
A POMDP Approach to
P300-Based Brain-Computer Interfaces

Jaeyoung Park
Dept. of Computer Science

KAIST
Daejeon, Korea

jypark@ai.kaist.ac.kr

Kee-Eung Kim
Dept. of Computer Science

KAIST
Daejeon, Korea

kekim@cs.kaist.ac.kr

Sungho Jo
Dept. of Computer Science

KAIST
Daejeon, Korea

shjo@cs.kaist.ac.kr

ABSTRACT
Most of the previous work on non-invasive brain-computer
interfaces (BCIs) has been focused on feature extraction
and classification algorithms to achieve high performance
for the communication between the brain and the computer.
While significant progress has been made in the lower layer
of the BCI system, the issues in the higher layer have not
been sufficiently addressed. Existing P300-based BCI sys-
tems, for example the P300 speller, use a random order of
stimulus sequence for eliciting P300 signal for identifying
users’ intentions. This paper is about computing an optimal
sequence of stimulus in order to minimize the number of
stimuli, hence improving the performance. To accomplish
this, we model the problem as a partially observable Mar-
kov decision process (POMDP), which is a model for plan-
ning in partially observable stochastic environments.
Through simulation and human subject experiments, we
show that our approach achieves a significant performance
improvement in terms of the success rate and the bit rate.

Author Keywords
P300, brain-computer interface (BCI), partially observable
Markov decision process (POMDP)

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:
User Interfaces --- Brain-Computer Interfaces; I.2.8 [Artifi-
cial Intelligence]: Problem Solving, Control Methods, and
Search --- Partially Observable Markov Decision Processes

General Terms
Algorithms, Design, Experimentation, Performance

INTRODUCTION
A brain-computer interface (BCI) aims to provide a com-
munication channel for conveying messages and commands
from the brain to the external system by interpreting brain

activities [22]. There are a variety of devices and methods
for BCI, including non-invasive methods such as using en-
cephalography (EEG). The EEG-based BCI is perhaps the
most popular method to date, because it is relatively easy
and cheap to set up the system [15]. One of the most relia-
ble signal features of EEG is the P300 evoked potential [14],
which is a positive peak in the signal amplitude at about
300ms after a stimulus is given to the user’s attention [6,
22].

A number of BCI systems using P300 have been proposed
in the literature, including the P300 speller [6]. In the P300
speller system, the user faces a 6££6 matrix of letters, and
the user gazes at one of the 36 letters that one desires to
select. The letters in a row or a column are flashed (stimu-
lated) in a random order. If the letter that the user is gazing
at flashes, P300 is generated at about 300ms later. We can
thus train a classifier to detect this P300 to identify the de-
sired letter. Some BCI systems with a smaller matrix may
flash one letter at a time, e.g., [3].

Figure 1 shows a typical setup of EEG-based BCIs. These
traditional systems generate flashes in a random order. For
example, the P300 speller generates the same number of
flashes for every row and column in a random order. We
can note that however, by determining the optimal sequence
of flashes, we can identify the desired selection from a
smaller number of flashes. For example, based on the histo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’10, February 7–10, 2010, Hong Kong, China.
Copyright 2010 ACM 978-1-60558-515-4/10/02...$10.00.

Figure 1. Human sitting in front of EEG-based BCI with a
[2x3] stimulus matrix.

ry of flashes and the P300 detection results, if the probabili-
ty that the first row contains the desired selection is very
low compared to other rows, there is no reason to flash the
first row. In contrast, if the probability is high for both the
second and the third row, it is desirable to flash the second
or the third row in order to resolve the uncertainty. Bell et
al. [3] suggests that, since we can identify the most likely
selection during flashes by maintaining a running sum of
P300 classifier output, we may be able to reduce the num-
ber of flashes in identifying the desired selection.

This paper presents a systematic approach to finding an
optimal sequence of flashes in order to identify the desired
selection using the fewest possible number of flashes in
EEG-based BCIs. Determining the best flash sequence
based on the accumulated results of P300 detection is
viewed as a sequential decision making problem, and we
adopt the partially observable Markov decision process
(POMDP) model [11] for the representation of the problem.
The POMDP model provides a rigorous framework for
representing sequential decision making problems under
limited sensory capabilities of agents. It perfectly fits our
purpose since we have to deal with P300 classifier errors.
Although it is computationally infeasible to find an optimal
solution from POMDPs, the recent development of fast
approximate algorithms such as point-based value iteration
(PBVI) [16], and heuristic search value iteration (HSVI)
[19], has made the POMDP approach practical for a wide
variety of real-world applications such as spoken dialogue
management [22] and assisted daily living [9].

Most of the previous works on EEG-based BCIs have been
focused on the lower level of the interface. Whereas they
are concerned with better feature extraction or classification
methods for detecting single P300 from EEG while relying
on a simple, random order of flashes, our focus is on find-
ing an optimal sequence of flashes given a P300 classifier
which is already implemented. Hence our work addresses
the higher level of the interface, which is an important but
currently missing part for an effective BCI.

BACKGROUND
In this section, we briefly review the facts about P300 in
EEG and the common settings used in EEG-based BCIs
which we will also be adopting in our work. We also review
the standard definition of POMDPs for the sake of present-
ing our work.

Electroencephalography (EEG) and P300 Interfaces
EEG signals are the electrical signals recoded from the
scalp and produced by the electrical activity of neurons in
the brain. The electric potentials reflect the summation of
the synchronous electrical activity of thousands or millions
of neurons that are near the electrode for recording the EEG
signals [20].

