenberg. Suppueel;t; is the letter in the rowi and the
columnj. Using the bigram model, the probability of target lettemigel; ; is computed as

P(wy = lij) =Y Plwy = lijlw—1 = Ly j) P(wi—1 = Ly jv). 3)

i, g’
The above equation requires the probabilityw, ; = l;: ;) of the previous target letter beirlg ;.. In
order to obtain this probability, l€t;_; be the final belief state in the previous row trial, afd,; be the

final belief state in the previous column trial. We then have
P(wi—1 = ly) = b1 ()b, (7). (4)
Using Eqn. 3 and Eqgn. 4, the initial belief state for the curmemt trial is defined as
to(i) = 225 Pwr = 1 5).

In order to determine the initial belief state for the cutrenlumn trial, letb; be the final belief state of

the current row trial (finished just before the onset of therenir column trial). We then have

t0(7) =22 bp (D) P(we = Li),

whereni =1/, P(w; = 1; 1)

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 9

Since there are chances where the previous target lettemeagectly determined or the pattern in the
alphabet sequence differs significantly from the estimatgthbh model, we mixed the bigram-predicted

probability with the uniform distribution:
ro=1—aqr)bjo+qry, andbiy = (1 —qr)b§o + aray
wheregr is the mixing weight. We sef;=0.6 in the experiments.
In summary, the above is basically the samergsypp described in the previous subsection, except

that the initial belief state is computed from the bigram eladstead of using the uniform distribution.

We refer to this strategy aS-ompp-sIGRAM-

C. Constraints on Flash Strategy

When we compute the optimal flash strategy from the POMDP, we hba take into account two
constraints that originate from the inherent charactiegsdf the P300.

The first constraint is the delay in the P300 detection. In ow0P&peller system, the time to obtain
the P300 detection result takes more tl@dms (but less thafi50ms) because an epoch endstadms
after the flash and a small amount of additional delay is irezbiyy processing the signal data. Thus, in
the context of the POMDP, the relevant observation is avlglanly after executing the next two actions
because each action is execute@¥0ms intervals (Fig. 2). We used the extended version of the PEMD
model with delayed observations [15].

The second constraint is the phenomenon known asefhetition blindnesswhere the P300 may not
be elicited if the target letter is repeatedly flashed withd®iis [16], [17]. For example, if the first row
is flashed within500ms from the last flash on the first row, the P300 may not be exigteBEG even
though the first row contains the target letter. This constnaitnandled by simply avoiding the flash on
the same row or column within 500ms.

These two constraints lead to the modified definition of the ogitivalue function:
V*(b, ar—2,a1—1)

Q¢
Ry

7 2

= max Z b(st—2) [

a:€A—{a,_2,a,-1} St—2,5t—1,5¢

t—1

a;
H T3i>3i+1
—t—

+'YZP(Z|ba at72)V*(T(b7 (It,Q,Z),CLtfl,at).
The first term in the right-hand side represents the expectedentiate reward, and the second term

represents the expected maximum return after executinignaat. Note that the value function now

depends on the sequence of actions executed during the dslayell as the current belief stalie

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 10

We modified the PBVI algorithm to optimize based on the abowi#a value function while exploiting
the symmetry [18], [19] in the model to achieve a significaduaion in the solution time. The description

of the algorithm is provided in the Appendix.

V. EXPERIMENTS
A. Human Subjects and Study Protocol

10 able-bodied students (7 male and 3 female students) &aKbddvanced Institute of Science and
Technology (KAIST) participated in this study. This study wagprved by the KAIST Institutional
Review Board (KH2010-24).

Our experiment consisted of 4 consecutive sessions forgagkct: TRAIN, RAND, POMDP, POMDP-
BIGRAM. In the TRAIN session, we collected training data floe ppreprocessor and P300 classifier using
20 trials. Each trial randomly assigned a target letter an®®detters, and each trial flashed 10 times
for each row and column in a random order. Thus, there wereah d6t10*6*2 = 120 row and column
flashes in each trial. The observation probabilities of the PP\nodel for the subject were also obtained
from the histogram of the training data and P300 classifiepwiutalues. In the RAND, POMDP, and
POMDP-BIGRAM sessions, “MACHINE LEARNING” (16 letters inaing the space) was spelled by
the subject usingrano, mrompr, @NdTpompP-BIGRAM, FESPECtively. Subjects A, C, E, G, and | performed
the sessions in the order of TRAIN, POMDP, POMDP-BIGRAM, am&AN®. Subjects B, D, F, H, and
J performed the sessions in the order of TRAIN, RAND, POMDE BOMDP-BIGRAM.

B. Measurements

We measured the performance of each flash control in termsecdichuracy, bit rate, and practical bit
rate.

The accuracy is defined as the ratio of the number of correctjlexp letters to the total number of
input characters.

