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Abstract

To achieve high performance in brain-computer interfaces (BCIs) using P300, most of the work has

been focused on feature extraction and classification algorithms. Although significant progresses have

been made in such signal processing methods in the lower layer, the issues in the higher layer, specifically

determining the stimulus schedule in order to identify the target reliably and efficiently, remain relatively

unexplored. In this article, we propose a systematic approach to compute an optimal stimulus schedule

in P300 BCIs. Our approach adopts the partially observable Markov decision process (POMDP), which

is a model for planning in partially observable stochastic environments. We show that the thus obtained

stimulus schedule achieves a significant performance improvement in terms of the success rate, bit rate,

and practical bit rate through human subject experiments.

Index Terms

Brain-computer interface (BCI), Electroencephalography(EEG), Partially observable Markov deci-

sion process (POMDP), P300, P300 speller

I. I NTRODUCTION

Brain-computer interfaces (BCIs) interpret the electrical activities of the neurons in brain and convey

corresponding messages or commands to the external systems[1]. Invasive methods in BCIs directly

record electrical activities by, for example, implanting electrodes into the brain, whereas non-invasive

methods in BCIs record indirectly from the outside of the brain. Non-invasive methods such as using the

electroencephalography (EEG) recorded from the scalp are widely advocated for the practicality due to

the user safety, ease of use, and low set-up cost [2].
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One of the most reliable signal features in EEG for constructing BCIs is the P300 component in the

event-related potential (ERP) [3]. The ERP refers to the measurement of brain response resulting from

a thought or perception, and the P300 is a positive peak component in the ERP at about 300ms after

an infrequent and significant stimulus is given [4], [1]. Because the P300 can be utilized to identify the

user’s intent, one can construct the BCI based on the P300. TheP300 speller system [4] for the purpose

of emulating a keyboard is one of the most well known applications of P300 BCIs. In a typical setting

of the P300 speller system, the user faces the6 × 6 matrix on a video display terminal with each entry

containing one letter (see Fig. 1). Among 36 letters in the matrix, the user gazes at the letter that the

user desires to input while all the letters in a row or a columnare flashed (stimulated) in a random order.

If the gazed letter is flashed, the P300 is elicited with some chance of failure at about 300ms after the

flash. Thus, using a method for detecting the P300, we can identify the letter that the user is gazing

at, i.e. intending to input. However, the elicitation and detection of the P300 is inherently imperfect,

and therefore each row and column is flashed multiple times andthe detection results are combined in

order to improve the detection accuracy. The P300 speller system uses a visual flash as a stimulus but

in general other types of stimuli (e.g. sound) can be used forthe P300 BCI.

The main motivation for the work presented in this paper was the inefficiency in the flash schedule of

random sequences currently adopted by most of the work on P300 BCIs. For example, the P300 speller

system in the literature generates the same number of flashes for every row and column in a random

order. However, given additional information such as the temporal regularities in the user’s intent or the

characteristics of the P300 detection results, we may want to incorporate this information for determining

the optimal flash schedule that identifies the user’s intent accurately while using the smallest number of

flashes. For example, in the P300 speller system, if it is very unlikely that the desired letter is in the

first row, flashing the first row may be of little value. In contrast, if it is highly likely that the desired

letter is either in the second or the third row but highly uncertain between them, it is desirable to flash

one of these rows in order to resolve the uncertainty. In addition, it is hard to determine when to stop

generating stimuli and make decision on the user’s intent. Some studies on the P300 speller system have

proposed using thresholds on the sum of detection confidence values, but the question remains how this

technique could be integrated into the computation of an optimal flash schedule.

This article presents a principled and integrated approach to the aforementioned issues in P300 BCIs.

Specifically, we use the partially observable Markov decisionprocess (POMDP) [5] to model the problem

of achieving the maximum accuracy in identifying the user’sintent while minimizing the number of

flashes. The POMDP is a rigorous framework for modeling sequential decision making problems under
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uncertainty in the dynamics and sensing. It is a natural model for P300 BCIs since the temporal regularities

in the user’s intent and the noisy characteristics in the P300 detection result can be represented in an

integrated way. Being a decision-theoretic model, the above aspects are modeled using probabilities, and

the rewards (or costs) are specified for each flash and final decision. Using an algorithm for solving

POMDPs, we can obtain an optimal control strategy that determines where to flash given the past history

of flashes and the corresponding P300 detection results. In addition, the control strategy will determine

whether to continue flashing or stop with a decision on the user’s intent, solely based on the maximization

of overall accumulated rewards. We show that the P300 speller system optimized using the POMDP

achieves a significant improvement in the communication bandwidth. We also provide some speed up

techniques that handle the computational intractability issues in solving the POMDP. Throughout this

paper, we use the P300 speller system to demonstrate our approach, but we emphasize that it can be

generalized to other P300 BCI paradigms. The preliminary work related to this article was presented

in [6], [7].

II. PRELIMINARIES

Fig. 1 shows the overall architecture commonly adopted by P300 speller systems. This section describes

our implementation of each component in the system.

A. Flash Epoch Design

Our flash epoch design follows the typical setting in P300 speller systems: the user gazes at the letter

that the user desires to input (i.e., target letter) and the 6letters in a row or column of the6 × 6 matrix

are flashed together at the beginning of each flash epoch. A flash epoch takes a time interval of250ms.

Each flash turns on the letters in the row or column for125ms and then turns off for the remaining

125ms. A trial is defined to be a sequence of flash epochs for identifying one target letter. Each trial is

composed of a row trial for identifying the row containing the target letter (i.e., target row), followed by

a column trial for identifying the target column. Row trialsare composed of row flashes, and column

trials are composed of column flashes. The target letter is determined by the identified target row and

target column. A pause interval of2.5s is given between consecutive trials (see Fig. 2).

B. Signal Acquisition, Preprocessing, and P300 Detection

We used Biopac MP150 data acquisition system with 16 channels at 1kHz sampling rate for acquiring

EEG signals. The locations of electrodes, according to the international 10-20 system, were as follows:
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AFz, Fz, F3, F4, Cz, C3, C4, T7, T8, Pz, P3, P4, P7, P8, O1, O2. We took the window of the EEG signal

data between 200ms and 450ms after each flash (Fig. 2) since P300is expected to appearapproximately

at 300ms after the flash.

