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ABSTRACT 
Most of the previous work on non-invasive brain-computer 
interfaces (BCIs) has been focused on feature extraction 
and classification algorithms to achieve high performance 
for the communication between the brain and the computer. 
While significant progress has been made in the lower layer 
of the BCI system, the issues in the higher layer have not 
been sufficiently addressed. Existing P300-based BCI sys-
tems, for example the P300 speller, use a random order of 
stimulus sequence for eliciting P300 signal for identifying 
users’ intentions. This paper is about computing an optimal 
sequence of stimulus in order to minimize the number of 
stimuli, hence improving the performance. To accomplish 
this, we model the problem as a partially observable Mar-
kov decision process (POMDP), which is a model for plan-
ning in partially observable stochastic environments. 
Through simulation and human subject experiments, we 
show that our approach achieves a significant performance 
improvement in terms of the success rate and the bit rate. 

Author Keywords 
P300, brain-computer interface (BCI), partially observable 
Markov decision process (POMDP) 

ACM Classification Keywords 
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INTRODUCTION 
A brain-computer interface (BCI) aims to provide a com-
munication channel for conveying messages and commands 
from the brain to the external system by interpreting brain 

activities [22]. There are a variety of devices and methods 
for BCI, including non-invasive methods such as using en-
cephalography (EEG). The EEG-based BCI is perhaps the 
most popular method to date, because it is relatively easy 
and cheap to set up the system [15]. One of the most relia-
ble signal features of EEG is the P300 evoked potential [14], 
which is a positive peak in the signal amplitude at about 
300ms after a stimulus is given to the user’s attention [6, 
22]. 

A number of BCI systems using P300 have been proposed 
in the literature, including the P300 speller [6]. In the P300 
speller system, the user faces a 6££6 matrix of letters, and 
the user gazes at one of the 36 letters that one desires to 
select. The letters in a row or a column are flashed (stimu-
lated) in a random order. If the letter that the user is gazing 
at flashes, P300 is generated at about 300ms later. We can 
thus train a classifier to detect this P300 to identify the de-
sired letter. Some BCI systems with a smaller matrix may 
flash one letter at a time, e.g., [3]. 

Figure 1 shows a typical setup of EEG-based BCIs. These 
traditional systems generate flashes in a random order. For 
example, the P300 speller generates the same number of 
flashes for every row and column in a random order. We 
can note that however, by determining the optimal sequence 
of flashes, we can identify the desired selection from a 
smaller number of flashes. For example, based on the histo-
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Figure 1. Human sitting in front of EEG-based BCI with a 
[2x3] stimulus matrix. 



 

ry of flashes and the P300 detection results, if the probabili-
ty that the first row contains the desired selection is very 
low compared to other rows, there is no reason to flash the 
first row. In contrast, if the probability is high for both the 
second and the third row, it is desirable to flash the second 
or the third row in order to resolve the uncertainty. Bell et 
al. [3] suggests that, since we can identify the most likely 
selection during flashes by maintaining a running sum of 
P300 classifier output, we may be able to reduce the num-
ber of flashes in identifying the desired selection. 

This paper presents a systematic approach to finding an 
optimal sequence of flashes in order to identify the desired 
selection using the fewest possible number of flashes in 
EEG-based BCIs. Determining the best flash sequence 
based on the accumulated results of P300 detection is 
viewed as a sequential decision making problem, and we 
adopt the partially observable Markov decision process 
(POMDP) model [11] for the representation of the problem. 
The POMDP model provides a rigorous framework for 
representing sequential decision making problems under 
limited sensory capabilities of agents. It perfectly fits our 
purpose since we have to deal with P300 classifier errors. 
Although it is computationally infeasible to find an optimal 
solution from POMDPs, the recent development of fast 
approximate algorithms such as point-based value iteration 
(PBVI) [16], and heuristic search value iteration (HSVI) 
[19], has made the POMDP approach practical for a wide 
variety of real-world applications such as spoken dialogue 
management [22] and assisted daily living [9]. 

Most of the previous works on EEG-based BCIs have been 
focused on the lower level of the interface. Whereas they 
are concerned with better feature extraction or classification 
methods for detecting single P300 from EEG while relying 
on a simple, random order of flashes, our focus is on find-
ing an optimal sequence of flashes given a P300 classifier 
which is already implemented. Hence our work addresses 
the higher level of the interface, which is an important but 
currently missing part for an effective BCI. 

BACKGROUND 
In this section, we briefly review the facts about P300 in 
EEG and the common settings used in EEG-based BCIs 
which we will also be adopting in our work. We also review 
the standard definition of POMDPs for the sake of present-
ing our work. 

Electroencephalography (EEG) and P300 Interfaces 
EEG signals are the electrical signals recoded from the 
scalp and produced by the electrical activity of neurons in 
the brain. The electric potentials reflect the summation of 
the synchronous electrical activity of thousands or millions 
of neurons that are near the electrode for recording the EEG 
signals [20]. 