The bit rate [20], [21] measures the quantity of the transfélinformation per unit time. It is defined
as B - D, where B is the number of bits per decision, a2l is the number of decisions per unit time.
Given the total number of charactelson the screen and the accuraRythe number of bits per decision

is defined by,
1-P
N-—-1

The number of decisions per unit time is computed Dy= S/T, where S is the number of letters

B =1logy N + Plog, P+ (1 — P)log,

attempted to input, and’ is the total time taken by the user.

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 11

The practical bit rate [22] adjusts the quantity by the addiil time required to correct the error in
the target letter selection. For an incorrectly selectéiethe user has to delete it and re-input the letter.
Hence, two additional trials should be performed by the useattempt a correction. Since this error
correction attempt may fail again, we have to compute theeetgal total number of trials to succeed in
error correction. Given the error raté = (1 — P) and the number of letter§ to input, the expected

number of trials required to correctly input all the lettéssdefined by

S +2(SE) + 2((2SE)E) + 2((2(2SE)E)E) + - -
= S¥20(2E)" = 5/(1 - 2E)

when E < 0.5. Thus, the practical bit rate usd3 = S/T’, whereT’ is the time required to input
S/(1 —2F) letters, which isT’ = (T/S) - (S/(1 —2E)) =T/(1 — 2E).

C. Results

Table | shows the performances @fanp, Tpompe: TPompP-BIGRAM- FOI TRanD, We used 10 flashes for
each row and column, resulting in a total of 120 flashes peetdeiter selection. Sinceranp does not
have a mechanism to determine when to stop flashing, we repgoeiformance when the practical bit
rate hits its maximum value. Hence, 120 is the maximum nunolbdlashes per target letter selection
for mrAND.

We conducted a one-way within-subject ANOVA test on the ficatbit rate; Mauchly’s test indicated
that the sphericity assumption was violated (p-vaie0.000 < 0.05), thus the degree of freedom
was corrected according to the Greenhouse-Geisser esiméthe sphericitye(= 0.537). There was a
significant difference among the three flash contrél§1(073, 9.659) = 15.601, p-value= 0.003 < 0.05).

A post-hoc test using Bonferroni indicated thatompp Was significantly better thanganp (p-value=
0.027 < 0.05), andmpompp-sicrRAM WS again significantly better thapompp (p-value= 0.001 < 0.05) as
well asmranp (P-value= 0.007 < 0.05). In terms of the average practical bit rate oppp achieved a 55%
performance improvement oveizanp, and mpompp-sicram achieved a 86% performance improvement

over mranp and 20% overrpompp.

V. DISCUSSION

We have presented a POMDP-based optimization of flash canttieé P300 speller system, which sig-

nificantly outperforms the conventional random flash conffble POMDP-based flash strategy achieves

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 12

a significant reduction in the number of flashes while maintajriiigh accuracy by avoiding unnecessary
flashes on unlikely rows or columns.

Previous studies on improving the performance of P300 BGésewnostly focused on the signal
processing filters and the P300 classifiers [2], with a few etiarp that address stimulus paradigm. Luo
and Min [23] proposed a method for improving the P300 dedecticcuracy by computing the set of
letters to flash simultaneously, extending the traditional and column flashes. Hill et al. [24] presented
a method that computes the flash schedule as well as the séteos I® flash, using a heuristic based on
the error correcting code design. However, this approastilidimited in the sense that the flash schedule
is fixed a priori: in the context of control theory, the optimiZflash schedule is an open-loop control
since the P300 detection results within trials are not uselitlae system simply follows a prescribed flash
schedule. In contrast, our optimized flash controls are etéyr closed-loop since they determine where
to flash based on the history of the P300 detection results. OMDP is a systematic and principled
framework for obtaining an optimized closed-loop flash coitr

Several advances were made in this study from our own priok @ First, we no longer depend
on the parametric assumption regarding the observatiobaibities. Instead of assuming the beta
distribution for the observation probabilities and prewmuting optimal policies for different parameter
settings, we directly used the empirical distribution frdme training data used for the P300 classifier and
the histogram of its output values. Second, the computatioa for obtaining optimal flash strategies
was reduced by orders of magnitude, taking almost the same &s training the P300 classifier. We
achieved this speedup by exploiting the symmetries in th&BP model [18], [19]. Hence, we were
able to compute the optimal flash strategy in each human subgssion, rather than choosing one of
the pre-computed flash strategies. Our implementation oflfparithm takes only a few minutes to find
the optimal flash strategy.

Cautious readers may question why we adopted the two-phiaseampleting the row trial before
starting the column trial, rather than mixing them. In piple, we could have an integrated POMDP
model that allows executing row or column flashes at any timewéver, we noted that an optimal
flash strategy will nonetheless follow the two-phase behaviiased on the following reasoning: since
a row flash provides information only related to rows, theraishance of consecutively flashing the
target letter whenever a column flash immediately followsw filash. Hence, in order to minimize the
chance of information loss due to the repetition blindnasspptimal flash strategy should minimize the
interchange between row and column flashes.