This window of data was then fed into the preprocessor to extract the relevant features from the raw

signal data, and subsequently passed to the classifier to detect the existence of the P300. In order to

construct the preprocessor and the P300 classifier, we prepared the training data where each instance was

the window of EEG signal data for either a target or non-target letter. These training data were collected

on each human subject using the flash epoch design described inthe previous subsection.

In the preprocessor, the window of raw signal data were band-pass filtered (0.5-30Hz) and down-

sampled to100Hz. The spatial projection algorithm [8] was then used to extract features from the

signals. This algorithm generates the set of linear filters that maximally discriminates between the target

and non-target instances. Formally, given an instanceEi (an m × n matrix wherem=16 is the number

of channels andn=25 is the number of signal samples) for theith flash, the spatial projection algorithm

generates a maximum ofm linear filters. Each filterfj is an m-dimensional vector, and generates one

n-dimensional feature vector by projectionfT
j Ei (an n-dimensional row vector). The number of filters

was determined by cross-validation. In our case, we limitedthe maximum number of filters to5, since this

number was sufficiently large for most of the human subjects participating in this study and guaranteed

timely processing of data.

The classifier that detects the existence of the P300 in the preprocessed EEG signal instance was

obtained by the LIBLINEAR package [9]. In order to represent thelikelihood of the P300 existence, we

used L2-regularized logistic regression which outputs a real number between 0 and 1. The parameters

for executing LIBLINEAR were determined by 5-fold cross-validation on the training data.

C. Conventional Flash Schedule (πRAND)

The P300 speller system conventionally uses a random flashing scheme (πRAND) where the flash

sequences are generated randomly and the desired letter is determined after a prescribed number of

flashes or the confidence reaches above a prescribed threshold.The row and column trials in ourπRAND

implementation use a constant number of flashes. At the end of trials, we take the sum of the output

values of the P300 classifier for each row and column, and determine the target row and column with

the maximum value.
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D. Partially observable Markov decision processes

The partially observable Markov decision process (POMDP) [5] is a mathematical model for sequential

decision making problems under uncertainty in the dynamicsand observation. It is defined by an 8-tuple

〈S, A, Z, b0, T, O, R, γ〉 where:S is the set of environment states;A is the set of actions available to

the agent;Z is the set of all possible observations;b0 is the initial belief state whereb0(s) denotes the

probability that the environment starts in states; T is the transition probability whereT a
s,s′ denotes the

probability that the environment changes from states to s′ when executing actiona; O is the observation

probability whereOz
s,a denotes the probability that the agent makes observationz when executing action

a and arriving at states; R is the reward function whereRa
s denotes the reward received by the agent

when executing actiona in states; γ is the discount factor such that0 ≤ γ < 1.

Since the agent cannot directly know the environment state due to the uncertainty in observations, it

maintains the probability distribution over the states based on the history of actions and observations.

The probability distribution over the states is defined as a belief state wherebt(s) denotes the probability

that the state iss at time stept. The belief statebt can be regarded as the posterior distribution of the

states given the initial beliefb0 and the history of actions and observations:

bt(s) = P (St = s|b0, a0, z1, a1, z2, · · · , at−1, zt)

After executing actionat and making observationzt+1 in belief statebt, the belief statebt+1 = τ(bt, at, zt+1)

at the next time step is updated by the Bayes rule,

bt+1(s
′) =

O
zt+1

s′,at

∑

s∈S T at

s,s′bt(s)

P (zt+1|bt, at)
(1)

whereP (zt+1|bt, at) can be regarded as the normalizing constant.

A policy determines the actions to be executed by the agent ona given belief state. Formally, a policy

π of a POMDP can be defined as a mapping from belief states to actions, i.e.,π : ∆S → A. Every

policy has an associated value function, which is (in the case of infinite horizon problems) the expected

cumulative discounted reward by following the policy starting from a given belief state. When solving a

POMDP, we search for an optimal policy that maximizes the value for each belief state. The maximum

value for the belief state can be defined recursively

V ∗(b) = maxa [R(b, a) + γ
∑

z P (z|b, a)V ∗(τ(b, a, z))] ,

whereR(b, a) =
∑

s Ra
sb(s). The optimal value functionV ∗ can be computed by a series of dynamic

July 9, 2012 DRAFT



IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. ?, NO. ?, OCTOBER 2011 6

programming backups

Vn(b) = HVn−1(b)

= maxa [R(b, a) + γ
∑

z∈Z P (z|b, a)Vn−1(τ(b, a, z))] ,

for every belief stateb ∈ ∆S. We can also derive that value functionVn is piecewise linear and convex,

hence it can be represented as a set of vectorsΓn = {α1, · · · , αm} and the value at a particular belief

stateb is calculated as

Vn(b) = maxa∈Γn

∑

s∈S α(s)b(s).

Once we compute the optimal value functionV ∗, the optimal policy is obtained by

π∗(b) = arg maxa [R(b, a) + γ
∑

z P (z|b, a)V ∗(τ(b, a, z))] . (2)

It is intractable to exactly compute the optimal value function and optimal policy, mainly because there

are infinitely many belief states. Some of the POMDP algorithmssuch as the witness algorithm [5] exploit

the piecewise linear and convex property of value functions, but they are still limited to problems of small

sizes. Instead, approximate algorithms such as point-based value iteration (PBVI) [10] or heuristic search

value iteration (HSVI) [11], [12] are used in practice. These approximate algorithms are scalable, yet the

solutions found are almost optimal in various benchmark POMDP problems. Since a complete review of

POMDP algorithms is outside the scope of this article, we refer the readers to the references mentioned

above.

III. FLASH STRATEGY USING POMDPS

A. POMDP-based Flash Strategy (πPOMDP)

The problem of finding an optimal flash schedule for the P300 speller system can be naturally modeled

as a POMDP. The optimization objective of the flash schedule is reflected in the reward function that

favors a high accuracy in identifying the target letter while using the minimum number of flashes. Note

also that the flash schedule corresponding to the optimal policy of the POMDP is inherently astrategy

rather than a static schedule: itadaptivelydetermines which row or column to flash in each epoch based

on the history of P300 detection results, which is summarized by the belief state representing the posterior

probability of each row and column being the target.

We compute two optimal flash strategies by constructing and solving two POMDP models, one for

the row trials and the other for the column trials. Once we obtain them, we first execute the row flash

strategy until the target row is determined, and then the column flash strategy until the target column

July 9, 2012 DRAFT



IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. ?, NO. ?, OCTOBER 2011 7

is determined. We only describe below our POMDP modeling of row trials since the model for column

trials is almost identical.