Event related potential (ERP) is elicited by an infrequent or 
particularly significant somatosensory stimulus. P300 is the 
positive peak component of ERP at about 300ms after the 

stimulus [6, 22]. P300 is known as one of the most reliable 
signals for composing BCI systems. However, the P300 
elicited by the stimulus cannot be obtained easily, because 
EEG captures the brain activities from numerous sources 
and the P300 may be buried deeply [8]. Fortunately, there 
exist several P300 feature extraction methods and classifi-
cation methods for detecting the P300 component of ERP. 
The feature extraction methods include the averaging of 
EEG signals [8], the Mexican hat wavelet [8, 17], and the 
spatial filter algorithm [10]. Once the relevant features are 
extracted, classification methods such as Fisher’s linear 
discriminant, stepwise linear discriminant analysis 
(SWLDA), and support vector machine (SVM) [13] are 
used to detect the existence or absence of P300 in the EEG. 

BCI systems based on P300 have a typical architecture as 
shown in Figure 2. There are components for stimulus gen-
eration, signal acquisition, preprocessing, and translation. 
The stimulus generator component gives stimuli to a user to 
elicit P300 on the desired situation. The signal acquisition 
component records the EEG signal for the given stimulus. 
The preprocessing component carries out feature extraction 
for detecting P300 from the given EEG signal. The transla-
tion component classifies the existence of P300, and sends 
appropriate commands to the external devices. 

Partially Observable Markov Decision Processes 
(POMDPs) 
A POMDP is a mathematical model for sequential decision 
making problems under uncertainty in the observation. It is 
defined by 8-tuple hS; A; Z; b0; T; O; R; °ihS; A; Z; b0; T; O; R; °i: SS  is the set of 
environment states; AA is the set of actions available to the 
agent; ZZ  is the set of all possible observations; b0b0  is the 
initial belief where b0(s)b0(s) denotes the probability that the 
environment starts in state ss; TT  is the transition probability 
where T (s; a; s0)T (s; a; s0) denotes the probability that the environ-
ment changes from state ss to state s0s0 when executing action 
aa; OO is the observation probability where O(s; a; z)O(s; a; z) denotes 
the probability that the agent makes observation zz  when 
executing action aa and arriving at state ss; RR is the reward 
function where R(s; a)R(s; a) denotes the reward received by the 
agent when executing action aa in state ss; °° is the discount 
factor such that 0 · ° · 10 · ° · 1. 

Figure 2. A typical architecture of the P300-based BCIs.



Since we assume that the agent cannot directly know the 
environment state, it maintains the probability distribution 
of the states based on the history of observations and ac-
tions. The probability distribution is defined as a belief state 
bb  where bt(s)bt(s) denotes the probability that the state is ss at 
time-step tt. The belief state btbt can be regarded as the post-
erior distribution of states given the initial belief b0b0 and the 
history fa0; z1; a1; z2; : : : ; at¡1; ztgfa0; z1; a1; z2; : : : ; at¡1; ztg: 

bt(s) = P (St = sja0; z1; a1; z2; : : : ; at¡1; zt)bt(s) = P (St = sja0; z1; a1; z2; : : : ; at¡1; zt) 

Upon execution action atat  and making observation zt+1zt+1 in 
belief state btbt, the belief state  bt+1 = ¿(bt; at; zt+1)bt+1 = ¿(bt; at; zt+1) at the 
next time-step is computed by the Bayes rule, 

bt+1(s
0) =

O(s0; at; zt+1)
P

s2S T (s; at; s
0)bt(s)

P (zt+1jbt; at)
bt+1(s

0) =
O(s0; at; zt+1)

P
s2S T (s; at; s

0)bt(s)

P (zt+1jbt; at)
, 

where P (zt+1jbt; at)P (zt+1jbt; at) is the normalizing constant such that P
s bt+1(s) = 1

P
s bt+1(s) = 1. 

A policy determines the actions to be executed by the agent. 
Specifically, a policy ¼¼ of a POMDP can be defined as a 
mapping from belief states to actions, i.e., ¼ : ¢S ! A¼ : ¢S ! A . 
Every policy has an associated value function, which is (in 
the case of infinite horizon problems) the expected cumula-
tive discounted reward by following the policy starting 
from a given belief state. When solving a POMDP, we 
search for an optimal policy that maximizes the value for 
each belief state. The maximum value for the belief state 
can be computed recursively 

V ¤(b) = max
a

"
R(b; a) + °

X
z

P (zjb; a)V ¤(¿ (b; a; z))

#
V ¤(b) = max

a

"
R(b; a) + °

X
z

P (zjb; a)V ¤(¿ (b; a; z))

#
 , 

where P (zjb; a) =
P

s0 O(s0; a; z)
P

s T (s; a; s0)b(s)P (zjb; a) =
P

s0 O(s0; a; z)
P

s T (s; a; s0)b(s)  and 
R(b; a) =

P
s R(s; a)b(s)R(b; a) =

P
s R(s; a)b(s). The optimal value function V ¤V ¤ 

can be obtained by a series of dynamic programming back-
up 

Vt(b) = HVt¡1(b)