There are additional ideas for the future work that may furttmprove the performance of our

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 13

approach. First, it would be interesting to adopt POMDPs wihtinuous observations to take the P300
classifier output values without discretization. There areva &lgorithms for POMDPs with continuous
observations [25], but we have not yet tested whether thgseithms can yield the optimal flash strategy
in a fast manner or such strategy significantly outperfornesathe from the discrete observation POMDP.
Second, although the mixing parametegsandqr were set to constants in our current approach, it would
be beneficial to have a procedure that automatically adjestvéttues through the interactions with the
human subject, as the characteristics of EEGs change ovedtient the subject fatigue and attentiveness.
Third, especially in the case afsompp-sicram rather than identifying the sequential patterns offline, it
would be helpful to estimate them online through the inteoacwith the human subject, since the
repositories such as novels may not be available for otlslr damains (e.g., navigating to places using
a BCl-controlled wheelchair). Fourth, we could incorperaécent results on optimizing the set of letters
to flash [23], [24] into the actions of the POMDP, extending tbes and column flashes. Lastly, we
hope to eliminate the pilot session where we collect theeathijependent training data for obtaining
the P300 classifier and constructing the POMDP model. A nag tlvat may achieve this is to use a
single global P300 classifier trained against a number of musudjects and use reinforcement learning
algorithms to learn the POMDP model while interacting whle human subject. However, even a higher

computational complexity remains as a challenge.

APPENDIXA

POMDPWITH OBSERVATION DELAY

The standard POMDP assumes that an observation is obtaife@ legecuting the action at the next
time step. But in some cases, the observation is not avaifala number of time steps even though
we have to execute actions at every time step. We refer thuatgin to the POMDP with observation
delays [15]. In general, the time steps in the observatidaydean be constant or probabilistic. In this
article, we only consider the constant time steps for theniagion delays. In this case, a history of actions
and observations is given by, a1, ..., a4, Zi+1, Gd+1, Zd+2, - - - Whered is the number of time steps in
the observation delay. Note that thg,; is the observation relevant to the environment state aridract
at time step 0. Hence, we revise the definition of the beligés$taso that it is the probability distribution
of the stategl time steps ago in the past, and the belief state is updatéd by= 7 (b, z¢+1, ar—q). This

update requires keeping track of the actions executed glihi@ observation delay.

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 14

The optimal value function of the POMDP withstep observation delay is now defined by the equation

V*(ba a’la e ,CLd)
d—1
= méix Z b(SO)[H Tsa §1+1]R§d
S0y--+35d =0

+ ’yz Pr(z|b,a)V*(r(b,a1,2),a2,...,aq,a)|,

whereay is the most recent action executed during the delay@nid the oldest action executed during
the delay. The first term in the right-hand side represents xpeated immediate reward. The second
term represents the expected return after executing aatidiote that the above value function depends
on the state distribution af time steps before and the actions executed during the cligsenvdelay.

To simplify the notation let;.; be the series of actions, ..., a4 SoO that we denote the optimal value
function asV*(b, a;.4). The optimal value functio* can be obtained by iterative dynamic programming

backup

Vi(b,a1.q4) = max Zb (s0) HT: i1 | RS,

+ Y Z PT(Z‘b, CLl)anl(T(b, ai, Z)v a.d, CL) 5

for every belief staté € AS and actions during the delay.; € A%. Moreover, it can be shown that the
value functionV;,(b, a1.4) is piecewise linear and convex in belief space [15]. We caneflore represent
the value function using the set afvectors for each possible actions executed during theydéta:«,
Vai.q € A%, Using this representation, the value of the belief statgith actionsa,.; executed during
the delay is calculated by

Va(b,a1.q) = max b-a.
OéGFiLl d

The setl'?: is computed iteratively. Giveh " for all a;.4 € A?, we generate intermediate s&tg:+%*
andI'¢u+%* Vq € A, Vz € Z such that

d—1
[t — {a\a(so) => 11 T;‘Ziz;l]RZd} 7

S1:a =0

rgpee = fato) =1 X 755,05,) v € T

s'es

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 15

Then F?Ll:d — UaeA I‘;llhd,a Whererghdﬂ — I‘,rall:d,av* D I‘;lll:d,yaazl fast 1“%1;d70«,22 @---. Hence everyx?fd’“ c
réna js computed by the equation

d—1

agre(so) = > [TT Tes, | B,

S1:a =0
+’YZ 50 S1 Zosl,al ?Lz d1725)

where thea-vector a®*%“ for each observatior comes from the selt“““’

n—1,z

APPENDIXB

PERMUTABLE POMDPWITH OBSERVATION DELAY

We can exploit the symmetries in the model to speed up alguostfor finding an optimal policy [18],
[19]. Let the state permutation : S — S be a one-to-one and onto function. Themaps one state
ordering to another one. Let action permutatipn A — A and observation permutation: Z — Z be
defined in the same manner. After applying the state pernountatio the belief staté, we get reordered
belief stateb™, i.e. b™ (7 (s)) = b(s). We can also apply the state permutation to éheector «, which
gives reorderedv-vectora™, i.e.a™(m(s)) = a(s). To simplify the notations, leb(a;.q) be the permuted
action sequence(ai), p(az2), ..., p(aq).