Let N be the number of rows in the matrix. Note thatN=6 in this article since we consider the P300

speller with a 6×6 matrix. The states in the POMDP correspond to the candidate target rows, hence a

total of N states. For each row in the matrix, we can either flash it in the hope of detecting P300 (N

flash actions) or claim that it’s the target row (N select actions), hence a total of2N actions. The output

value from the P300 classifier serves as the observation, where the continuous output value between 0

and 1 was discretized into intervals of size0.1 (e.g.z1 for the output value in[0.0, 0.1), z2 for the output

value in [0.1, 0.2), etc.), hence a total of 10 observations.

Since we prefer finding the target row as soon as possible, we assigned the reward of -1 for the flash

actions. In addition, since we want to find the target row as accurately as possible, we assigned the reward

of +10 for the select actions that correctly identify the target row (e.g., select row #1 when the target is

row #1), and -100 for those that incorrectly identify the target row (e.g., select row #2 when the target

is row #1).

The transition probabilities for the flash actions were defined to be the identity matrix based on the

assumption that the target row does not change within a trial. The transition probabilities for the select

actions were defined to be the uniform distribution based on the assumption that the target row will be

reset to a new target row with equal probability after each trial.

The observation probabilities for the flash actions were obtained using the classifier output values

for each subject. Specifically, we obtained the histogram of classifier output values when the target

row is flashed from the training data for the P300 classifier, andused this empirical distribution for

the observation probabilities for the flash actions on the target row. We followed the same method for

obtaining the observation probabilities for the non-target rows. Note that if the target row is flashed, it

is likely to obtain one of the observations fromz6 to z10 since we expect a high output value from the

classifier. However, since the classifier is not perfect, thereis also a non-zero probability of obtaining one

of the observations fromz1 to z5. The observation probabilities model these errors in the P300 detection

results. Since the training data collected during the pilot trial is not perfectly reliable because of various

reasons (e.g., subject fatigue or attentiveness), we smoothed the empirical distribution by mixing it with

the uniform distribution:

Oz
s,a = (1 − qO)Ôz

s,a + qO
1
|Z|

where Ôs,a is the empirical distribution from the training data andqO is the mixing weight. In the
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experiments, we simply setqO=0.3 for all subjects. For select actions, we used the uniform distribution

for the observation probabilities since the P300 classifier output value is obtained without flash and thus

contains no information.

The initial distributionb0 on the states was set to the uniform distribution since we assume no prior

knowledge about the likelihood of each row containing the target letter.

We refer to the flash strategy computed from the above POMDP asπPOMDP.

B. POMDP using Bigram Model (πPOMDP-BIGRAM)

We can incorporate prior knowledge into the POMDP model and further improve the performance of

the flash strategy. This is especially true for the P300 spellersystem since there is a strong regularity in

the sequence of alphabets in a natural language. There is a wealth of language models for capturing this

regularity [13], and it has been suggested that the P300 speller system can benefit from them [14]. In

this paper, we show how the bigram language model can be used in the POMDP.

The bigram model is defined by the conditional probability distribution P (wt|wt−1) over the letters

wt in the speller matrix given the previous letterwt−1. We estimated the bigram model using9 novels

available online as a part of the project Gutenberg. Suppose that li,j is the letter in the rowi and the

column j. Using the bigram model, the probability of target letter being li,j is computed as

P (wt = li,j) =
∑

i′,j′

P (wt = li,j |wt−1 = li′,j′)P (wt−1 = li′,j′). (3)

The above equation requires the probabilityP (wt−1 = li′,j′) of the previous target letter beingli′,j′ . In

order to obtain this probability, letbr
t−1 be the final belief state in the previous row trial, andbc

t−1 be the

final belief state in the previous column trial. We then have

P (wt−1 = li′,j′) = br
t−1(i

′)bc
t−1(j

′). (4)

Using Eqn. 3 and Eqn. 4, the initial belief state for the currentrow trial is defined as

br
t,0(i) =

∑

j P (wt = li,j).

In order to determine the initial belief state for the current column trial, letbr
t be the final belief state of

the current row trial (finished just before the onset of the current column trial). We then have

bc
t,0(j) =

∑

i b
r
t (i)η

i
tP (wt = li,j),

whereηi
t = 1/

∑

k P (wt = li,k).
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Since there are chances where the previous target letter was incorrectly determined or the pattern in the

alphabet sequence differs significantly from the estimated bigram model, we mixed the bigram-predicted

probability with the uniform distribution:

br
t,0 = (1 − qT )br

t,0 + qT
1
N

, andbc
t,0 = (1 − qT )bc

t,0 + qT
1
N

,

whereqT is the mixing weight. We setqT =0.6 in the experiments.

In summary, the above is basically the same asπPOMDP described in the previous subsection, except

that the initial belief state is computed from the bigram model instead of using the uniform distribution.

We refer to this strategy asπPOMDP-BIGRAM.

C. Constraints on Flash Strategy

When we compute the optimal flash strategy from the POMDP, we have to take into account two

constraints that originate from the inherent characteristics of the P300.

The first constraint is the delay in the P300 detection. In our P300 speller system, the time to obtain

the P300 detection result takes more than500ms (but less than750ms) because an epoch ends at450ms

after the flash and a small amount of additional delay is incurred by processing the signal data. Thus, in

the context of the POMDP, the relevant observation is available only after executing the next two actions

because each action is executed in250ms intervals (Fig. 2). We used the extended version of the POMDP

model with delayed observations [15].

The second constraint is the phenomenon known as therepetition blindness, where the P300 may not

be elicited if the target letter is repeatedly flashed within 500ms [16], [17]. For example, if the first row

is flashed within500ms from the last flash on the first row, the P300 may not be existentin EEG even

though the first row contains the target letter. This constraint is handled by simply avoiding the flash on

the same row or column within 500ms.

These two constraints lead to the modified definition of the optimal value function:

V ∗(b, at−2, at−1)

= max
at∈A−{at−2,at−1}

∑

st−2,st−1,st

b(st−2)





t−1
∏

i=t−2

T ai

si,si+1



 Rat

st

+ γ
∑

z

P (z|b, at−2)V
∗(τ(b, at−2, z), at−1, at).

The first term in the right-hand side represents the expected immediate reward, and the second term

represents the expected maximum return after executing action at. Note that the value function now

depends on the sequence of actions executed during the delay, as well as the current belief stateb.
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We modified the PBVI algorithm to optimize based on the above optimal value function while exploiting

the symmetry [18], [19] in the model to achieve a significant reduction in the solution time. The description

of the algorithm is provided in the Appendix.