= max
a

"
R(b; a) + °

X
z2Z

P (zjb; a)Vt¡1(¿(b; a; z))

#Vt(b) = HVt¡1(b)

= max
a

"
R(b; a) + °

X
z2Z

P (zjb; a)Vt¡1(¿(b; a; z))

#
 , 

for every belief state b 2 ¢Sb 2 ¢S . We can also derive that value 
function VtVt  is piecewise linear and convex, hence it is 
represented as a set of ®®-vectors ¡t = f®1; : : : ; ®mg¡t = f®1; : : : ; ®mg and 
the value at a particular belief state bb is calculated as 

Vt(b) = max
®2¡t

X
s2S

®(s)b(s)Vt(b) = max
®2¡t

X
s2S

®(s)b(s) . 

Once we compute the optimal value function V ¤V ¤, the op-
timal policy is obtained by 

¼¤(b) = arg max
a

"
R(b; a) + °

X
z

P (zjb; a)V ¤(¿ (b; a; z))

#
¼¤(b) = arg max

a

"
R(b; a) + °

X
z

P (zjb; a)V ¤(¿ (b; a; z))

#
. 

Since there are infinitely many belief states, it is intractable 
to compute the optimal value function and the optimal poli-
cy. Some of the POMDP algorithms such as the witness 
algorithm [11] exploit the piecewise linear and convex 
property of value functions, but they are still limited to 
problems of small sizes. Instead, we settle for approximate 
algorithms such as point-based value iteration (PBVI) [16] 
or heuristic search value iteration (HSVI) [19], which focus 
the computational effort around the reachable belief states. 
These approximate algorithms are scalable, yet the solu-
tions found are almost optimal in various benchmark 
POMDP problems. A complete review of exact and approx-
imate algorithms for POMDPs is outside the scope of this 
paper, so we refer the readers to the references mentioned 
above.  

SYSTEM ARCHITECTURE 
Figure 3 shows the architecture of our BCI system. It is 
similar to the system described in Bell et al. [3], except that 
our system uses the POMDP policy for determining which 
letter to flash (stimulate). 

The flash scheme of our system follows the paradigm simi-
lar to that of the P300 speller system: The user gazes at the 
target letter and the letters in the matrix are flashed in 
250ms intervals, one letter at a time. Each flash turns on the 
letter for 125ms and turns off for another 125ms. A test 
consists of a series of flashes for identifying the target letter, 
and a pause interval of 2.5s is given between consecutive 
tests. 

Figure 3. The architecture of our POMDP-based BCI sys-
tem. ‘f’ is a feature vector, ‘z’ is the output from the P300 
classifier and also the observation of POMDP, ‘b’ is the 
current belief, ‘a’ is the action to flash a letter or make a 
decision (i.e. conveying a command to device), ‘c’ is the 

command issued to a back-end device, and ‘E’ is the EEG 
signal. 



 

The EEG signals are acquired by the Biopac MP 150 data 
acquisition system [2] from 16 channels with 1kHz sam-
pling rate. An epoch of EEG signals corresponding to a 
flash is the window of the 16-channel signal data between 
200ms and 450ms after the flash is given (Figure 4), since 
P300 is expected to appear approximately at 300ms after 
the stimulus. 

This epoch data is fed into the preprocessor to extract rele-
vant features from the raw signal data, and then passed to 
the classifier to detect the existence of P300. The output of 
the classifier is used as the observation of the POMDP 
planner, which will perform the belief update and decide 
which letter to flash. In this section, we provide the details 
on how the preprocessor and classifier are constructed. The 
description of the POMDP planner deserves a separate sec-
tion since it is the central component of our system. 

Preprocessor 
In order to construct the preprocessor and the classifier, we 
first prepare the training data consisting of P300 epoch in-
stances each labeled either a target or a non-target. This 
training data is gathered using the same flash scheme out-
lined earlier in this section.  

Since the raw signals contain a significant amount of high 
frequency noise, they are band-pass filtered (0.5-30Hz) 
with a 6th order Butterworth filter and down-sampled to 
100Hz. We then extract features from the epoch data using 
the spatial projection algorithm [10]. This algorithm gene-
rates a set of filters which maximally discriminates between 
target and non-target epoch instances in the training data. 
More formally, given mm channels and nn time points of an 
epoch, the spatial projection algorithm generates a maxi-
mum of mm linear filters. Each filter linearly transforms the 
epoch data from multi-channel (i.e. epoch) to one virtual 
channel. Each filter fjfj (an mm-dimensional column vector) is 
said to have discriminative power djdj, which is the value of 
Fisher criterion for linearly separating the target and the 
non-target instances in the training data. Given an epoch 
instance EiEi (an m£ nm£ n matrix) for the ii-th flash, the feature 
vector of the epoch using filter fjfj is computed by fT

j EifT
j Ei (an 

nn-dimensional row vector). The exact number of filters is 
usually determined by cross-validation. In our case, we 
limit the maximum number of filters to 5, since this number 
was sufficiently large for most of the subjects participating 
in this study and guaranteed timely processing of data for 
the computational resource available. 