Event related potential (ERP) is elicited by an infrequent or
particularly significant somatosensory stimulus. P300 is the
positive peak component of ERP at about 300ms after the

stimulus [6, 22]. P300 is known as one of the most reliable
signals for composing BCI systems. However, the P300
elicited by the stimulus cannot be obtained easily, because
EEG captures the brain activities from numerous sources
and the P300 may be buried deeply [8]. Fortunately, there
exist several P300 feature extraction methods and classifi-
cation methods for detecting the P300 component of ERP.
The feature extraction methods include the averaging of
EEG signals [8], the Mexican hat wavelet [8, 17], and the
spatial filter algorithm [10]. Once the relevant features are
extracted, classification methods such as Fisher’s linear
discriminant, stepwise linear discriminant analysis
(SWLDA), and support vector machine (SVM) [13] are
used to detect the existence or absence of P300 in the EEG.

BCI systems based on P300 have a typical architecture as
shown in Figure 2. There are components for stimulus gen-
eration, signal acquisition, preprocessing, and translation.
The stimulus generator component gives stimuli to a user to
elicit P300 on the desired situation. The signal acquisition
component records the EEG signal for the given stimulus.
The preprocessing component carries out feature extraction
for detecting P300 from the given EEG signal. The transla-
tion component classifies the existence of P300, and sends
appropriate commands to the external devices.

Partially Observable Markov Decision Processes
(POMDPs)
A POMDP is a mathematical model for sequential decision
making problems under uncertainty in the observation. It is
defined by 8-tuple hS; A; Z; b0; T; O; R; °ihS; A; Z; b0; T; O; R; °i: SS is the set of
environment states; AA is the set of actions available to the
agent; ZZ is the set of all possible observations; b0b0 is the
initial belief where b0(s)b0(s) denotes the probability that the
environment starts in state ss; TT is the transition probability
where T (s; a; s0)T (s; a; s0) denotes the probability that the environ-
ment changes from state ss to state s0s0 when executing action
aa; OO is the observation probability where O(s; a; z)O(s; a; z) denotes
the probability that the agent makes observation zz when
executing action aa and arriving at state ss; RR is the reward
function where R(s; a)R(s; a) denotes the reward received by the
agent when executing action aa in state ss; °° is the discount
factor such that 0 · ° · 10 · ° · 1.

Figure 2. A typical architecture of the P300-based BCIs.

Since we assume that the agent cannot directly know the
environment state, it maintains the probability distribution
of the states based on the history of observations and ac-
tions. The probability distribution is defined as a belief state
bb where bt(s)bt(s) denotes the probability that the state is ss at
time-step tt. The belief state btbt can be regarded as the post-
erior distribution of states given the initial belief b0b0 and the
history fa0; z1; a1; z2; : : : ; at¡1; ztgfa0; z1; a1; z2; : : : ; at¡1; ztg:

bt(s) = P (St = sja0; z1; a1; z2; : : : ; at¡1; zt)bt(s) = P (St = sja0; z1; a1; z2; : : : ; at¡1; zt)

Upon execution action atat and making observation zt+1zt+1 in
belief state btbt, the belief state bt+1 = ¿(bt; at; zt+1)bt+1 = ¿(bt; at; zt+1) at the
next time-step is computed by the Bayes rule,

bt+1(s
0) =

O(s0; at; zt+1)
P

s2S T (s; at; s
0)bt(s)

P (zt+1jbt; at)
bt+1(s

0) =
O(s0; at; zt+1)

P
s2S T (s; at; s

0)bt(s)

P (zt+1jbt; at)
,

where P (zt+1jbt; at)P (zt+1jbt; at) is the normalizing constant such that P
s bt+1(s) = 1

P
s bt+1(s) = 1.

A policy determines the actions to be executed by the agent.
Specifically, a policy ¼¼ of a POMDP can be defined as a
mapping from belief states to actions, i.e., ¼ : ¢S ! A¼ : ¢S ! A .
Every policy has an associated value function, which is (in
the case of infinite horizon problems) the expected cumula-
tive discounted reward by following the policy starting
from a given belief state. When solving a POMDP, we
search for an optimal policy that maximizes the value for
each belief state. The maximum value for the belief state
can be computed recursively

V ¤(b) = max
a

"
R(b; a) + °

X
z

P (zjb; a)V ¤(¿ (b; a; z))

#
V ¤(b) = max

a

"
R(b; a) + °

X
z

P (zjb; a)V ¤(¿ (b; a; z))

#
 ,

where P (zjb; a) =
P

s0 O(s0; a; z)
P

s T (s; a; s0)b(s)P (zjb; a) =
P

s0 O(s0; a; z)
P

s T (s; a; s0)b(s) and
R(b; a) =

P
s R(s; a)b(s)R(b; a) =

P
s R(s; a)b(s). The optimal value function V ¤V ¤

can be obtained by a series of dynamic programming back-
up

Vt(b) = HVt¡1(b)

= max
a

"
R(b; a) + °

X
z2Z

P (zjb; a)Vt¡1(¿(b; a; z))

#Vt(b) = HVt¡1(b)

= max
a

"
R(b; a) + °

X
z2Z

P (zjb; a)Vt¡1(¿(b; a; z))

#
 ,

for every belief state b 2 ¢Sb 2 ¢S . We can also derive that value
function VtVt is piecewise linear and convex, hence it is
represented as a set of ®®-vectors ¡t = f®1; : : : ; ®mg¡t = f®1; : : : ; ®mg and
the value at a particular belief state bb is calculated as

Vt(b) = max
®2¡t

X
s2S

®(s)b(s)Vt(b) = max
®2¡t

X
s2S

®(s)b(s) .