IV. EXPERIMENTS

A. Human Subjects and Study Protocol

10 able-bodied students (7 male and 3 female students) at Korea Advanced Institute of Science and

Technology (KAIST) participated in this study. This study was approved by the KAIST Institutional

Review Board (KH2010-24).

Our experiment consisted of 4 consecutive sessions for eachsubject: TRAIN, RAND, POMDP, POMDP-

BIGRAM. In the TRAIN session, we collected training data for the preprocessor and P300 classifier using

20 trials. Each trial randomly assigned a target letter among36 letters, and each trial flashed 10 times

for each row and column in a random order. Thus, there were a total of 10*6*2 = 120 row and column

flashes in each trial. The observation probabilities of the POMDP model for the subject were also obtained

from the histogram of the training data and P300 classifier output values. In the RAND, POMDP, and

POMDP-BIGRAM sessions, “MACHINE LEARNING” (16 letters including the space) was spelled by

the subject usingπRAND, πPOMDP, andπPOMDP-BIGRAM, respectively. Subjects A, C, E, G, and I performed

the sessions in the order of TRAIN, POMDP, POMDP-BIGRAM, and RAND. Subjects B, D, F, H, and

J performed the sessions in the order of TRAIN, RAND, POMDP, and POMDP-BIGRAM.

B. Measurements

We measured the performance of each flash control in terms of the accuracy, bit rate, and practical bit

rate.

The accuracy is defined as the ratio of the number of correctly spelled letters to the total number of

input characters.

The bit rate [20], [21] measures the quantity of the transferred information per unit time. It is defined

asB · D, whereB is the number of bits per decision, andD is the number of decisions per unit time.

Given the total number of charactersN on the screen and the accuracyP , the number of bits per decision

is defined by,

B = log2 N + P log2 P + (1 − P ) log2

1 − P

N − 1
.

The number of decisions per unit time is computed byD = S/T , whereS is the number of letters

attempted to input, andT is the total time taken by the user.
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The practical bit rate [22] adjusts the quantity by the additional time required to correct the error in

the target letter selection. For an incorrectly selected letter, the user has to delete it and re-input the letter.

Hence, two additional trials should be performed by the userto attempt a correction. Since this error

correction attempt may fail again, we have to compute the expected total number of trials to succeed in

error correction. Given the error rateE = (1 − P ) and the number of lettersS to input, the expected

number of trials required to correctly input all the lettersis defined by

S + 2(SE) + 2((2SE)E) + 2((2(2SE)E)E) + · · ·

= S
∑∞

i=0 (2E)i = S/(1 − 2E)

when E < 0.5. Thus, the practical bit rate usesD = S/T ′, where T ′ is the time required to input

S/(1 − 2E) letters, which isT ′ = (T/S) · (S/(1 − 2E)) = T/(1 − 2E).

C. Results

Table I shows the performances ofπRAND, πPOMDP, πPOMDP-BIGRAM. For πRAND, we used 10 flashes for

each row and column, resulting in a total of 120 flashes per target letter selection. SinceπRAND does not

have a mechanism to determine when to stop flashing, we report its performance when the practical bit

rate hits its maximum value. Hence, 120 is the maximum numberof flashes per target letter selection

for πRAND.

We conducted a one-way within-subject ANOVA test on the practical bit rate; Mauchly’s test indicated

that the sphericity assumption was violated (p-value≈ 0.000 < 0.05), thus the degree of freedom

was corrected according to the Greenhouse-Geisser estimates of the sphericity (ǫ = 0.537). There was a

significant difference among the three flash controls (F (1.073, 9.659) = 15.601, p-value= 0.003 < 0.05).

A post-hoc test using Bonferroni indicated thatπPOMDP was significantly better thanπRAND (p-value=

0.027 < 0.05), andπPOMDP-BIGRAM was again significantly better thanπPOMDP (p-value= 0.001 < 0.05) as

well asπRAND (p-value= 0.007 < 0.05). In terms of the average practical bit rate,πPOMDP achieved a 55%

performance improvement overπRAND, and πPOMDP-BIGRAM achieved a 86% performance improvement

over πRAND and 20% overπPOMDP.

V. D ISCUSSION

We have presented a POMDP-based optimization of flash controlin the P300 speller system, which sig-

nificantly outperforms the conventional random flash control.The POMDP-based flash strategy achieves
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a significant reduction in the number of flashes while maintaining high accuracy by avoiding unnecessary

flashes on unlikely rows or columns.

Previous studies on improving the performance of P300 BCIs were mostly focused on the signal

processing filters and the P300 classifiers [2], with a few exceptions that address stimulus paradigm. Luo

and Min [23] proposed a method for improving the P300 detection accuracy by computing the set of

letters to flash simultaneously, extending the traditional row and column flashes. Hill et al. [24] presented

a method that computes the flash schedule as well as the set of letters to flash, using a heuristic based on

the error correcting code design. However, this approach isstill limited in the sense that the flash schedule

is fixed a priori: in the context of control theory, the optimized flash schedule is an open-loop control

since the P300 detection results within trials are not used and the system simply follows a prescribed flash

schedule. In contrast, our optimized flash controls are inherently closed-loop since they determine where

to flash based on the history of the P300 detection results. The POMDP is a systematic and principled

framework for obtaining an optimized closed-loop flash control.

Several advances were made in this study from our own prior work [6]. First, we no longer depend

on the parametric assumption regarding the observation probabilities. Instead of assuming the beta

distribution for the observation probabilities and pre-computing optimal policies for different parameter

settings, we directly used the empirical distribution fromthe training data used for the P300 classifier and

the histogram of its output values. Second, the computation time for obtaining optimal flash strategies

was reduced by orders of magnitude, taking almost the same time as training the P300 classifier. We

achieved this speedup by exploiting the symmetries in the POMDP model [18], [19]. Hence, we were

able to compute the optimal flash strategy in each human subject session, rather than choosing one of

the pre-computed flash strategies. Our implementation of thealgorithm takes only a few minutes to find

the optimal flash strategy.