Classifier 
To identify whether an epoch instance contains P300, we 
trained a classifier on the preprocessed feature vectors using 
the LIBLINEAR package [5]. Specifically, we used the L2-
regularized logistic regression to map the binary output to a 
real value between 0 and 1, which represents the posterior 
probability that the feature vector is a target (i.e., the epoch 
contains P300). The parameters of the classifier are decided 
by 5-fold cross-validation on training data. 

POMDP PLANNER 
The POMDP planner plays the central part of our BCI sys-
tem. In order to compute the optimal sequence of flashes 
using POMDP, we first need to model the problem. Once 
the modeling is done, we use a POMDP algorithm to obtain 
an optimal policy, which will determine the flash sequence. 
However, our approach is more sophisticated than plain 
models and algorithms since we have to take into account 
some important constraints of the system, such as the delay 
in the P300 (the relevant observation is not available 
throughout the next two flashes) and the repetition blind-
ness (P300 may not be elicited if two flashes is given on a 
target letter within 500ms). 

POMDP Modeling of BCI 
Our problem in hand is to find the target letter as accurately 
as possible while using as a small number of flashes as 
possible. Conceptually, this problem can be considered as 
an extension of the tiger problem in the POMDP literature 
[11], where the number of doors matches the number of 
letters in the stimulus matrix. The exact description is given 
below. 

Let NN  be the number of letters in the matrix. In this paper, 
we consider [2x2] and [2x3] matrices, hence N = 4N = 4  and 
N = 6N = 6, respectively. The states in the POMDP correspond 
to the target letters, hence a total of NN  states. For each letter 
in the matrix, we can either flash it in the hope of detecting 
P300 (NN  flash actions) or claim that it’s the target letter (NN  
select actions), hence a total of 2N2N  actions. The output val-
ue from the P300 classifier serves as the observation, where 
the real value between 0 and 1 is discretized into intervals 
of size 0.1 (e.g., z1z1 for the output value in [0.0, 0.1), z2z2 for 
the output value in [0.1,0.2), etc.), hence a total of 10 ob-
servations. 

To make the system identify the target letter as soon as 
possible, we give -0.1 reward for the flash actions, +1 re-
ward for the select actions that make a correct claim of the 
target letter, and -10 rewards for the select actions that in-
correctly make a claim on a non-target letter.  

We define the transition probability for each flash action as 
an identity matrix: we assume that the target does not 
change to some other letter within a test. Hence, we assign 
the transition probability of 1 if the state at the current time 
step is the same as the state at the next time-step, and 0 if 
the state at the current time-step is different from the state 
at the next time-step. For select actions, the transition prob-

Figure 4. Time course of stimulus events and the correspond-
ing epochs in EEG signals. 



abilities are uniform: we assume that the target letter will 
reset to any letter in the matrix with the same probabilities 
between consecutive tests. 

The errors in the P300 classification results are modeled as 
observation probabilities. Specifically, we assume that the 
classifier output follows the beta distribution when flashing 
the target letter. The parameters ®® and ¯̄  of the beta distri-
bution are obtained from the training data. We also assume 
that the distribution of output values when flashing a non-
target letter is symmetric to the case when flashing the tar-
get letter. Hence, if ®target®target  and ¯target¯target  are the parameter 
values of the beta distribution for flashing the target letter, 
we set ®non-target = ¯target®non-target = ¯target  and ¯non-target = ®target¯non-target = ®target  for 
the beta distribution for flashing a non-target letter. Since 
these parameter values are different among the subjects, 
and POMDP algorithms take hours to find the optimal poli-
cy, we set the observation probability to 9 (and 11) different 
beta distributions that can appear in the human experiments 
on the system with [2x2] (and [2x3]) matrix. Hence, we 
have 9 (and 11) POMDP models with different observation 
probabilities for [2x2] (and [2x3]). The discount rate is set 
to 0.99, and the initial belief is set to the uniform distribu-
tion. This completes the specification of the POMDP model. 

We briefly summarize how the model works. The state cor-
responds to the target letter in the current test, of which the 
BCI system does not have the direct knowledge. Hence, the 
system has to infer which letter is the target by some se-
quence of flash actions and the corresponding classification 
output values. When the system flashes a letter, and if the 
letter happens to be the target, then the probability is high 
for the classification output value close to 1. If the letter 
happens to be a non-target, then the probability is high for 
the classification output value close to 0. Thus, from a flash 
action and the corresponding classification output value 
(i.e., observation), the system can infer the probability dis-
tribution on target letters using the belief state of the 
POMDP. If a letter has a significant probability to be the 
target, the system repeatedly flashes the letter to increase 
the certainty that the letter is indeed the target. If the proba-
bility gets higher than some threshold, the system selects 
the letter as the target to maximize the expected return. 