Once we compute the optimal value function V ¤V ¤, the op-
timal policy is obtained by

¼¤(b) = arg max
a

"
R(b; a) + °

X
z

P (zjb; a)V ¤(¿ (b; a; z))

#
¼¤(b) = arg max

a

"
R(b; a) + °

X
z

P (zjb; a)V ¤(¿ (b; a; z))

#
.

Since there are infinitely many belief states, it is intractable
to compute the optimal value function and the optimal poli-
cy. Some of the POMDP algorithms such as the witness
algorithm [11] exploit the piecewise linear and convex
property of value functions, but they are still limited to
problems of small sizes. Instead, we settle for approximate
algorithms such as point-based value iteration (PBVI) [16]
or heuristic search value iteration (HSVI) [19], which focus
the computational effort around the reachable belief states.
These approximate algorithms are scalable, yet the solu-
tions found are almost optimal in various benchmark
POMDP problems. A complete review of exact and approx-
imate algorithms for POMDPs is outside the scope of this
paper, so we refer the readers to the references mentioned
above.

SYSTEM ARCHITECTURE
Figure 3 shows the architecture of our BCI system. It is
similar to the system described in Bell et al. [3], except that
our system uses the POMDP policy for determining which
letter to flash (stimulate).

The flash scheme of our system follows the paradigm simi-
lar to that of the P300 speller system: The user gazes at the
target letter and the letters in the matrix are flashed in
250ms intervals, one letter at a time. Each flash turns on the
letter for 125ms and turns off for another 125ms. A test
consists of a series of flashes for identifying the target letter,
and a pause interval of 2.5s is given between consecutive
tests.

Figure 3. The architecture of our POMDP-based BCI sys-
tem. ‘f’ is a feature vector, ‘z’ is the output from the P300
classifier and also the observation of POMDP, ‘b’ is the
current belief, ‘a’ is the action to flash a letter or make a
decision (i.e. conveying a command to device), ‘c’ is the

command issued to a back-end device, and ‘E’ is the EEG
signal.

The EEG signals are acquired by the Biopac MP 150 data
acquisition system [2] from 16 channels with 1kHz sam-
pling rate. An epoch of EEG signals corresponding to a
flash is the window of the 16-channel signal data between
200ms and 450ms after the flash is given (Figure 4), since
P300 is expected to appear approximately at 300ms after
the stimulus.

This epoch data is fed into the preprocessor to extract rele-
vant features from the raw signal data, and then passed to
the classifier to detect the existence of P300. The output of
the classifier is used as the observation of the POMDP
planner, which will perform the belief update and decide
which letter to flash. In this section, we provide the details
on how the preprocessor and classifier are constructed. The
description of the POMDP planner deserves a separate sec-
tion since it is the central component of our system.

Preprocessor
In order to construct the preprocessor and the classifier, we
first prepare the training data consisting of P300 epoch in-
stances each labeled either a target or a non-target. This
training data is gathered using the same flash scheme out-
lined earlier in this section.

Since the raw signals contain a significant amount of high
frequency noise, they are band-pass filtered (0.5-30Hz)
with a 6th order Butterworth filter and down-sampled to
100Hz. We then extract features from the epoch data using
the spatial projection algorithm [10]. This algorithm gene-
rates a set of filters which maximally discriminates between
target and non-target epoch instances in the training data.
More formally, given mm channels and nn time points of an
epoch, the spatial projection algorithm generates a maxi-
mum of mm linear filters. Each filter linearly transforms the
epoch data from multi-channel (i.e. epoch) to one virtual
channel. Each filter fjfj (an mm-dimensional column vector) is
said to have discriminative power djdj, which is the value of
Fisher criterion for linearly separating the target and the
non-target instances in the training data. Given an epoch
instance EiEi (an m£ nm£ n matrix) for the ii-th flash, the feature
vector of the epoch using filter fjfj is computed by fT

j EifT
j Ei (an

nn-dimensional row vector). The exact number of filters is
usually determined by cross-validation. In our case, we
limit the maximum number of filters to 5, since this number
was sufficiently large for most of the subjects participating
in this study and guaranteed timely processing of data for
the computational resource available.

Classifier
To identify whether an epoch instance contains P300, we
trained a classifier on the preprocessed feature vectors using
the LIBLINEAR package [5]. Specifically, we used the L2-
regularized logistic regression to map the binary output to a
real value between 0 and 1, which represents the posterior
probability that the feature vector is a target (i.e., the epoch
contains P300). The parameters of the classifier are decided
by 5-fold cross-validation on training data.

POMDP PLANNER
The POMDP planner plays the central part of our BCI sys-
tem. In order to compute the optimal sequence of flashes
using POMDP, we first need to model the problem. Once
the modeling is done, we use a POMDP algorithm to obtain
an optimal policy, which will determine the flash sequence.
However, our approach is more sophisticated than plain
models and algorithms since we have to take into account
some important constraints of the system, such as the delay
in the P300 (the relevant observation is not available
throughout the next two flashes) and the repetition blind-
ness (P300 may not be elicited if two flashes is given on a
target letter within 500ms).

POMDP Modeling of BCI
Our problem in hand is to find the target letter as accurately
as possible while using as a small number of flashes as
possible. Conceptually, this problem can be considered as
an extension of the tiger problem in the POMDP literature
[11], where the number of doors matches the number of
letters in the stimulus matrix. The exact description is given
below.

Let NN be the number of letters in the matrix. In this paper,
we consider [2x2] and [2x3] matrices, hence N = 4N = 4 and
N = 6N = 6, respectively. The states in the POMDP correspond
to the target letters, hence a total of NN states. For each letter
in the matrix, we can either flash it in the hope of detecting
P300 (NN flash actions) or claim that it’s the target letter (NN
select actions), hence a total of 2N2N actions. The output val-
ue from the P300 classifier serves as the observation, where
the real value between 0 and 1 is discretized into intervals
of size 0.1 (e.g., z1z1 for the output value in [0.0, 0.1), z2z2 for
the output value in [0.1,0.2), etc.), hence a total of 10 ob-
servations.