Cautious readers may question why we adopted the two-phase trial completing the row trial before

starting the column trial, rather than mixing them. In principle, we could have an integrated POMDP

model that allows executing row or column flashes at any time. However, we noted that an optimal

flash strategy will nonetheless follow the two-phase behaviour based on the following reasoning: since

a row flash provides information only related to rows, there isa chance of consecutively flashing the

target letter whenever a column flash immediately follows a row flash. Hence, in order to minimize the

chance of information loss due to the repetition blindness,an optimal flash strategy should minimize the

interchange between row and column flashes.

There are additional ideas for the future work that may further improve the performance of our
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approach. First, it would be interesting to adopt POMDPs withcontinuous observations to take the P300

classifier output values without discretization. There are a few algorithms for POMDPs with continuous

observations [25], but we have not yet tested whether these algorithms can yield the optimal flash strategy

in a fast manner or such strategy significantly outperforms the one from the discrete observation POMDP.

Second, although the mixing parametersqO andqT were set to constants in our current approach, it would

be beneficial to have a procedure that automatically adjust the values through the interactions with the

human subject, as the characteristics of EEGs change over timedue to the subject fatigue and attentiveness.

Third, especially in the case ofπPOMDP-BIGRAM, rather than identifying the sequential patterns offline, it

would be helpful to estimate them online through the interaction with the human subject, since the

repositories such as novels may not be available for other task domains (e.g., navigating to places using

a BCI-controlled wheelchair). Fourth, we could incorporate recent results on optimizing the set of letters

to flash [23], [24] into the actions of the POMDP, extending therow and column flashes. Lastly, we

hope to eliminate the pilot session where we collect the subject-dependent training data for obtaining

the P300 classifier and constructing the POMDP model. A naive way that may achieve this is to use a

single global P300 classifier trained against a number of human subjects and use reinforcement learning

algorithms to learn the POMDP model while interacting with the human subject. However, even a higher

computational complexity remains as a challenge.

APPENDIX A

POMDPWITH OBSERVATION DELAY

The standard POMDP assumes that an observation is obtained before executing the action at the next

time step. But in some cases, the observation is not available for a number of time steps even though

we have to execute actions at every time step. We refer this situation to the POMDP with observation

delays [15]. In general, the time steps in the observation delay can be constant or probabilistic. In this

article, we only consider the constant time steps for the observation delays. In this case, a history of actions

and observations is given bya0, a1, . . . , ad, zd+1, ad+1, zd+2, . . . whered is the number of time steps in

the observation delay. Note that thezd+1 is the observation relevant to the environment state and action

at time step 0. Hence, we revise the definition of the belief state bt so that it is the probability distribution

of the statesd time steps ago in the past, and the belief state is updated bybt+1 = τ(bt, zt+1, at−d). This

update requires keeping track of the actions executed during the observation delay.
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The optimal value function of the POMDP withd-step observation delay is now defined by the equation

V ∗(b, a1, . . . , ad)

= max
a

[

∑

s0,...,sd

b(s0)
[

d−1
∏

i=0

T ai+1
si,si+1

]

Ra
sd

+ γ
∑

z

Pr(z|b, a1)V
∗(τ(b, a1, z), a2, . . . , ad, a)

]

,

wheread is the most recent action executed during the delay anda1 is the oldest action executed during

the delay. The first term in the right-hand side represents the expected immediate reward. The second

term represents the expected return after executing actiona. Note that the above value function depends

on the state distribution ofd time steps before and the actions executed during the observation delay.

To simplify the notation leta1:d be the series of actionsa1, . . . , ad so that we denote the optimal value

function asV ∗(b, a1:d). The optimal value functionV ∗ can be obtained by iterative dynamic programming

backup

Vn(b, a1:d) = max
a

[

∑

s0:d

b(s0)
[

d−1
∏

i=0

T ai+1
si,si+1

]

Ra
sd

+ γ
∑

z

Pr(z|b, a1)Vn−1(τ(b, a1, z), a2:d, a)

]

,

for every belief stateb ∈ ∆S and actions during the delaya1:d ∈ Ad. Moreover, it can be shown that the

value functionVn(b, a1:d) is piecewise linear and convex in belief space [15]. We can therefore represent

the value function using the set ofα-vectors for each possible actions executed during the delay: Γa1:d
n ,

∀a1:d ∈ Ad. Using this representation, the value of the belief stateb with actionsa1:d executed during

the delay is calculated by

Vn(b, a1:d) = max
α∈Γ

a1:d
n

b · α.

The setΓa1:d
n is computed iteratively. GivenΓa1:d

n−1 for all a1:d ∈ Ad, we generate intermediate setsΓa1:d,a,∗
n

andΓa1:d,a,z
n , ∀a ∈ A, ∀z ∈ Z such that

Γa1:d,a,∗
n =

{

α|α(s0) =
∑

s1:d

[

d−1
∏

i=0

T ai+1
si,si+1

]

Ra
sd

}

,

Γa1:d,a,z
n =

{

α|α(s) = γ
∑

s′∈S

T a1

s,s′Oz
s′,a1

α′(s′)

}

,∀α′ ∈ Γa2:d,a
n−1 .
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ThenΓa1:d
n =

⋃

a∈A Γa1:d,a
n whereΓa1:d,a

n = Γa1:d,a,∗
n ⊕ Γa1:d,a,z1

n ⊕ Γa1:d,a,z2
n ⊕ · · · . Hence everyαa1:d,a

n ∈

Γa1:d,a
n is computed by the equation

αa1:d,a
n (s0) =

∑

s1:d

[

d−1
∏

i=0

T ai+1
si,si+1

]

Ra
sd

+ γ
∑

s1

T a1
s0,s1

∑

z

Oz
s1,a1

αa2:d,a
n−1,z(s1),

where theα-vectorαa2:d,a
n−1,z for each observationz comes from the setΓa2:d,a

n−1

APPENDIX B

PERMUTABLE POMDPWITH OBSERVATION DELAY

We can exploit the symmetries in the model to speed up algorithms for finding an optimal policy [18],

[19]. Let the state permutationπ : S → S be a one-to-one and onto function. Theπ maps one state

ordering to another one. Let action permutationρ : A → A and observation permutationτ : Z → Z be

defined in the same manner. After applying the state permutation π to the belief stateb, we get reordered

belief statebπ, i.e. bπ(π(s)) = b(s). We can also apply the state permutation to theα-vector α, which

gives reorderedα-vectorαπ, i.e. απ(π(s)) = α(s). To simplify the notations, letρ(a1:d) be the permuted

action sequenceρ(a1), ρ(a2), . . . , ρ(ad).