Solving the POMDP model 
When we obtain the POMDP policy that determines the 
flash sequence, we have to address two constraints that 
come from the nature of the P300, namely the delay in P300 
and the repetition blindness. We describe how these con-
straints are handled while implementing the POMDP algo-
rithm. 

Delay in P300 
Standard definition of POMDPs assumes that the relevant 
observation is obtained before the execution of the next 
action. This assumption does not hold in our BCI system. 
As shown in Figure 4, the relevant P300 epoch ends at 
450ms after the flash. Since a small amount of additional 

delay is incurred by the data acquisition system, the prepro-
cessor and the classifier, the observation is available at al-
most 510ms after the flash. Hence, the relevant observation 
is not available throughout the next two actions.  

We can handle this constraint by using POMDPs with de-
layed observations [1]. Solving the model essentially re-
quires finding the best action sequence of size equal to the 
delay in time-steps (in our case, sequence of length 2) dur-
ing each dynamic programming backup, in contrast to find-
ing the best single action in standard POMDPs without de-
layed observations. 

Repetition blindness 
The repetition blindness refers to the situation where P300 
may not be elicited when two flashes on the target letter are 
given within 500ms [7, 12]. For example, when the target 
letter “A” is flashed and the “A” is flashed again within 
500ms, the EEG signal corresponding to the second flash 
may not contain P300. A simple way to avoid this pheno-
menon is to make sure that the flash is not given on the 
same letter within 500ms. Since our flash scheme makes 
two flashes in 500ms, the flash at the current time-step 
should be different from the previous two flashes. In terms 
of our POMDP model, the action at the current time-step 
should be different from the previous two actions. 

This constraint can also be handled by modifying the stan-
dard dynamic programming backup operation in POMDP 
algorithms: when we compute the best action that yields the 
best value, we only consider the actions that were not ex-
ecuted in the previous two time-steps. 

POMDP algorithm for BCI 
We now present our implementation of POMDP algorithm 
that addresses the P300 delay and the repetition blindness. 

Basically our implementation is a modified version of the 
PBVI algorithm [16], which we refer to as BCI-PBVI. Fig-
ure 5 shows the main loop of the algorithm. As in PBVI, 
this algorithm requires the set BB of randomly sampled be-
lief states (i.e., belief set) for restricting the dynamic pro-
gramming backup to those belief states (i.e., point-based 

Figure 5. Top-level pseudocode of BCI-PBVI. 

Algorithm BCI-PBVI(B, K, D, ²)

INPUTS: belief set B; attentional blink length K;

observation delay D; required precision ²

for all action sequence ha1; : : : ; aDi of length D do

Initialize ¡a1;:::;aD
= f~0g

end for

repeat

for all action sequence ha1; : : : ; aDi of length D do

¡0a1;:::;aD
= backup(B;K; D; ¡; a1; : : : ; aD)

end for

± = di®erence(B; ¡; ¡0)

¡ = ¡0

until ± < ²

return ¡

Algorithm BCI-PBVI(B, K, D, ²)

INPUTS: belief set B; attentional blink length K;

observation delay D; required precision ²

for all action sequence ha1; : : : ; aDi of length D do

Initialize ¡a1;:::;aD
= f~0g

end for

repeat

for all action sequence ha1; : : : ; aDi of length D do

¡0a1;:::;aD
= backup(B;K; D; ¡; a1; : : : ; aD)

end for

± = di®erence(B; ¡; ¡0)

¡ = ¡0

until ± < ²

return ¡



 

backup). Whereas the standard PBVI maintains the best ®®-
vector and the corresponding best action for each sampled 
belief, the BCI-PBVI maintains ®®-vector for all length-DD 
action sequences for each sampled belief state. It is like 
computing the action-value function rather than the state-
value function. This is necessary in order to prevent the 
same action being executed within KK  time-steps, i.e., han-
dle repetition blindness. 

For every possible length-DD action sequence, we update the 
corresponding set of ®®-vectors using the backup procedure. 
Figure 6 shows the pseudocode of the procedure, and it is 
the central part of our algorithm. Assuming that the current 
time-step is TT , we first compute the set AallowAallow of actions 
that are allowed to execute at time-step T + DT + D, i.e., the set 
of actions except those appearing in the last KK  steps in the 
sequence. Among the set of ®®-vectors that are computed in 
the previous iteration, only those with action sequences 
ending with allowed actions are valid ®® -vectors for the 
backup. The first loop in the pseudocode carries out this 
task. The second loop performs the actual point-based 
backup on the belief set BB. For action sequence a1a1,…,aDaD, 
and a belief state bb, we compute ®b®b such that 

P
s b(s)®b(s)

P
s b(s)®b(s) 

is the maximum expected value gathered after DD-steps in 
the future, if, starting from the current belief state bb , we 
execute the action sequence a1a1 ,…,aDaD . Cautious readers 
may question that ®b®b should also consider the rewards ga-
thered within DD-steps in the future, but as we will see short-
ly, it is not necessary to do so. 