To make the system identify the target letter as soon as
possible, we give -0.1 reward for the flash actions, +1 re-
ward for the select actions that make a correct claim of the
target letter, and -10 rewards for the select actions that in-
correctly make a claim on a non-target letter.

We define the transition probability for each flash action as
an identity matrix: we assume that the target does not
change to some other letter within a test. Hence, we assign
the transition probability of 1 if the state at the current time
step is the same as the state at the next time-step, and 0 if
the state at the current time-step is different from the state
at the next time-step. For select actions, the transition prob-

Figure 4. Time course of stimulus events and the correspond-
ing epochs in EEG signals.

abilities are uniform: we assume that the target letter will
reset to any letter in the matrix with the same probabilities
between consecutive tests.

The errors in the P300 classification results are modeled as
observation probabilities. Specifically, we assume that the
classifier output follows the beta distribution when flashing
the target letter. The parameters ®® and ¯̄ of the beta distri-
bution are obtained from the training data. We also assume
that the distribution of output values when flashing a non-
target letter is symmetric to the case when flashing the tar-
get letter. Hence, if ®target®target and ¯target¯target are the parameter
values of the beta distribution for flashing the target letter,
we set ®non-target = ¯target®non-target = ¯target and ¯non-target = ®target¯non-target = ®target for
the beta distribution for flashing a non-target letter. Since
these parameter values are different among the subjects,
and POMDP algorithms take hours to find the optimal poli-
cy, we set the observation probability to 9 (and 11) different
beta distributions that can appear in the human experiments
on the system with [2x2] (and [2x3]) matrix. Hence, we
have 9 (and 11) POMDP models with different observation
probabilities for [2x2] (and [2x3]). The discount rate is set
to 0.99, and the initial belief is set to the uniform distribu-
tion. This completes the specification of the POMDP model.

We briefly summarize how the model works. The state cor-
responds to the target letter in the current test, of which the
BCI system does not have the direct knowledge. Hence, the
system has to infer which letter is the target by some se-
quence of flash actions and the corresponding classification
output values. When the system flashes a letter, and if the
letter happens to be the target, then the probability is high
for the classification output value close to 1. If the letter
happens to be a non-target, then the probability is high for
the classification output value close to 0. Thus, from a flash
action and the corresponding classification output value
(i.e., observation), the system can infer the probability dis-
tribution on target letters using the belief state of the
POMDP. If a letter has a significant probability to be the
target, the system repeatedly flashes the letter to increase
the certainty that the letter is indeed the target. If the proba-
bility gets higher than some threshold, the system selects
the letter as the target to maximize the expected return.

Solving the POMDP model
When we obtain the POMDP policy that determines the
flash sequence, we have to address two constraints that
come from the nature of the P300, namely the delay in P300
and the repetition blindness. We describe how these con-
straints are handled while implementing the POMDP algo-
rithm.

Delay in P300
Standard definition of POMDPs assumes that the relevant
observation is obtained before the execution of the next
action. This assumption does not hold in our BCI system.
As shown in Figure 4, the relevant P300 epoch ends at
450ms after the flash. Since a small amount of additional

delay is incurred by the data acquisition system, the prepro-
cessor and the classifier, the observation is available at al-
most 510ms after the flash. Hence, the relevant observation
is not available throughout the next two actions.

We can handle this constraint by using POMDPs with de-
layed observations [1]. Solving the model essentially re-
quires finding the best action sequence of size equal to the
delay in time-steps (in our case, sequence of length 2) dur-
ing each dynamic programming backup, in contrast to find-
ing the best single action in standard POMDPs without de-
layed observations.

Repetition blindness
The repetition blindness refers to the situation where P300
may not be elicited when two flashes on the target letter are
given within 500ms [7, 12]. For example, when the target
letter “A” is flashed and the “A” is flashed again within
500ms, the EEG signal corresponding to the second flash
may not contain P300. A simple way to avoid this pheno-
menon is to make sure that the flash is not given on the
same letter within 500ms. Since our flash scheme makes
two flashes in 500ms, the flash at the current time-step
should be different from the previous two flashes. In terms
of our POMDP model, the action at the current time-step
should be different from the previous two actions.

This constraint can also be handled by modifying the stan-
dard dynamic programming backup operation in POMDP
algorithms: when we compute the best action that yields the
best value, we only consider the actions that were not ex-
ecuted in the previous two time-steps.

POMDP algorithm for BCI
We now present our implementation of POMDP algorithm
that addresses the P300 delay and the repetition blindness.

Basically our implementation is a modified version of the
PBVI algorithm [16], which we refer to as BCI-PBVI. Fig-
ure 5 shows the main loop of the algorithm. As in PBVI,
this algorithm requires the set BB of randomly sampled be-
lief states (i.e., belief set) for restricting the dynamic pro-
gramming backup to those belief states (i.e., point-based

Figure 5. Top-level pseudocode of BCI-PBVI.

Algorithm BCI-PBVI(B, K, D, ²)

INPUTS: belief set B; attentional blink length K;

observation delay D; required precision ²

for all action sequence ha1; : : : ; aDi of length D do

Initialize ¡a1;:::;aD
= f~0g

end for

repeat

for all action sequence ha1; : : : ; aDi of length D do

¡0a1;:::;aD
= backup(B;K; D; ¡; a1; : : : ; aD)

end for

± = di®erence(B; ¡; ¡0)

¡ = ¡0

until ± < ²

return ¡

Algorithm BCI-PBVI(B, K, D, ²)

INPUTS: belief set B; attentional blink length K;

observation delay D; required precision ²

for all action sequence ha1; : : : ; aDi of length D do

Initialize ¡a1;:::;aD
= f~0g

end for

repeat

for all action sequence ha1; : : : ; aDi of length D do

¡0a1;:::;aD
= backup(B;K; D; ¡; a1; : : : ; aD)

end for

± = di®erence(B; ¡; ¡0)

¡ = ¡0

until ± < ²

return ¡

backup). Whereas the standard PBVI maintains the best ®®-
vector and the corresponding best action for each sampled
belief, the BCI-PBVI maintains ®®-vector for all length-DD
action sequences for each sampled belief state. It is like
computing the action-value function rather than the state-
value function. This is necessary in order to prevent the
same action being executed within KK time-steps, i.e., han-
dle repetition blindness.