Theorem 1:Given a state permutationπ, if there exists an action permutationρ and observation

permutationτ such that

(1) T a
s,s′ = T

ρ(a)
π(s),π(s′) ∀s, s′ ∈ S, a ∈ A

(2) Oz
s,a = O

τ(z)
π(s),ρ(a) ∀s ∈ S, a ∈ A, z ∈ Z

(3) Ra
s = R

ρ(a)
π(s) ∀s ∈ S, a ∈ A

Then for everyα-vectorα ∈ Γa1:d
n , there existsαπ ∈ Γ

ρ(a1:d)
n for all n ∈ {0, 1, 2, · · · }.

Proof: For n = 0, the theorem holds if we initializeΓa1:d

0 = {α = (Rmin
1−γ

) · ~1} for all a1:d ∈ Ad

so that everyΓa1:d

0 is initialized to be a singleton with a constant vector. This is the standard way of

initializing α-vectors in PBVI and other POMDP algorithms.

For n ≥ 1, suppose that the theorem holds forα-vector sets after the(n− 1)th value backup. We also

have that everyα-vectorαa1:d,a
n ∈ Γa1:d,a

n is computed by the equation

αa1:d,a
n (s0) =

∑

s1:d

[

d−1
∏

i=0

T ai+1
si,si+1

]

Ra
sd

+ γ
∑

s1

T a1
s0,s1

∑

z

Oz
s1,a1

αa2:d,a
n−1,z(s1)
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where theα-vectorαa2:d,a
n−1,z for each observationz comes from the setΓa2:d,a

n−1 . Hence, we can show that

αa1:d,a
n (s0)

=
∑

s1:d

[

d−1
∏

i=0

T
ρ(ai+1)
π(si),π(si+1)

]

R
ρ(a)
π(sd)

+ γ
∑

s1

T
ρ(a1)
π(s0),π(s1)

∑

z

O
τ(z)
π(s1),ρ(a1)

αa2:d,a
n−1,z(s1)

=
∑

s1:d

[

d−1
∏

i=0

T
ρ(ai+1)
π(si),π(si+1)

]

R
ρ(a)
π(sd)

+ γ
∑

s1

T
ρ(a1)
π(s0),π(s1)

∑

z

O
τ(z)
π(s1),ρ(a1)

α
ρ(a2:d),ρ(a)
n−1,z (π(s1))

= αρ(a1:d),ρ(a)
n (π(s0)).

The first equality is obtained after applying the conditions for the permutability. The second equality

follows from the inductive assumption. The last equality follows from the definition. Therefore, for every

α-vector α ∈ Γa1:d
n , there existsαπ ∈ Γ

ρ(a1:d)
n becauseΓa1:d

n =
⋃

a Γa1:d,a
n . By mathematical induction,

this theorem holds.

Theorem 1 implies an important property that, if there existsat least one permutationπ satisfying all

conditions on theorem 1, we only need to maintain eitherΓa1:d
n or Γ

ρ(a1:d)
n because we can reproduce

one α-vector set from the other set. In other words, given beliefb and actionsρ(a1:d) during the

delay,Vn(b, ρ(a1:d)) can be computed by using the setΓa1:d
n = {απ|α ∈ Γa1:d

n }. Note that this explicit

reproduction of the set by permuting everyα-vector is not necessary. We can compute the value by

Vn(b, ρ(a1:d)) = max
α∈Γ

a1:d
n

bπ−1

· α

wherebπ−1

is the reordering of beliefb using the inverse mapping of permutationπ.

Corollary 2: Let Ad be the set of all action sequences that can be executed duringthe observation

delay and∼ be a relation wherea1:d ∼ a′1:d if and only if there exists a state permutationπ with

correspondingρ and τ that satisfy the conditions in Theorem 1 andρ(a1:d) = a′1:d. Then Ad can be

partitioned into equivalence classes induced by the relation ∼.

Proof: We show that∼ is an equivalence relation by showing its reflexivity, symmetry, and transitiv-

ity. Reflexivity: the identity mapping forπ, ρ, andτ satisfies all the conditions in Theorem 1. Symmetry:

there always exists the inverse mapping ofπ, ρ, andτ since they are permutations and hence one-to-one

and onto functions. Transitivity: suppose thata1:d ∼ a′1:d and a′1:d ∼ a′′1:d. This implies that there exist

〈π, ρ, τ〉 with ρ(a1:d) = a′1:d and〈π′, ρ′, τ ′〉 with ρ′(a′1:d) = a′′1:d that satisfy the conditions in Theorem 1.
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Let π′′ = π′ ◦ π, ρ′′ = ρ′ ◦ ρ, and τ ′′ = τ ′ ◦ τ . It is quite straightforward to show thatπ′′, ρ′′, and τ ′′

satisfy the conditions in Theorem 1 withρ′′(a1:d) = a′′1:d.

Corollary 2 implies that we only need to maintain oneα-vector set for all theα-vector sets whose

action sequences during observation delay are within the same equivalence class.

APPENDIX C

PERMUTABLE POMDPALGORITHM FOR P300 BCIS

Now consider the POMDP model for the P300 BCI where the observation delay is 2 time steps. Since

each action in the POMDP model is relevant to only one state, astate permutation readily yields the

corresponding action permutation. For example, given action a = flashrow#1, state permutationπ maps

the action toaπ = flashπ(row#1). We specifically consider the following set of permutations:

Theorem 3:Let Ψ = {〈π, ρ, τ〉| for any π, ρ(a) = aπ,∀a ∈ A, τ(z) = z,∀z ∈ Z}. 〈π, ρ, τ〉 ∈ Ψ

satisfies all the conditions in Theorem 1.

Proof: 〈π, ρ, τ〉 ∈ Ψ does not change the transition probabilities and rewards, sinceρ does not change

the type of the action between flash and select. It also does notchange the observation probabilities,

sinceπ and ρ do not change the action between target flash and non-target flash, and observations do

not change viaτ .

A minor note about the above theorem is thatΨ can be a subset of all the permutations that satisfy

the conditions in Theorem 1. However,Ψ is straightforward to obtain without using an algorithm [19],

and we found it to be sufficient to speed up the POMDP algorithm.