Belief update 
Assume that, at time-step tt , we have executed an action 
sequence at¡Dat¡D ,…,at¡1at¡1 , and deciding which action atat  to 
execute. According to the definition of  ®®-vectors in BCI-
PBVI, we cannot use the current belief state btbt. Instead, we 
need the belief state bt¡Dbt¡D of DD-steps in the past, and this is 
the belief state we maintain while executing the policy. 

Once we execute atat and observe ztzt, the belief state bt¡Dbt¡D is 
updated by 

bt¡D+1(s
0) =

O(s0; at¡D; zt)
P

s T (s; at¡D; s0)bt¡D(s)

P (ztjbt¡D; at¡D)
bt¡D+1(s

0) =
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where P (ztjbt¡D; at¡D)P (ztjbt¡D; at¡D) is the normalizing constant. Hence, 
in order to perform appropriate belief update, we need to 
remember the past belief state bt¡Dbt¡D as well as the action 
sequence at¡Dat¡D,…,at¡1at¡1. 

Optimal action selection 
At this point, selecting the optimal action for execution is 
quite straightforward. Assume once again that, at time-step 
tt, we have executed an action sequence at¡Dat¡D,…,at¡1at¡1, and 
deciding on which action atat to execute. Since we have the 
belief state bt¡Dbt¡D at hand, we compute 

P
s bt¡D(s)®(s)

P
s bt¡D(s)®(s) for 
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8® 2 ¡at¡D;:::;at¡1

, and execute the best action associated 
with the ®®-vector that yields the best value. 
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Figure 6. The backup operator for BCI-PBVI. 



SIMULATION EXPERIMENTS 

Methods 

Baseline 
The baseline method follows a flash sequence decided by 
random order and hence it is equivalent to the method used 
in traditional BCI systems including Bell et al. [3]: the flash 
sequence is randomized among the letters that are not 
flashed within the current trial, where the trial refers to a 
subsequence of length equal to the letters in the matrix, 
hence each letter is flashed once per trial. However, our 
baseline method additionally takes repetition blindness into 
account: if a letter was flashed within 500ms, it will not be 
considered as a candidate for the current flash. The decision 
is made by the total score from the classifier: the output 
value of the classifier is regarded as the posterior probabili-
ty, and the letter with the largest sum throughout trials is 
selected as the target letter. Hence, the method can be 
stopped at the end of any trial during a test, and determine 
the most likely target letter. The total score of a letter can 
be regarded as the posterior probability of being the target 
letter given the history of flashes and classifier output val-
ues. Note that the baseline method has no explicit “stop and 
select” decision making mechanism. 

POMDP with select actions (PWSA) 
The PWSA method uses the optimal flash policy computed 
from POMDP. The select actions represent the explicit de-
cision making mechanism. 

POMDP without select actions (PWOSA) 
The PWOSA method uses the same set of actions as PWSA 
except the select actions. When stopped, we determine the 
target letter with the highest belief state probability. We 
prepared this method for the sake of performance compari-
son with the baseline method when the same number of 
flashes is used. Ideally, this method will be more efficient 
than the baseline method in terms of the number of flashes 
because the flash sequence is determined by the POMDP 
policy, rather than by some random distribution. Concep-
tually, this method can be considered as an optimal policy 
from a POMDP model with negative infinite rewards for 
selecting an incorrect target letter. 

Setup 
We performed 20 simulations on [2x2] and [2x3] matrices, 
each simulation consisting of 10000 tests. Output values 
from the classifier (i.e. observations) are sampled from the 
beta distribution with parameters ®target®target  = ¯non-target¯non-target  = 
1.228 and ¯target¯target  = ®non-target®non-target  = 0.625, which were ob-
tained from the pilot experiment involving one of the hu-
man subjects. 

Each test consists of 40 flashes for the [2x2] matrix and 60 
for the [2x3] matrix. For the baseline method, these num-
bers correspond to 10 observations for each letter in the 
matrix, whereas the PWSA and PWOSA methods may have 
different number of observations for each letter. Note also 

that the baseline and PWOSA methods run until the test 
ends, whereas the PWSA method can terminate early when 
the final select action is executed. 

Measurements 
We measured the performance of each method using the 
success rate and the bit rate. 

Success rate 
The success rate is defined by the percentage of tests in the 
simulation with correct identification of the target letters. 
We stopped the methods at the end of each trial (4 flashes 
for [2x2] and 6 flashes for [2x3]), and measured the success 
rate. Note that the PWSA method can terminate before the 
specified number of flashes. In this case, we extended the 
results until the end of tests. For example, if the PWSA 
method terminated during the 5th trial with an incorrect 
target letter, the method is regarded as selecting an incorrect 
target letter for all subsequent trials, and vice versa. 

For all three methods, if the method has the same total score 
or the same maximum belief value for KK  letters, we gave a 
partial success of 1=K1=K . 