Theorem 1:Given a state permutation, if there exists an action permutatign and observation

permutationr such that

(1) Tgy Tﬁé:))ﬂ(s) Vs,s' € S,a € A
(2) 02, =010 o) VseSacAzeZ

(3) R = RO

Then for everya-vectora € ', there existsy™ € 0 for all n € {0,1,2,---}.

Vse S,ae A

Proof: For n = 0, the theorem holds if we initializ&("* = {a = (Rm'") 1} for all a4 € A
so that everyl'g*“ is initialized to be a singleton with a constant vector. Thisthie standard way of
initializing «-vectors in PBVI and other POMDP algorithms.

Forn > 1, suppose that the theorem holds fewector sets after thén — 1)th value backup. We also

have that everyy-vectorad:+® € I't+¢ js computed by the equation

d—1
(o) = 3 [TT Tt | e,
S1:a =0

T2 T 2 O O (51)
S1

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 16

where thea-vector o> for each observatiom comes from the sef;.>%“. Hence, we can show that

n—1,z

g (s0)

=3 H T e B

S1:d

+7 Z Tﬁ(:: w(Z O;EZ?),p(al)azz—:dffz(Sl)

Z [HTp 7rs+1 }R:’((Zl)

S1:d

+7 Z Tf:((ggl 02 OZrEZf),p(al)aZ(_“i?’p(“’ (m(s1))
= a2 (7 (s0)).

The first equality is obtained after applying the conditionstfee permutability. The second equality
follows from the inductive assumption. The last equalitydais from the definition. Therefore, for every

(ar.a) becausd ¢ = (J, '¢++®. By mathematical induction,

a-vector a € T'%:4, there existsn™ € T,
this theorem holds. [|
Theorem 1 implies an important property that, if there exaédtéeast one permutation satisfying all
conditions on theorem 1, we only need to maintain eithgr* or 174 pecause we can reproduce
one a-vector set from the other set. In other words, given beliehnd actionsp(ay.4) during the
delay, V,, (b, p(a1.4)) can be computed by using the d&}¢ = {a™|a € T'%2}. Note that this explicit
reproduction of the set by permuting everyvector is not necessary. We can compute the value by

Vi(b, plarg)) = max b -«
aclytd

whereb™ ' is the reordering of belieb using the inverse mapping of permutation

Corollary 2: Let A% be the set of all action sequences that can be executed ciinéngbservation
delay and~ be a relation wherei;.q ~ a}.; if and only if there exists a state permutatianwith
correspondingy and 7 that satisfy the conditions in Theorem 1 apth;.4) = a;,. Then A? can be
partitioned into equivalence classes induced by the oalati.

Proof: We show that- is an equivalence relation by showing its reflexivity, symmednd transitiv-

ity. Reflexivity: the identity mapping fofr, p, andr satisfies all the conditions in Theorem 1. Symmetry:
there always exists the inverse mappingmof, andr since they are permutations and hence one-to-one
and onto functions. Transitivity: suppose that; ~ ., andd).; ~ af.;. This implies that there exist

(m, p,) With p(a1.q) = @, and (', ', 7’) with p'(a! ;) = a7, that satisfy the conditions in Theorem 1.

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 17

Let " =n'om, p’ = p op, andr” = 7' o 7. It is quite straightforward to show that’, p”, and 7"
satisfy the conditions in Theorem 1 wiiif (a1.4) = af . [
Corollary 2 implies that we only need to maintain onevector set for all then-vector sets whose

action sequences during observation delay are within theeseguivalence class.

APPENDIXC

PERMUTABLE POMDPALGORITHM FORP300 BCbk

Now consider the POMDP model for the P300 BCI where the olagienv delay is 2 time steps. Since
each action in the POMDP model is relevant to only one statgate permutation readily yields the
corresponding action permutation. For example, giveroaacti = flash,.y41, State permutatiom maps
the action toa™ = flash,,w41). We specifically consider the following set of permutations:

Theorem 3:Let ¥ = {(m,p,7)| foranym,p(a) = a™,Va € A,7(2) = 2,Vz € Z}. (m,p,7) € ¥
satisfies all the conditions in Theorem 1.

Proof: (m, p, 7) € ¥ does not change the transition probabilities and rewamdsep does not change
the type of the action between flash and select. It also doeshasige the observation probabilities,
sincen and p do not change the action between target flash and non-targef #iad observations do
not change viar.]