For every possible length-DD action sequence, we update the
corresponding set of ®®-vectors using the backup procedure.
Figure 6 shows the pseudocode of the procedure, and it is
the central part of our algorithm. Assuming that the current
time-step is TT , we first compute the set AallowAallow of actions
that are allowed to execute at time-step T + DT + D, i.e., the set
of actions except those appearing in the last KK steps in the
sequence. Among the set of ®®-vectors that are computed in
the previous iteration, only those with action sequences
ending with allowed actions are valid ®® -vectors for the
backup. The first loop in the pseudocode carries out this
task. The second loop performs the actual point-based
backup on the belief set BB. For action sequence a1a1,…,aDaD,
and a belief state bb, we compute ®b®b such that

P
s b(s)®b(s)

P
s b(s)®b(s)

is the maximum expected value gathered after DD-steps in
the future, if, starting from the current belief state bb , we
execute the action sequence a1a1 ,…,aDaD . Cautious readers
may question that ®b®b should also consider the rewards ga-
thered within DD-steps in the future, but as we will see short-
ly, it is not necessary to do so.

Belief update
Assume that, at time-step tt , we have executed an action
sequence at¡Dat¡D ,…,at¡1at¡1 , and deciding which action atat to
execute. According to the definition of ®®-vectors in BCI-
PBVI, we cannot use the current belief state btbt. Instead, we
need the belief state bt¡Dbt¡D of DD-steps in the past, and this is
the belief state we maintain while executing the policy.

Once we execute atat and observe ztzt, the belief state bt¡Dbt¡D is
updated by

bt¡D+1(s
0) =

O(s0; at¡D; zt)
P

s T (s; at¡D; s0)bt¡D(s)

P (ztjbt¡D; at¡D)
bt¡D+1(s

0) =
O(s0; at¡D; zt)

P
s T (s; at¡D; s0)bt¡D(s)

P (ztjbt¡D; at¡D)

where P (ztjbt¡D; at¡D)P (ztjbt¡D; at¡D) is the normalizing constant. Hence,
in order to perform appropriate belief update, we need to
remember the past belief state bt¡Dbt¡D as well as the action
sequence at¡Dat¡D,…,at¡1at¡1.

Optimal action selection
At this point, selecting the optimal action for execution is
quite straightforward. Assume once again that, at time-step
tt, we have executed an action sequence at¡Dat¡D,…,at¡1at¡1, and
deciding on which action atat to execute. Since we have the
belief state bt¡Dbt¡D at hand, we compute

P
s bt¡D(s)®(s)

P
s bt¡D(s)®(s) for

8® 2 ¡at¡D;:::;at¡1
8® 2 ¡at¡D;:::;at¡1

, and execute the best action associated
with the ®®-vector that yields the best value.

Algorithm backup(B; K;D; ¡t¡1; a1; : : : ; aD)

INPUTS: belief set B; attentional blink length K; observation delay D; set of ®-vectors for (t-1)-step value

function ¡t¡1; the action sequence of interest ha1; : : : ; aDi

Aallow = A¡ faD¡K+1; : : : ; aDg

for all action a 2 Aallow do

for all observation zD 2 Z do

for all ®-vector ®i 2 ¡t¡1
a2;:::;aD;a do

a
a;zD

i (s) = °
P

s0 T (s; a1; s
0)O(s0; a1; zD)®i(s

0); 8s 2 S

end for

¡t;a;zD
a1;:::;aD

=
S

if®
a;zD

i g

end for

end for

for all belief state b 2 B do

for all action a 2 Aallow do

®a
b =

X
s12S;:::;sD2S

T (s; a1; s1)T (s1; a2; s2) ¢ ¢ ¢T (sD¡1; aD; sD)R(sD; a) +
X
z2Z

argmax
®2¡

t;a;z
a1;:::;aD

X
s2S

b(s)®(s)

end for

®b = argmax®a
b
;a2Aallow

P
s2S b(s)®a

b (s)

¡t
a1;:::;aD

= ¡t
a1;:::;aD

[f®bg

end for

return ¡t
a1;:::;aD

Algorithm backup(B; K;D; ¡t¡1; a1; : : : ; aD)

INPUTS: belief set B; attentional blink length K; observation delay D; set of ®-vectors for (t-1)-step value

function ¡t¡1; the action sequence of interest ha1; : : : ; aDi

Aallow = A¡ faD¡K+1; : : : ; aDg

for all action a 2 Aallow do

for all observation zD 2 Z do

for all ®-vector ®i 2 ¡t¡1
a2;:::;aD;a do

a
a;zD

i (s) = °
P

s0 T (s; a1; s
0)O(s0; a1; zD)®i(s

0); 8s 2 S

end for

¡t;a;zD
a1;:::;aD

=
S

if®
a;zD

i g

end for

end for

for all belief state b 2 B do

for all action a 2 Aallow do

®a
b =

X
s12S;:::;sD2S

T (s; a1; s1)T (s1; a2; s2) ¢ ¢ ¢T (sD¡1; aD; sD)R(sD; a) +
X
z2Z

argmax
®2¡

t;a;z
a1;:::;aD

X
s2S

b(s)®(s)

end for

®b = argmax®a
b
;a2Aallow

P
s2S b(s)®a

b (s)

¡t
a1;:::;aD

= ¡t
a1;:::;aD

[f®bg

end for

return ¡t
a1;:::;aD

Figure 6. The backup operator for BCI-PBVI.