Bit rate 
The bit rate represents the quantity of transferred informa-
tion per unit time during communication [18, 21]. The bit 
rate is defined as B ¢DB ¢D, where BB is the number of bits per 
decision and DD is the number of decisions per unit time. Let 
NN  be the total number of letters in the matrix and PP  be the 
success rate. Then we have 

B = log2 N + P log2 P + (1¡ P ) log2

1¡ P

N ¡ 1
B = log2 N + P log2 P + (1¡ P ) log2

1¡ P

N ¡ 1
 . 

In order to measure DD, we used the following scheme: For 
the baseline method, since the decision has to be delayed 
(260ms) until the result of the last flash is available, we add 
the delay to the time spent on flashes. For example, if we 
have flashed 40 times, then the total time spent for the deci-
sion is calculated as 250ms * 40 flashes + 260ms. For the 
PWSA and PWOSA methods, since it takes an additional 
115ms delay for updating the belief state, we add a delay of 
375ms to the time spent on flashes. For example, if we have 
flashed 40 times, the total time for the decision is 250ms * 
40 flashes + 375ms. DD is calculated as the reciprocal of the 
total time. 

Since the bit rate changes depending on the success rate, we 
calculated the bit rates for different success rates. The tra-
deoff here is that we can improve the success rate by in-
creasing the number of flashes, but more time is according-
ly spent per decision. For the PWSA method, since it has its 
own explicit termination mechanism, we will report only 
one value for the bit rate measurement. 

Results 
Figure 8 shows the success rate results for the three me-
thods. The performance gap between the baseline method 



 

and the PWSA/PWOSA method is larger in the [2x3] ma-
trix than in the [2x2] matrix. We conjecture that the per-
formance gap will become even larger when we experiment 
on larger stimulus matrices. The baseline and the PWOSA 
methods will converge to a 100% success rate as the num-
ber of flashes goes to infinity. In contrast, the success rate 
of the PWSA method doesn’t due to the bias inherent in the 
reward function. However, having an infinite number of 
flashes is not a practical assumption, and this kind of bias is 
necessary if we ever want the method to have some explicit 
termination mechanism. In our experiments, the PWSA 
method converges to a success rate close to 100% very 
quickly when forced not to terminate before the specified 
number of flashes, which is sufficient to demonstrate the 
validity of our approach. Figure 7 shows the bit rate results. 
The PWOSA method is always significantly better than the 
base line method. The PWSA method yields the success 
rates of 0.980 for [2x2] and 0.977 for [2x3], which corres-
pond to 23.840 bits/min and 23.080 bits/min respectively. 
Table 1 summarizes the bit rate results of the three methods. 
Comparing the bit rates at the best achievable success rates, 
the PWSA method improves the bit rates by 220% to 249%. 
Comparing to the best bit rates achievable by the baseline 
method 1 , the PWSA method achieves improvements of 
126% to 158%.  

                                                           
1 The baseline and PWOSA methods can achieve higher bit 
rates by lowering the success rate, but we set the minimum 
to 75% since we also want a sufficiently high success rate. 

HUMAN SUBJECT EXPERIMENTS 

Subjects and Experimental Setup 
Nine (9) able-bodied male students at the Korea Advanced 
Institute of Science and Technology (KAIST) participated 
in the human subject experiments.  

We compared the performances of the baseline and PWSA 
methods on the [2x2] and [2x3] matrices for these human 
subjects. Each test randomly assigned a target letter, while 
making sure that each letter was selected as the target letter 
exactly 10 times for the [2x2] matrix and 5 times for the 
[2x3] matrix. Hence, we performed a total of 40 tests for 
the [2x2] matrix and 30 tests for the [2x3] matrix. As in the 
simulation experiments, each test consisted of 40 flashes for 
the [2x2] matrix and 60 for the [2x3] matrix. 

Procedure 
We first prepared a number of different POMDP models 
with varying observation probabilities, since the classifier 
showed different error rates depending on the human sub-
ject. By varying the parameters of the beta distribution, we 
obtained 9 different models of the [2x2] matrix, and 11 for 

Figure 7. The bit rate results of the simulation experi-
ments. The top graph shows the results on [2x2] matrix 
and the bottom graph shows the results on [2x3] matrix. 

Figure 8. The success rate results of the simulation expe-
riments. The top graph shows the result on [2x2] matrix 
and the bottom graph shows the result on [2x3] matrix. 

 [2x2] Matrix [2x3] Matrix 

Baseline† 18.879 (75.0%) 14.612 (75.0%) 

Baseline‡ 10.867 (98.4%) 9.257 (98.4%) 

PWSA 23.840 (98.0%) 23.080 (97.7%) 

PWOSA† 25.830 (75.0%) 22.859 (77.5%) 

PWOSA‡ 11.102 (99.2%) 9.820 (99.2%) 

Table 1. Bit rate results of simulation experiment for each 
system. ‘†’ denotes for maximum bit rate and ‘‡’ denotes 
the bit rate on maximum success rate. The percentage in 

parenthesis is the corresponding success rate. 



the [2x3] matrix. We pre-computed the optimal policy for 
each model, since our implementation of the POMDP algo-
rithm currently takes hours to finish. This is due to the fact 
that the point-based backup requires enumerating all possi-
ble action sequences of length DD. Further optimization via 
pruning useless action sequences is left as a future work. 
We used 1028 randomly selected belief states for the [2x2] 
matrix, and 1030 for the [2x3] matrix. 