A minor note about the above theorem is tlatcan be a subset of all the permutations that satisfy
the conditions in Theorem 1. Howeve, is straightforward to obtain without using an algorithm J19
and we found it to be sufficient to speed up the POMDP algorithm.

Using permutations in¥, the set of all action sequences during the delay (a total4df dction
sequences) is partitioned into equivalence classes byll@yr@®. We now need to maintain only one
a-vector set for each equivalence class. There are 8 equoalgnsses(flashy, flashy), (flashy, flashy),
(selecty, flashy), (selecty, flashy), (flashy, selecty), (flashy, selecty), (selecty, selecty), (selecty, selecty)
wherez,y € S andx # y. Therefore we have only to maintaina8vector sets for representing the whole
144 o-vector sets. For each equivalence class, we used-trector set with the lexicographic minimum,
e.g.[flashrowsy flashovso for the equivalence claglashy, flashy) and the corresponding action sequence is
referred to as the representative action sequence of theasence class, e.dlash, w41, flash,ow4o for
(flashy, flashy). To compute valué/, (b, a;.q), we identify (79, p*9, 789 € ¥ such thatp®*¥(a;.q) = d/ 4

wherea’,, is the representative action sequence of the equivalerss dfa;.;. There are more than

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 18

one such permutations, and we only have to identify one. \Wa trave

Viu(b, a1.4) = max ™ a.

a
a€l,

We can further reduce the sizes afvector setsI'?*“'s using a technique similar to permutable
POMDPs [18]: Let¥w< C ¥ be the set of all permutations such that; ~ a1.4. According to
Theorem 3 and 1, for anyr, p,7) € U< anda € I'é*¢, we havea™ € I't*¢ as well. Specifically,
let S~ be the set of states irrelevant to actionsdn,. For example,S—{flashrows i flashiowya} —
{row#3, row#4, row#5, row#6} since the actions are only relevant to row#1 and row#2. Nbg t
Yad js the set of all permutations i that can only possibly change the stateSn“:<. This is
because, form, p, 7) € VU, if = changes states relevant to actionsairy, then (r, p,7) ¢ ¥4 since
ai.q # plar.q). Hence, ifa is in T'¢:<, then all its possible permutations on the stateg*+ are also
in "% Therefore, rather than computing and storing all suekectors in['%<, we maintain a single
a-vector that represents the rest, which is obtained by reprtin the state$~“:“ in the descending
order. This technique reduces the sizel¢ff< by a factor of| W<, i.e. |['}'shn = [Tne| /[P *4|. Using

the parsimonious sdt;'s, we can compute the value by

Vi(b, a1.4) = max bsort - v

id
ael’, ‘son

wherebgqr is the belief sorted on the statés < in the descending order.

Combining the two techniques is quite straightforward. Viiéy anaintaina-vector sets for representa-
tive action sequences and each representativector set maintaina-vectors that are sorted on the state
S—4_ Given beliefb and actions:;.; during the delay, we computé, (b, a1.4) by the following method:
We first identify (7®9, p9, 7¢9) € ¥ of which p®* mapsa;.4 to the representative action sequence in its
equivalence class. We then identifys°", pso 750 ¢ ¢r™(a1:4) py sortingb™" on the statess—~™(e1:4)

in the descending order. We then have

Vn(b, al:d) = max b(ﬂsortoﬂ-eq) .

pEayq.q)
€l oon'?

and thea-vector that gives the maximum value can be obtained by

(ﬂ.sorloﬂ.eq) -1
o = | argmax b

p®ay.q)
C“Grn,sonl

(ﬂ_sonoﬂ,eq) .

Note that the identifications of the permutations can be domgli¢itly without enumerating and
examining all the permutations i¥ and ¥*:<. For example, ifa;.; = (flashowss, flashowss), we can

easily identify thatp®4(a;.q) = (flashows1, flashows2) since we have to map the action sequence to its

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 19

lexicographic minimum. We then map the statdsow#5) = row#1 andr(row#3) = row#2, and sorb
on the rest of the states in the descending order, whichtseilsLd(™"°™*) and evaluate its inner-product
with the a-vectors inFﬁfZ(c,a,{:d) to compute the value.

Figures 3, 4, and 5 show the pseudocode of the PBVI algorithrfirfding an optimal policy of the
POMDP model for P300 BCIB*: in the pseudocode represents the set of belief states usddefo
point-based backup where the action sequence executetydhe delay wag,.,. The belief states were
collected using the breadth-first traversal starting friymHowever, we do not exhaustively collect all
the reachable belief states since there can be an infinite euailthem - we stop the traversal when we
have collected a prescribed number of belief states. Intiaddiwhen we add a belief stateinto the
set, we instead adi, which is sorted on the states <, following the idea discussed in the previous
paragraph.

The algorithm produces the sBt*+ of a-vectors that represents the optimal value function fotheac
representative action sequence;. Eacha-vector is associated with the optimal action to executeclwh
is a* in Fig. 4. Hence, the execution of the optimal policy is catreit in a similar manner as the optimal

value function is computed, using the equation

V*(b,a1.q) = max b-a. (5)

a€l 1
and selecting the action associated with the besgéector.