SIMULATION EXPERIMENTS

Methods

Baseline
The baseline method follows a flash sequence decided by
random order and hence it is equivalent to the method used
in traditional BCI systems including Bell et al. [3]: the flash
sequence is randomized among the letters that are not
flashed within the current trial, where the trial refers to a
subsequence of length equal to the letters in the matrix,
hence each letter is flashed once per trial. However, our
baseline method additionally takes repetition blindness into
account: if a letter was flashed within 500ms, it will not be
considered as a candidate for the current flash. The decision
is made by the total score from the classifier: the output
value of the classifier is regarded as the posterior probabili-
ty, and the letter with the largest sum throughout trials is
selected as the target letter. Hence, the method can be
stopped at the end of any trial during a test, and determine
the most likely target letter. The total score of a letter can
be regarded as the posterior probability of being the target
letter given the history of flashes and classifier output val-
ues. Note that the baseline method has no explicit “stop and
select” decision making mechanism.

POMDP with select actions (PWSA)
The PWSA method uses the optimal flash policy computed
from POMDP. The select actions represent the explicit de-
cision making mechanism.

POMDP without select actions (PWOSA)
The PWOSA method uses the same set of actions as PWSA
except the select actions. When stopped, we determine the
target letter with the highest belief state probability. We
prepared this method for the sake of performance compari-
son with the baseline method when the same number of
flashes is used. Ideally, this method will be more efficient
than the baseline method in terms of the number of flashes
because the flash sequence is determined by the POMDP
policy, rather than by some random distribution. Concep-
tually, this method can be considered as an optimal policy
from a POMDP model with negative infinite rewards for
selecting an incorrect target letter.

Setup
We performed 20 simulations on [2x2] and [2x3] matrices,
each simulation consisting of 10000 tests. Output values
from the classifier (i.e. observations) are sampled from the
beta distribution with parameters ®target®target = ¯non-target¯non-target =
1.228 and ¯target¯target = ®non-target®non-target = 0.625, which were ob-
tained from the pilot experiment involving one of the hu-
man subjects.

Each test consists of 40 flashes for the [2x2] matrix and 60
for the [2x3] matrix. For the baseline method, these num-
bers correspond to 10 observations for each letter in the
matrix, whereas the PWSA and PWOSA methods may have
different number of observations for each letter. Note also

that the baseline and PWOSA methods run until the test
ends, whereas the PWSA method can terminate early when
the final select action is executed.

Measurements
We measured the performance of each method using the
success rate and the bit rate.

Success rate
The success rate is defined by the percentage of tests in the
simulation with correct identification of the target letters.
We stopped the methods at the end of each trial (4 flashes
for [2x2] and 6 flashes for [2x3]), and measured the success
rate. Note that the PWSA method can terminate before the
specified number of flashes. In this case, we extended the
results until the end of tests. For example, if the PWSA
method terminated during the 5th trial with an incorrect
target letter, the method is regarded as selecting an incorrect
target letter for all subsequent trials, and vice versa.

For all three methods, if the method has the same total score
or the same maximum belief value for KK letters, we gave a
partial success of 1=K1=K .

Bit rate
The bit rate represents the quantity of transferred informa-
tion per unit time during communication [18, 21]. The bit
rate is defined as B ¢DB ¢D, where BB is the number of bits per
decision and DD is the number of decisions per unit time. Let
NN be the total number of letters in the matrix and PP be the
success rate. Then we have

B = log2 N + P log2 P + (1¡ P) log2

1¡ P

N ¡ 1
B = log2 N + P log2 P + (1¡ P) log2

1¡ P

N ¡ 1
 .

In order to measure DD, we used the following scheme: For
the baseline method, since the decision has to be delayed
(260ms) until the result of the last flash is available, we add
the delay to the time spent on flashes. For example, if we
have flashed 40 times, then the total time spent for the deci-
sion is calculated as 250ms * 40 flashes + 260ms. For the
PWSA and PWOSA methods, since it takes an additional
115ms delay for updating the belief state, we add a delay of
375ms to the time spent on flashes. For example, if we have
flashed 40 times, the total time for the decision is 250ms *
40 flashes + 375ms. DD is calculated as the reciprocal of the
total time.

Since the bit rate changes depending on the success rate, we
calculated the bit rates for different success rates. The tra-
deoff here is that we can improve the success rate by in-
creasing the number of flashes, but more time is according-
ly spent per decision. For the PWSA method, since it has its
own explicit termination mechanism, we will report only
one value for the bit rate measurement.

Results
Figure 8 shows the success rate results for the three me-
thods. The performance gap between the baseline method

and the PWSA/PWOSA method is larger in the [2x3] ma-
trix than in the [2x2] matrix. We conjecture that the per-
formance gap will become even larger when we experiment
on larger stimulus matrices. The baseline and the PWOSA
methods will converge to a 100% success rate as the num-
ber of flashes goes to infinity. In contrast, the success rate
of the PWSA method doesn’t due to the bias inherent in the
reward function. However, having an infinite number of
flashes is not a practical assumption, and this kind of bias is
necessary if we ever want the method to have some explicit
termination mechanism. In our experiments, the PWSA
method converges to a success rate close to 100% very
quickly when forced not to terminate before the specified
number of flashes, which is sufficient to demonstrate the
validity of our approach. Figure 7 shows the bit rate results.
The PWOSA method is always significantly better than the
base line method. The PWSA method yields the success
rates of 0.980 for [2x2] and 0.977 for [2x3], which corres-
pond to 23.840 bits/min and 23.080 bits/min respectively.
Table 1 summarizes the bit rate results of the three methods.
Comparing the bit rates at the best achievable success rates,
the PWSA method improves the bit rates by 220% to 249%.
Comparing to the best bit rates achievable by the baseline
method 1 , the PWSA method achieves improvements of
126% to 158%.

