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Abstract

POMDP algorithms have made significant progress in re-
cent years by allowing practitioners to find good solutions
to increasingly large problems. Most approaches (inciydin
point-based and policy iteration techniques) operate fig-re

ing a lower bound of the optimal value function. Several ap-
proaches (e.g., HSVI2, SARSOP, grid-based approaches and
online forward search) also refine an upper bound. However,
approximating the optimal value function by an upper bound
is computationally expensive and therefore tightnesstenof
sacrificed to improve efficiency (e.g., sawtooth approxima-
tion). In this paper, we describe a new approach to effigientl
compute tighter bounds by i) conducting a prioritized btead
first search over the reachable beliefs, ii) propagatingetupp
bound improvements with an augmented POMDP and iii) us-
ing exact linear programming (instead of the sawtooth ap-
proximation) for upper bound interpolation. As a result, we
can represent the bounds more compactly and significantly
reduce the gap between upper and lower bounds on several
benchmark problems.

1 Introduction

Recent years have seen impressive improvements in the scal-

ability of POMDP solvers. However the optimal policy
of most problems is still unknown. Since the computa-
tional complexity of finite horizon flat POMDPs is PSPACE-
Complete (Papadimitriou and Tsitsiklis 1987), it is getigra
agreed that finding an optimal policy is most likely out of
reach for all but tiny problems. As a result, most of the ad-
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and Simmons 2005), SARSOP (Kurniawati, Hsu, and Lee
2008), grid-based techniques (Lovejoy 1991; Brafman 1997,
Hauskrecht 2000; Zhou and Hansen 2001) and some online
search techniques (Ross et al. 2008)) also compute an upper
bound on the value, but since this tends to be computation-
ally expensive, tightness is often sacrificed for efficiency

In practice, there is a need for explicit performance guar-
antees. A common approach to tackle sequential decision
making problems consists of going through several rounds
of modelling, policy optimization and policy simulationf-A
ter a while, domain experts involved in the modeling step
will typically inquire about the optimality of the soluticail-
gorithm since a lack of optimality could explain question-
able choices of actions and perhaps there is no need to fur-
ther tweak the model. In general, many people outside of
computer science do not trust computers and therefore will
be more inclined to question the solution algorithm instead
of the model, especially when the model is (partly) specified
by a human. Furthermore, before deploying a computer gen-
erated policy into an industrial application, decision mak
ers will often demand some kind of guarantee regarding the
quality of the policy.

In this paper we describe a new algorithm called GapMin
that minimizes the gap between upper and lower bounds by
efficiently computing tighter bounds. Although our long-
term goal is to compute bounds for factored problems, we
restrict ourselves to flat problems in this paper. Note tlat fl
problems are still interesting since the optimal value func
tion of many benchmark problems on Cassandra’s POMDP

vances have focused on the development of scalable approx-yepsitd (some of which have served as benchmarks for
imate algorithms. On that front, approximate algorithms 1,416 than 15 years) is unknown. Our approach is related to
routinely find good policies for many large problems (Hoey  gint-pased value iteration techniques that perform aigeur

et al. 2010; Thomson and Young 2010). However, how ¢ search (e.g., HSVI2 and SARSOP). GapMin differs from

good the policies are is a delicate question. Most policies jis hredecessors in three important ways: i) a prioritized
can be evaluated in simulation, meaning that the expected praaqth first search is performed instead of a depth first
value of the policy is only known up to some confidence geaych, ji) improvements to the upper bound are efficiently
interval that holds only with some probability. Some al-  5h35ated with an augmented POMDP and iii) upper bound
gorithms (including most point-based value iteration tech jnermolation is performed exactly by linear programming

niques) actually compute a lower bound on the value, which j,gieaq of using the sawtooth relaxation. Here, i) leads to
provides a guarantee. However, even if the value of the pol- 1, ,ch more compact representations for the bounds and ii)
icy is known, it is not always clear how far from optimal it 5 5 technique borrowed from (Hauskrecht 2000) that re-
may be. To that effect some algorithms (e.g., HSVI2 (Smith - gyces the number of upper bound interpolations, which al-
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lows us to use linear programming at a negligible cost while at the next time step according to Bayes’ theorem:

obtaining tighter upper bounds. We tested the approach on

64 benchmark problems from Cassandra’s POMDP web- bao(s') o Zb(s)Pr(s’Ls,a) Pr(o|s’, a)

site. GapMin finds a near optimal solution (gap smaller s

than one unit at the 3rd significant digit) for 46 problems ) _ o

in less than 1000 seconds (in comparison to 32 problems for  In this paper, we will assume that policies: B — A

HSVI2 and 31 for SARSOP). GapMin also finds lower and ~are mappings from beliefs to actions. The valig(b) of

upper bound representations that require significanthefew —€xecuting a policyr from a belief is the expected sum of

a-vectors and belief-bound pairs than HSVI2 and SARSOP. the rewards earned, which can be expressed recursively by:
The paper is structured as follows. Sec. 2 existing tech-

niques to compute lower and upper bounds for POMDPs. V7™ (0) = R (b) + vy Pr(ofb, 7(B) V™ (br(v)o)

Sec. 3 describes our new algorithm GapMin. Sec. 4 reports o

the results of the experiments on the suite of benchmark

problems from Cassandra’s POMDP website. Finally, Sec. 5 Here Rxq (b) = 3, b(s)R(s, (b)) andPr(o[b, n(b)) =

concludes and discusses potential future work.