Note that when we execute the policy, the action sequenaegditire delay is of length less thahfor
the initial d time steps. In this case, we maximize over the action se@sethat agree with the actions
that are executed so far. For example, wide2 and only one actiom was executed so far, we use the
value

V*(b,a) = max 3 b(so) T2 R |+ V*(b,a,d). (6)

S0,51

When no action was executed so far, we use
V*(b) = mz’xxz b(so)Rg; + V*(b,d). (7)

APPENDIXD

ExXeEcuTION OFPOMDP R.ASH STRATEGIES

We briefly explain how we execute theovpp Using an example. Suppose that the first target letter

is M which is in row#3 (see Fig. 1). We start the row flash stratedfh

by = [0.1667,0.1667,0.1667,0.1667,0.1667, 0.1667]

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 20

Using Egn. 7, we determine the action that maximizes the Vainetion for by. Suppose that the action
is aj = flashowss. We thus flash row#3 and move on to the next flash epoeh1. Since the P300

detection result o is not available untit = 3, the belief state remains the same:
b = [0.1667,0.1667,0.1667,0.1667,0.1667,0.1667]

Using Egn. 6, we determine the action that maximizes the Vainetion for b;. Suppose that the action
is a] = flashowss. We thus flash row#6 and move on to the next flash egoel2. Since the first P300

detection result is still not available, the belief statmains the same:
by = [0.1667, 0.1667,0.1667,0.1667,0.1667, 0.1667]

Using Eqn. 5, suppose that the action that maximizes the yaheation for b, is a3 = flashew#1. We thus
flash row#1 and move on to the next flash epoeh3. The P300 detection result for flashing row#3 at
t = 0 is now available, and suppose that it is 0.999{) We update the belief state using Egn. 1 so
that

bs = [0.0669, 0.0669, 0.6654, 0.0669, 0.0669, 0.0669]

Note that the probability of row#3 being the target row isreased by the detection result, although
the exact numerical values may vary depending on the ols@mvarobabilities of the POMDP obtained
from the subject. Suppose that the action maximizes the Jahaion forbs is a3 = flashews#s. We thus
flash row#3 and move on to the next flash epoeh4. The P300 detection result for flashing row#6 at

t = 1 is now available, and suppose that it is 0.002087.(The updated belief state becomes
by = [0.0712,0.0712,0.7082,0.0712,0.0712, 0.0069]

Note that the detection result effectively lowers the pholiiy of row#6 being the target row, while
increasing other rows by a small amount.

We continue alternating between updating the belief stateguEgn. 1 and executing the best action
using Eqgn. 5. If the best action is one of the select actionstenainate the flash strategy by selecting

the corresponding row as the target row, and then start thereoflash strategy in a similar manner.

ACKNOWLEDGMENT

The authors would like to thank Sungho Jo and Yoon-Kyu Song fair tielpful comments regarding
the early version of the work. This work was supported by NaldResearch Foundation of Korea (NRF)

grant 2009-0069702 and KAIST-Microsoft Research CollatimnaCenter.

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 21

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtschellerd &. M. Vaughan, “Brain-computer interfaces for
communication and controlClinical Neurophysiologyvol. 113, pp. 767—791, 2002.

S. G. Mason, A. Bashashati, M. Fatourechi, K. F. Navarro, and @Birch, “A comprehensive survey of brain interface
technology designsAnnals of Biomedical Engineeringol. 35, pp. 137-169, 2007.

D. J. Krusienski, E. W. Sellers, D. J. McFarland, T. M. Vaughand J. R. Wolpaw, “Toward enhanced P300 speller
performance,Journal of Neuroscience Methqdsol. 167, pp. 15-21, 2008.

L. A. Farwell and E. Donchin, “Talking off the top of your head: tad a mental prosthesis utilizing event-related brain
potentials,”Electroencephalography and Clinical Neurophysiologgl. 70, pp. 510-523, 1988.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning aeting in partially observable stochastic domains,”
Artificial Intelligence vol. 101, pp. 99-134, 1998.

J. Park, K.-E. Kim, and S. Jo, "A POMDP approach to P300-thdsain-computer interfaces,” iRroceedings of the ACM
International Conference on Intelligent User Interfaces (IL2P10, pp. 1-10.

J. Park, K.-E. Kim, and Y.-K. Song, “A POMDP-based optimahtol of P300-based brain-computer interfaces,” in
Proceedings of the AAAI Conference on Artificial Intelligence (AAABCNAR Track2011, pp. 1559-1562.

U. Hoffmann, J.-M. Vesin, and T. Ebrahimi, “Spatial filters for thlassification of event-related potentials,”Pnoceedings
of the European Symposium on Artificial Neural Netwp@@®06, pp. 47-52.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and A.id, “LIBLINEAR: a library for large linear classification,”
Journal of Machine Learning Researctol. 9, pp. 1871-1874, 2008.