1 The baseline and PWOSA methods can achieve higher bit
rates by lowering the success rate, but we set the minimum
to 75% since we also want a sufficiently high success rate.

HUMAN SUBJECT EXPERIMENTS

Subjects and Experimental Setup
Nine (9) able-bodied male students at the Korea Advanced
Institute of Science and Technology (KAIST) participated
in the human subject experiments.

We compared the performances of the baseline and PWSA
methods on the [2x2] and [2x3] matrices for these human
subjects. Each test randomly assigned a target letter, while
making sure that each letter was selected as the target letter
exactly 10 times for the [2x2] matrix and 5 times for the
[2x3] matrix. Hence, we performed a total of 40 tests for
the [2x2] matrix and 30 tests for the [2x3] matrix. As in the
simulation experiments, each test consisted of 40 flashes for
the [2x2] matrix and 60 for the [2x3] matrix.

Procedure
We first prepared a number of different POMDP models
with varying observation probabilities, since the classifier
showed different error rates depending on the human sub-
ject. By varying the parameters of the beta distribution, we
obtained 9 different models of the [2x2] matrix, and 11 for

Figure 7. The bit rate results of the simulation experi-
ments. The top graph shows the results on [2x2] matrix
and the bottom graph shows the results on [2x3] matrix.

Figure 8. The success rate results of the simulation expe-
riments. The top graph shows the result on [2x2] matrix
and the bottom graph shows the result on [2x3] matrix.

 [2x2] Matrix [2x3] Matrix

Baseline† 18.879 (75.0%) 14.612 (75.0%)

Baseline‡ 10.867 (98.4%) 9.257 (98.4%)

PWSA 23.840 (98.0%) 23.080 (97.7%)

PWOSA† 25.830 (75.0%) 22.859 (77.5%)

PWOSA‡ 11.102 (99.2%) 9.820 (99.2%)

Table 1. Bit rate results of simulation experiment for each
system. ‘†’ denotes for maximum bit rate and ‘‡’ denotes
the bit rate on maximum success rate. The percentage in

parenthesis is the corresponding success rate.

the [2x3] matrix. We pre-computed the optimal policy for
each model, since our implementation of the POMDP algo-
rithm currently takes hours to finish. This is due to the fact
that the point-based backup requires enumerating all possi-
ble action sequences of length DD. Further optimization via
pruning useless action sequences is left as a future work.
We used 1028 randomly selected belief states for the [2x2]
matrix, and 1030 for the [2x3] matrix.

At the onset of the experiment for each subject, we carried
out a short pilot experiment where we gathered the training
data for the preprocessor/classifier. Once they were trained,
we performed cross-validation evaluation, chose the
POMDP model with the minimum KL-divergence, and
used the corresponding optimal POMDP policy.

We measured the success rates and the bit rates for compar-
ing the performances of the baseline and PWSA methods.

Results
We originally involved nine (9) human subjects, but two (2)
of them had beta distributions very far from any of the pre-
computed models. Hence we use the data from seven (7)
human subjects.

Figure 10 shows the success rate results of the human expe-
riments. The success rate for the PWSA method is higher
than the baseline method on any number of available flash-
es and the performance gap becomes larger as the matrix
gets larger, which is consistent with the results from the
simulation experiments.

Figure 9 shows the bit rate results. The PWSA method
yielded an average success rate of 98.2% for the [2x2] ma-

trix and 97.6% for the [2x3] matrix. The corresponding bit
rate is 24.368 bits/min for the [2x2] matrix, and 21.367
bits/min for the [2x3] matrix. In the case of the baseline
method, we can control the success rate by changing the
number of flashes, and the maximum average success rates
are 96.4% for the [2x2] matrix and 92.9% for the [2x3] ma-
trix. Regardless of how we set the success rate for the base-
line method, the PWSA yielded higher bit rates. The sum-
mary of the bit rate results is shown in Table 1. Compared
to the bit rates at the best achievable success rates, the
PWSA method improves the bit rates by 242% to 265%.
Compared to the best bit rates achievable by the baseline
method, the PWSA method achieves improvements of
135% to 151%. These results are similar to those from the
simulation experiments.

DISCUSSION
In this paper, we have presented a P300-based BCI system
that uses POMDP for calculating the optimal flash sequence.
In contrast to the previous body of research that concentrate
on obtaining better feature extraction and classification al-
gorithm from the raw EEG signals, our work provides a
unified framework for building the BCI system. Bell et al.
[3] have roughly suggested the idea of using the confidence
values from the P300 classifier for optimizing the flash se-
quence, but to the best of our knowledge, our work is the
first to address the problem in a principled way.

 [2x2] Matrix [2x3] Matrix

Baseline† 17.951 (75.0%) 14.070 (75.0%)

Baseline‡ 10.065 (96.4%) 8.052 (92.9%)

PWSA 24.368 (98.2%) 21.367 (97.6%)

Table 2. Bit rate results on human experiment for each
system. ‘†’ denotes for maximum bit rate and ‘‡’ denotes
the bit rate on maximum success rate. The percentage in

parenthesis is the corresponding success rate.

Figure 9. The bit rate results from the human subject ex-
periments. The top graph shows the result on [2x2], and

the bottom graph shows the result on [2x3].

Figure 10. The success rates from the human subject
experiments. The top graph shows the result on [2x2]

matrix, and the bottom graph shows the result on [2x3]
matrix.