At the onset of the experiment for each subject, we carried 
out a short pilot experiment where we gathered the training 
data for the preprocessor/classifier. Once they were trained, 
we performed cross-validation evaluation, chose the 
POMDP model with the minimum KL-divergence, and 
used the corresponding optimal POMDP policy. 

We measured the success rates and the bit rates for compar-
ing the performances of the baseline and PWSA methods. 

Results 
We originally involved nine (9) human subjects, but two (2) 
of them had beta distributions very far from any of the pre-
computed models. Hence we use the data from seven (7) 
human subjects. 

Figure 10 shows the success rate results of the human expe-
riments. The success rate for the PWSA method is higher 
than the baseline method on any number of available flash-
es and the performance gap becomes larger as the matrix 
gets larger, which is consistent with the results from the 
simulation experiments. 

Figure 9 shows the bit rate results. The PWSA method 
yielded an average success rate of 98.2% for the [2x2] ma-

trix and 97.6% for the [2x3] matrix. The corresponding bit 
rate is 24.368 bits/min for the [2x2] matrix, and 21.367 
bits/min for the [2x3] matrix. In the case of the baseline 
method, we can control the success rate by changing the 
number of flashes, and the maximum average success rates 
are 96.4% for the [2x2] matrix and 92.9% for the [2x3] ma-
trix. Regardless of how we set the success rate for the base-
line method, the PWSA yielded higher bit rates. The sum-
mary of the bit rate results is shown in Table 1. Compared 
to the bit rates at the best achievable success rates, the 
PWSA method improves the bit rates by 242% to 265%. 
Compared to the best bit rates achievable by the baseline 
method, the PWSA method achieves improvements of 
135% to 151%. These results are similar to those from the 
simulation experiments. 

DISCUSSION 
In this paper, we have presented a P300-based BCI system 
that uses POMDP for calculating the optimal flash sequence. 
In contrast to the previous body of research that concentrate 
on obtaining better feature extraction and classification al-
gorithm from the raw EEG signals, our work provides a 
unified framework for building the BCI system. Bell et al. 
[3] have roughly suggested the idea of using the confidence 
values from the P300 classifier for optimizing the flash se-
quence, but to the best of our knowledge, our work is the 
first to address the problem in a principled way. 

 [2x2] Matrix [2x3] Matrix 

Baseline† 17.951 (75.0%) 14.070 (75.0%) 

Baseline‡ 10.065 (96.4%) 8.052 (92.9%) 

PWSA 24.368 (98.2%) 21.367 (97.6%) 

Table 2. Bit rate results on human experiment for each 
system. ‘†’ denotes for maximum bit rate and ‘‡’ denotes 
the bit rate on maximum success rate. The percentage in 

parenthesis is the corresponding success rate. 

Figure 9. The bit rate results from the human subject ex-
periments. The top graph shows the result on [2x2], and 

the bottom graph shows the result on [2x3]. 

Figure 10. The success rates from the human subject 
experiments. The top graph shows the result on [2x2] 

matrix, and the bottom graph shows the result on [2x3] 
matrix. 



 

The contributions of this paper are as follows: First, we 
provided a formal decision-making model for P300-based 
BCI. Specifically, we showed how the POMDP model with 
observation delays can be adapted to BCI. Although we 
explained in the context of P300-based BCI systems, we 
believe that our approach is general enough to be easily 
applied to other BCI paradigms. Second, we presented a 
novel point-based algorithm for solving POMDPs with ob-
servation delays. The algorithm extends the standard point-
based backup operator to handle observation delays. Third, 
we report experimental results using simulation as well as 
human subjects. Our POMDP-based method achieves sig-
nificant performance improvement over the baseline me-
thod currently used in other BCI systems. 

Currently, we are working on improving the speed of the 
algorithm for POMDPs with observation delays. One of the 
most time-consuming aspects of our algorithm is in the 
enumeration of all possible action sequence of length equal 
to the delay. Since some action sequences may be inferior 
to others, a combination of forward search and dynamic 
programming may yield substantial improvement in the 
speed. We are also working on applying the technique to 
P300 speller, where the user intentions exhibit more regu-
larity. We strongly believe that we can achieve a magnitude 
of order improvement in performance (bit rate) if we embed 
the bigram/trigram model of alphabets into the intention-
level transition probability of the POMDP. Finally, we are 
investigating into the methods [4] that enable the adaption 
of model to individual subjects without explicit pilot trial 
experiments or pre-computing optimal policies by enume-
rating candidate models. 
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