J. Pineau, G. Gordon, and S. Thrun, “Anytime point-based agmrations for large POMDPs,Journal of Artificial
Intelligence Researghvol. 27, pp. 335-380, 2006.

T. Smith and R. Simmons, “Heuristic search value iteration for POBIDIA Proceedings of Conference on Uncertainty
in Artificial Intelligence (UAI) 2004, pp. 520-527.

——, “Point-based pomdp algorithms: Improved analysis and imptgations,” in Proceedings of Conference on
Uncertainty in Artificial Intelligence (UAL)2005, pp. 542—-459.

E. Charniak,Statistical Language Learning MIT Press, 1996.

W. Min and G. Luo, “Medical applications of EEG wave classificatioBhance vol. 22, no. 4, 2009.

J. L. Bander and C. C. W. Ill, “Markov decision processes witlise-corrupted and delayed state observatioimjnal

of the Operational Research Societpl. 50, pp. 660-668, 1999.

R. Fazel-Rezai, “Human error in p300 speller paradigm for bcamputer interface,” inProceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Bioleggiety 2007, pp. 2516-2519.

N. G. Kanwisher, “Repetition blindness: Type recognition withouttokndividuation,”Cognition vol. 27, pp. 117-143,
1987.

F. Doshi and N. Roy, “The permutable POMDP: fast solutionsH@&MDPs for preference elicitation,” iRroceedings of
the International Conference on Autonomous Agents and Multiagentn8y$eAMAS) 2008, pp. 493-500.

K.-E. Kim, “Exploiting symmetries in POMDPs for point-based algarid)’ in Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI) 2008, pp. 1043-1048.

H. Serby, E. Yom-Tov, and G. F. Inbar, “An improved P30fsbd brain-computer interfacéEEE Transactions on Neural
Systems and Rehabilitation Engineeringl. 13, pp. 89-98, 2005.

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 22

[21] J. R. Wolpawet al,, “Brain-computer interface technology: A review of the first internasilomeeting,”IEEE Transactions
on Rehabilitation Engineeringvol. 8, pp. 164-173, 2000.

[22] G. Townsenckt al, “A novel P300-based brain-computer interface stimulus presentpicedigm: Moving beyond rows
and columns,Clinical Neurophysiologyvol. 121, pp. 1109-1120, 2010.

[23] G. Luo and W. Min, “Distance-constrained orthogonal latin sgsid® brain-computer interface Journal of Medical
Systemspp. 1-8, 10.1007/s10916-010-9455-6. [Online]. Available: http.dobxorg/10.1007/s10916-010-9455-6

[24] J. Hill, J. Farquhar, S. Martens, F. BielRmann, and B.o8apf, “Effects of stimulus type and of error-correcting code
design on BCI speller performance,” iroceedings of the Neural Information Processing Systems (NEBP, pp.
665-672.

[25] J. Hoey and P. Poupart, “Solving POMDPs with continuous or laigerete observation spaces,” Rroceedings of the
International Joint Conference on Artificial Intelligence (IJCAPOOS5, pp. 1332-1338.

Jaeyoung Parkreceived his BS degree with double major in Computer Science and MatiwaifrSciences
from KAIST, Korea, in 2008, and MS degree in Computer Science f@RST in 2010. He is currently
a PhD candidate in Computer Science at KAIST. His primary researctesttes in the application of

decision-theoretic algorithms to brain-computer interfaces.

Kee-Eung Kim received the BS degree in Computer Science from KAIST, Korea, 85,18nd the ScM

and PhD degrees in Computer Science from Brown University, USA9@8&nd 2001, respectively. From
2001 to 2006, he was with Samsung SDS and Samsung advanced instiettrailogy, Korea. In 2006,
he joined the Computer Science Department at KAIST, where he isntlyri@n associate professor. His

research interests are representations and algorithms for sequeisibd making problems in artificial

intelligence and machine learning.

July 9, 2012 DRAFT

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGNEERING, VOL. ?, NO. ?, OCTOBER 2011 23

LIST OF FIGURES
1 A common architecture of the P300 BCI systems. The P300espalhtrix is shown on the

lower right corner. e e 24
2 The time course of flashes and the corresponding EEG signal®poch 25
3 Top-level pseudocode. e 26
4 The backup operator. e e e 27
5 The procedure for finding the bestvector using permutation. 28

July 9, 2012 DRAFT

FIGURES

July 9, 2012

< BCI system >

Preprocessor <
feature vector EEG
A epoch data
P300 Classifier
classifier output Signal Acquisition
3 System