The contributions of this paper are as follows: First, we
provided a formal decision-making model for P300-based
BCI. Specifically, we showed how the POMDP model with
observation delays can be adapted to BCI. Although we
explained in the context of P300-based BCI systems, we
believe that our approach is general enough to be easily
applied to other BCI paradigms. Second, we presented a
novel point-based algorithm for solving POMDPs with ob-
servation delays. The algorithm extends the standard point-
based backup operator to handle observation delays. Third,
we report experimental results using simulation as well as
human subjects. Our POMDP-based method achieves sig-
nificant performance improvement over the baseline me-
thod currently used in other BCI systems.

Currently, we are working on improving the speed of the
algorithm for POMDPs with observation delays. One of the
most time-consuming aspects of our algorithm is in the
enumeration of all possible action sequence of length equal
to the delay. Since some action sequences may be inferior
to others, a combination of forward search and dynamic
programming may yield substantial improvement in the
speed. We are also working on applying the technique to
P300 speller, where the user intentions exhibit more regu-
larity. We strongly believe that we can achieve a magnitude
of order improvement in performance (bit rate) if we embed
the bigram/trigram model of alphabets into the intention-
level transition probability of the POMDP. Finally, we are
investigating into the methods [4] that enable the adaption
of model to individual subjects without explicit pilot trial
experiments or pre-computing optimal policies by enume-
rating candidate models.

ACKNOWLEDGMENTS
This work was supported by the National Research Founda-
tion of Korea Grant 2009-0069702 and by the Defense Ac-
quisition Program Administration and the Agency for De-
fense Development of Korea under contract UD080042AD.

REFERENCES
1. Bander, J.L. and White Ⅲ, C.C. Markov decision processes

with noise-corrupted and delayed state observations. J. Opera-
tional Research Society 50 (1999).

2. Biopac System Inc. http://www.biopac.com

3. Bell, C.J., Shenoy, P., Chalodhorn, R. and Rao, R.P.N. Control
of a humanoid robot by a noninvasive brain-computer inter-
face in humans. J. Neural Eng. 5 (2008).

4. Doshi, F., Pineau, J. and Roy, N. Reinforcement learning with
limited reinforcement: Using Bayes risk for active learning in
POMDPs. Int. Conf. on Machine Learning (2008).

5. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R. and Lin, C.J.
LIBLINEAR – A library for large linear classification. (2008),
http://www.csie.ntu.edu.tw/~cjlin/liblinear/

6. Farwell, L.A. and Donchin, E. Talking off the top of your
head: toward a mental prosthesis utilizing event-related brain
potentials. Electroencephalogr. Clin. Neurophysiol 70 (1988).

7. Fazel-Rezai, R. Human error in P300 speller paradigm for
brain-computer interface. Proc. 29th Annual Int. Conf. of the
IEEE EMBS. (2007).

8. Fazel-Rezai, R. and Peters, J.F. P300 wave feature extraction:
preliminary results. Proc. 18th Annual Canadian Conf. on
Electrical and Computer Eng. (2005).

9. Hoey J., Poupart, P., von Bertoldi, A., Craig, T., Boutilier, C.
and Mihailidis, A. Automated handwashing assistance for per-
sons with dementia using video and a partially observable
Markov decision process. Computer Vision and Image Under-
standing (2009).

10. Hoffmann, U., Vesin, J.M. and Ebrahimi, T. Spatial filters for
the classification of event-related potentials. Proc. 14th ESANN
(2006).

11. Kaelbling, L.P., Littman, M.L. and Cassandra, A.R. Planning
and acting in partially observable stochastic domains. Artificial
Intelligence 101 (1998).

12. Kanwisher N.G. Repetition blindness: Type recognition with-
out token individuation. Cognition 27 (1987).

13. Krusienski, D.J., Sellers, E.W., Cabestaing, F., Bayoudh, S.,
McFaland, D.J., Vaughan, T.M. and Wolpaw, J.R. A compari-
son of classification techniques for the P300 Speller. J. Neural
Eng. 3 (2006).

14. Krusienski, D.J., Sellers, E.W., McFaland, D.J., Vaughan,
T.M. and Wolpaw, J.R. Toward enhanced P300 speller per-
formance. J. of Neuroscience Methods 167 (2008).

15. Mason, S.G., Bashashati, A., Fatourechi, M., Navarro, K.F.
and Birch, G.E. A comprehensive survey of brain interface
technology designs. Annals of Biomedical Engineering 35, 2
(2007).

16. Pineau, J., Gordon, G. and Thrun, S. Anytime point-based
approximations for large POMDPs. J. Artificial Intelligence
Research 27 (2006).

17. Ramanna, S. and Fazel-Rezai, R. P300 wave detection based
on rough sets. Lecture Notes in Computer Science 4100,
Springer (2006).

18. Serby, H., Yom-Tov, E. and Inbar, G.F. An improved P300-
based brain-computer interface. IEEE Trans. Neural. Syst. Re-
habil. Eng. 13 (2005).

19. Smith, T. and Simmons, R. Point-based POMDP algorithms:
Improved analysis and implementations. Proc. 21st Conf. on
Uncertainty in Artificial Intelligence (2005).

20. Wikipedia.
http://en.wikipedia.org/wiki/Electroencephalography

21. Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland,
D.J., Peckham, P.H., Schalk, G., Donchin E., Quatrano, L.A.,
Robinson C.J. and Vaughan, T.M. Brain-computer interface
technology: A review of the first international meeting, IEEE
Trans. Rehabil. Eng. 8 (2000).

22. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller,
G. and Vaughan, T.M. Brain-computer interfaces for commu-
nication and control. Clin. Neurophysiol. 113 (2002).

23. Williams, J.D. and Young, S. Partially observable Markov
decision processes for spoken dialog systems. J. Computer
Speech and Language 21 (2007).