Using permutations inΨ, the set of all action sequences during the delay (a total of 144 action

sequences) is partitioned into equivalence classes by Corollary 2. We now need to maintain only one

α-vector set for each equivalence class. There are 8 equivalence classes:(flashx, flashx), (flashx, flashy),

(selectx, flashx), (selectx, flashy), (flashx, selectx), (flashx, selecty), (selectx, selectx), (selectx, selecty)

wherex, y ∈ S andx 6= y. Therefore we have only to maintain 8α-vector sets for representing the whole

144α-vector sets. For each equivalence class, we used theα-vector set with the lexicographic minimum,

e.g.Γflashrow#1,flashrow#2 for the equivalence class(flashx, flashy) and the corresponding action sequence is

referred to as the representative action sequence of the equivalence class, e.g.flashrow#1, flashrow#2 for

(flashx, flashy). To compute valueVn(b, a1:d), we identify 〈πeq, ρeq, τeq〉 ∈ Ψ such thatρeq(a1:d) = a′1:d

wherea′1:d is the representative action sequence of the equivalence class ofa1:d. There are more than
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one such permutations, and we only have to identify one. We then have

Vn(b, a1:d) = max
α∈Γ

a′

1:d
n

bπeq
· α.

We can further reduce the sizes ofα-vector setsΓa1:d
n ’s using a technique similar to permutable

POMDPs [18]: LetΨa1:d ⊆ Ψ be the set of all permutations such thata1:d ∼ a1:d. According to

Theorem 3 and 1, for any〈π, ρ, τ〉 ∈ Ψa1:d and α ∈ Γa1:d
n , we haveαπ ∈ Γa1:d

n as well. Specifically,

let S−a1:d be the set of states irrelevant to actions ina1:d. For example,S−{flashrow#1,flashrow#2} =

{row#3, row#4, row#5, row#6} since the actions are only relevant to row#1 and row#2. Note that

Ψa1:d is the set of all permutations inΨ that can only possibly change the state inS−a1:d . This is

because, for〈π, ρ, τ〉 ∈ Ψ, if π changes states relevant to actions ina1:d, then 〈π, ρ, τ〉 /∈ Ψa1:d since

a1:d 6= ρ(a1:d). Hence, ifα is in Γa1:d
n , then all its possible permutations on the statesS−a1:d are also

in Γa1:d
n . Therefore, rather than computing and storing all suchα-vectors inΓa1:d

n , we maintain a single

α-vector that represents the rest, which is obtained by sorting on the statesS−a1:d in the descending

order. This technique reduces the size ofΓa1:d
n by a factor of|Ψa1:d |, i.e. |Γa1:d

n,sort| = |Γa1:d
n |/|Ψa1:d |. Using

the parsimonious setΓa1:d
n,sort, we can compute the value by

Vn(b, a1:d) = max
α∈Γ

a1:d
n,sort

bsort · α

wherebsort is the belief sorted on the statesS−a1:d in the descending order.

Combining the two techniques is quite straightforward. We only maintainα-vector sets for representa-

tive action sequences and each representativeα-vector set maintainsα-vectors that are sorted on the state

S−a1:d . Given beliefb and actionsa1:d during the delay, we computeVn(b, a1:d) by the following method:

We first identify 〈πeq, ρeq, τeq〉 ∈ Ψ of which ρeq mapsa1:d to the representative action sequence in its

equivalence class. We then identify〈πsort, ρsort, τ sort〉 ∈ Ψρeq(a1:d) by sortingbπeq
on the statesS−ρeq(a1:d)

in the descending order. We then have

Vn(b, a1:d) = max
α∈Γ

ρeq(a1:d)

n,sort

b(πsort◦πeq) · α ,

and theα-vector that gives the maximum value can be obtained by

α∗ =

[

argmax
α∈Γ

ρeq(a1:d)

n,sort

b(πsort◦πeq) · α

](πsort◦πeq)−1

.

Note that the identifications of the permutations can be done implicitly without enumerating and

examining all the permutations inΨ and Ψa1:d . For example, ifa1:d = (flashrow#5, flashrow#3), we can

easily identify thatρeq(a1:d) = (flashrow#1, flashrow#2) since we have to map the action sequence to its
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lexicographic minimum. We then map the statesπ(row#5) = row#1 andπ(row#3) = row#2, and sortb

on the rest of the states in the descending order, which results in b(πsort◦πeq), and evaluate its inner-product

with the α-vectors inΓ
ρeq(a1:d)
n,sort to compute the value.

Figures 3, 4, and 5 show the pseudocode of the PBVI algorithm for finding an optimal policy of the

POMDP model for P300 BCI.Ba1:d in the pseudocode represents the set of belief states used for the

point-based backup where the action sequence executed during the delay wasa1:d. The belief states were

collected using the breadth-first traversal starting fromb0. However, we do not exhaustively collect all

the reachable belief states since there can be an infinite number of them - we stop the traversal when we

have collected a prescribed number of belief states. In addition, when we add a belief stateb into the

set, we instead addbsort which is sorted on the statesS−a1:d , following the idea discussed in the previous

paragraph.

The algorithm produces the setΓa1:d of α-vectors that represents the optimal value function for each

representative action sequencea1:d. Eachα-vector is associated with the optimal action to execute, which

is a∗ in Fig. 4. Hence, the execution of the optimal policy is carried out in a similar manner as the optimal

value function is computed, using the equation

V ∗(b, a1:d) = max
α∈Γa1:d

b · α. (5)

and selecting the action associated with the bestα-vector.

Note that when we execute the policy, the action sequence during the delay is of length less thand for

the initial d time steps. In this case, we maximize over the action sequences that agree with the actions

that are executed so far. For example, whend=2 and only one actiona was executed so far, we use the

value

V ∗(b, a) = max
a′

∑

s0,s1

b(s0)
[

T a
s0,s1

Ra′

s1

]

+ V ∗(b, a, a′). (6)

When no action was executed so far, we use

V ∗(b) = max
a′

∑

s0

b(s0)R
a′

s0
+ V ∗(b, a′). (7)

APPENDIX D

EXECUTION OF POMDP FLASH STRATEGIES

We briefly explain how we execute theπPOMDP using an example. Suppose that the first target letter

is M which is in row#3 (see Fig. 1). We start the row flash strategywith

b0 = [0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667]
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Using Eqn. 7, we determine the action that maximizes the valuefunction for b0. Suppose that the action

is a∗0 = flashrow#3. We thus flash row#3 and move on to the next flash epocht = 1. Since the P300

detection result ofa∗0 is not available untilt = 3, the belief state remains the same:

b1 = [0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667]