Stimulus Controller

command

stimulus position

3

Stimulus Generator

stimulu

External Systern| |

Human

Fig. 1

24

DRAFT

FIGURES 25

T T T . >
pase [e
/ T~ —
4 T~ -
e N — | >
j row-trial — column-trial :
/ Tl
4 - - .
Flash R3 Flash R2 Flash R5 Flash R6
l 250ms l 250ms
,,,,,,,,,,,,,,, : N
o 200ms Lo

| i Epoch for R3 Epoch for R2 | Epoch for R5

Fig. 2

July 9, 2012 DRAFT

FIGURES 26

Procedure: PERMUTABLE-BCI-PBVI(B, K, d, €)
Inputs: the set of belief state sef$ = { B“*|representative action sequencg; }; repetition blindnes
length K; observation delayl; error bounde
for all representative action sequencg; do

Initialize 1@+ = {(fins) - T}
end for
repeat
for all representative action sequencg; do
rése = BACKUP((a1.4), K, d, B*,T)
end for
0 = differencé B, T, I'next)
I' = T'next
until § <e
return T

Fig. 3

July 9, 2012 DRAFT

FIGURES 27

Procedure: BACKUP(ay.q, K,d, B+, T,,_1) L
Inputs: the action sequences;.q; repetition blindness lengthK’; observation delay length
d; belief state set B*:; set of «-vector sets for i-1)-step value functionl’,_; =
{I"714 [representative action sequence;}

Aalow = A — {aq—x+1.4} /lavoid repetition blindness
for all belief stateb € B*:< do
for all actiona € Agjow dO
a® =0
for all observationz € Z do
b =71(ba,z)
a%* = FIND_MAX _ALPHA (¥, as.4; a,Tp_1)
for all states € S do
aa(s) = aa(s) + 0 ZS'ES T;s/oj’,aamz(sl)
end for
end for
for all statesy € .S do
a?(s0) = a%(s0) + Xy, (TIZ) T3L) Re,
end for
end for
a* = argmax,eca,,, 0" @
a* =a%
asort = SOIt o* on statesS— %< in descending order
Ieye =TI U {asort}
end for
return I'¢ue

a

Fig. 4

July 9, 2012 DRAFT

FIGURES 28

Procedure: FIND_MAX_ALPHA(b, a1.4,T—1)
Inputs: belief stateh € B®¢; action sequence;.,; set of a-vector sets for-1)-step value functig
I, = {4 [representative action sequence;}
al., = representative action sequenceagf;
compute(n®d ped 7% ¢ W, and (70" SOt 7SO ¢ Yare such that
(1) p*%ar.q) ~ a4, and
(2) m°"is sortingh™ " on statesS~*« in descending order
Q%a = argmax, (™) . o wherea € T0

1 (wSMoged)—1

aftd = %14

return q%ud

Fig. 5

July 9, 2012 DRAFT

5

FIGURES 29

LIST OF TABLES

| Experimental results ofiranp, TPompP, TPOMDP-BIGRAM - Abbreviations used in the table
are: PBR = practical bit rate measured in bits per minute, BR = bit rate measured
in bits per minute, ACC = accuracy measured in the percentage of lettergorrectly
spelled, Flashes = number of flashes per target letter selection along Wwitts standard
deviation. L

July 9, 2012 DRAFT

TABLES 30
TABLE |
Subject TRAND TPOMDP TPOMDP-BIGRAM

PBR BR Acc Flashes PBR BR Acc Flashes PBR BR Acc Flashes

A 36.483 36.483 100.00 24 38.965 38.965 100.00 2H9 4.6 | 41.751 41.751 100.00 19486.1

B 9.541 9.541 100.00 120 26.452 26.452 100.00 361913.8 | 31.437 31.437 100.00 2957.9

C 4.051 6.481 81.25 120 6.718 8.957 87.50 9618 26.3 | 10.246 10.246 100.00 114b4.3

D 0.447 3.575 56.25 120 5.736 9.177 81.25 8119 24.7 | 12.912 12.912 100.00 861172.4

E 6.765 9.020 87.50 9§ 6.136 8.181 87.50 10649 51.0 8.201 9.373 93.75 105670.0

F 17.720 17.720 100.00 60 25.833 25.833 100.00 38 9.6 | 32.359 32.359 100.00 2814 5.8

G 1.057 4.230 62.50 120 2.116 4.232 75.00 16445108.1 2.551 4.081 81.25 1961668.0

H 9.080 14.527 81.25 48 12.380 14.149 93.75 6616 17.4 | 13.713 15.672 93.75 5941227

| 16.331 18.664 93.75 48 27.212 27.212 100.00 35612.8 | 30.851 30.851 100.00 30134.7

J 20.592 23.533 93.75 36 38.288 38.288 100.00 2214 4.8 | 43.873 43.873 100.00 18137.5
Avg. 12.206 14.377 85.63 1 18.984 20.145 92.50 - 22.790 23.256 96.88 -
s.d. 10.968 10.120 15.60 1 13.990 12.838 0.09 - 14.889 14.410 0.06 -
July 9, 2012 DRAFT