Using Eqn. 6, we determine the action that maximizes the valuefunction for b1. Suppose that the action

is a∗1 = flashrow#6. We thus flash row#6 and move on to the next flash epocht = 2. Since the first P300

detection result is still not available, the belief state remains the same:

b2 = [0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667]

Using Eqn. 5, suppose that the action that maximizes the valuefunction forb2 is a∗2 = flashrow#1. We thus

flash row#1 and move on to the next flash epocht = 3. The P300 detection result for flashing row#3 at

t = 0 is now available, and suppose that it is 0.9991 (z10). We update the belief state using Eqn. 1 so

that

b3 = [0.0669, 0.0669, 0.6654, 0.0669, 0.0669, 0.0669]

Note that the probability of row#3 being the target row is increased by the detection result, although

the exact numerical values may vary depending on the observation probabilities of the POMDP obtained

from the subject. Suppose that the action maximizes the valuefunction for b3 is a∗3 = flashrow#3. We thus

flash row#3 and move on to the next flash epocht = 4. The P300 detection result for flashing row#6 at

t = 1 is now available, and suppose that it is 0.002087 (z1). The updated belief state becomes

b4 = [0.0712, 0.0712, 0.7082, 0.0712, 0.0712, 0.0069]

Note that the detection result effectively lowers the probability of row#6 being the target row, while

increasing other rows by a small amount.

We continue alternating between updating the belief state using Eqn. 1 and executing the best action

using Eqn. 5. If the best action is one of the select actions, weterminate the flash strategy by selecting

the corresponding row as the target row, and then start the column flash strategy in a similar manner.
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Procedure: PERMUTABLE-BCI-PBVI(B, K, d, ǫ)
Inputs: the set of belief state setsB = {Ba1:d |representative action sequencea1:d}; repetition blindness
lengthK; observation delayd; error boundǫ
for all representative action sequencea1:d do

Initialize Γa1:d = {
(

Rmin
1−γ

)

·~1}

end for
repeat

for all representative action sequencea1:d do
Γa1:d

next = BACKUP(〈a1:d〉, K, d, Ba1:d , Γ)
end for
δ = difference(B,Γ, Γnext)
Γ = Γnext

until δ < ǫ
return Γ

Fig. 3
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Procedure: BACKUP(a1:d, K, d, Ba1:d , Γn−1)
Inputs: the action sequencea1:d; repetition blindness lengthK; observation delay length
d; belief state set Ba1:d ; set of α-vector sets for (n-1)-step value function Γn−1 =
{Γa1:d

n−1|representative action sequencea1:d}
Aallow = A − {ad−K+1:d} //avoid repetition blindness
for all belief stateb ∈ Ba1:d do

for all actiona ∈ Aallow do
αa = ~0
for all observationz ∈ Z do

b′ = τ(b, a1, z)
αa,z = FIND MAX ALPHA(b′, a2:d; a,Γn−1)
for all states ∈ S do

αa(s) = αa(s) + γ
∑

s′∈S T a
s,s′Oz

s′,aα
a,z(s′)

end for
end for
for all states0 ∈ S do

αa(s0) = αa(s0) +
∑

s1:d

(

∏d−1
i=0 T

ai+1
si,si+1

)

Ra
sd

end for
end for
a∗ = argmaxa∈Aallow

b · αa

α∗ = αa∗

αsort = sort α∗ on statesS−a1:d in descending order
Γa1:d

n = Γa1:d
n ∪ {αsort}

end for
return Γa1:d

n

Fig. 4
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Procedure: FIND MAX ALPHA(b, a1:d, Γn−1)
Inputs: belief stateb ∈ Ba1:d ; action sequencea1:d; set ofα-vector sets for (n-1)-step value function
Γn−1 = {Γa1:d

n−1|representative action sequencea1:d}
a′1:d = representative action sequence ofa1:d

compute〈πeq, ρeq, τeq〉 ∈ Ψ, and〈πsort, ρsort, τ sort〉 ∈ Ψa1:d such that
(1) ρeq(a1:d) ∼ a′1:d, and
(2) πsort is sortingbπeq

on statesS−a′

1:d in descending order
αa′

1:d = argmaxα b(πsort◦πeq) · α whereα ∈ Γ
a′

1:d

n−1

αa1:d = αa′

1:d
(πsort◦πeq)−1

return αa1:d

Fig. 5
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L IST OF TABLES

I Experimental results ofπRAND, πPOMDP, πPOMDP-BIGRAM . Abbreviations used in the table
are: PBR = practical bit rate measured in bits per minute, BR = bit rate measured
in bits per minute, ACC = accuracy measured in the percentage of letterscorrectly
spelled, Flashes = number of flashes per target letter selection along with its standard
deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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TABLE I

Subject
πRAND πPOMDP πPOMDP-BIGRAM

PBR BR Acc Flashes PBR BR Acc Flashes PBR BR Acc Flashes
A 36.483 36.483 100.00 24 38.965 38.965 100.00 21.9± 4.6 41.751 41.751 100.00 19.8± 6.1
B 9.541 9.541 100.00 120 26.452 26.452 100.00 36.9± 13.8 31.437 31.437 100.00 29.5± 7.9
C 4.051 6.481 81.25 120 6.718 8.957 87.50 96.8± 26.3 10.246 10.246 100.00 111.1±54.3
D 0.447 3.575 56.25 120 5.736 9.177 81.25 81.9± 24.7 12.912 12.912 100.00 86.1±72.4
E 6.765 9.020 87.50 96 6.136 8.181 87.50 106.9± 51.0 8.201 9.373 93.75 105.6±70.0
F 17.720 17.720 100.00 60 25.833 25.833 100.00 38.1± 9.6 32.359 32.359 100.00 28.4± 5.8
G 1.057 4.230 62.50 120 2.116 4.232 75.00 164.5±108.1 2.551 4.081 81.25 196.6±68.0
H 9.080 14.527 81.25 48 12.380 14.149 93.75 66.6± 17.4 13.713 15.672 93.75 59.1±22.7
I 16.331 18.664 93.75 48 27.212 27.212 100.00 35.6± 12.8 30.851 30.851 100.00 30.3±14.7
J 20.592 23.533 93.75 36 38.288 38.288 100.00 22.4± 4.8 43.873 43.873 100.00 18.3± 7.5

Avg. 12.206 14.377 85.63 - 18.984 20.145 92.50 - 22.790 23.256 96.88 -
s.d. 10.968 10.120 15.60 - 13.990 12.838 0.09 - 14.889 14.410 0.06 -
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