2 Background

In this section, we introduce some notation for partially ob

servable Markov decision processes (POMDPSs) and quickly

review previous work to compute lower and upper bounds
on the optimal value function.

2.1 Partially Observable Markov Decision
Processes

Consider a POMDP P specified by a tuple
(§,A,0,T,Z,R,v,by) whereS is the set of states,
A is the set of actions:, O is the set of observations
o, T is the transition function indicating the probability
of reaching some state’ when executing an actiom
in states (i.e., T(s',s,a) = Pr(s'|s,a)), Z is the ob-
servation function indicating the probability of making
an observationo after executing actioru and reaching
states’ (i.e., Z(o,s’,a) = Pr(o|ls,a)), R is the reward
function indicating the utility of executing action in
state s (i.e., Ro(s) € ®), v € (0,1) is the discount
factor indicating by how much future rewards should
be scaled at each step in the future dgdis the initial
distribution over states (i.ehg(s) = Pro(s)). Alternatively,
we can also specify a POMDRS, A, O,TZ R,~, bo)
by combining 7" and Z into a single function
TZ(s',0,8,a) = T(s,s,a)Z(0,8,a) = Pr(s,o0ls,a)
that indicates the joint probability of state-observation
pairs given previous state-action pairs. This alternative
formulation will be useful in Section 3 when we specify
an augmented POMDP. Sin@ and Z appear only as a
product in the fast informed bound algorithm described in
Section 2.3, it is sufficient to specifyZ

Given a POMDPP, the goal is to find a policyr that

Y eer b(8) Pr(s’|s, m(b)) Pr(o|s’, m(b)). An optimal policy
7* has an optimal value functiol* that is at least as
high as the value of any other policy for all beliefs (i.e.,
V*(b) > V™(b) Vb, ). The optimal value function satis-
fies Bellman’s equation:

V*(b) = max Ry (b) + 7 Y _ Pr(ofb,a)V*(bao) (1)

Smallwood and Sondik (Smallwood and Sondik 1973) also
showed that’* is piece-wise linear and convex with respect
to the belief space. This means that the optimal value func-
tion can be represented by a (possibly infinite)Isebf a-
vectors that map each statto some value(s) yielding lin-

ear functions in the belief space (i.a(b) = >, b(s)a(s)).

The optimal value function is the upper surface of the linear
functions defined by the's (i.e.,V*(b) = max,ecr- a(b)).

In some situations, it is also useful to consider the value
Q7 (b, a) of executing an action at b followed by x. The
optimal @ function (denoted)*) is also piece-wise linear
and convex and therefore can be represented by a get of
vectors.

Some algorithms do not represent policies directly as a
mapping from beliefs to actions. Instead they use a value
function or@Q-function to implicitly represent a policy. The
action of a specific belief is the action that leads to the
largest value according t@ (i.e., m(b) = argmax, Q4 (b))
or a one step lookahead with:

7(b) = argmax R, (b) + v Z Pr(olb,a)V(bso)  (2)

Algorithms to optimize a policy can generally be divided
in two groups: offline algorithms (e.g., most value itera-
tion and policy search algorithms) that pre-compute a pol-
icy which is executed with minimal computation at runtime
andonlinealgorithms that do not pre-compute anything, but

maximizes the expected total rewards. Since the states areinstead perform a forward search from the current belief at
not observable, policies are mappings from histories of pas each step to select the next action to execute. In practice,
actions and observations to the next action. However, this it is best to combine offline and online techniques to pre-

is not convenient since histories grow with the planning compute a reasonable policy (or value function), which is

horizon. Alternatively, distributions over the hiddentsts then refined online by a forward search. In this paper, we

called beliefs, can be used as a substitute for historiegsin focus on the offline computation of lower and upper bounds

they are a finite-length sufficient statistic. The bebedt for the optimal value function. Such bounds may be used to
each time step can be updated based on the aatiexe- guide an online search and to provide performance guaran-
cuted and the observatioreceived to obtain the beliéf,, tees.



Algorithm 1 Blind Strategies Algorithm 3 Fast Informed Bound

Inputs. P Inputs: P _
Output: lower bound?(s) Output: upper bound)
Q,(s) < ming Ra(s")/(1 —7) Va,s Qa(s) «— maxsq Ra(s)/(1—7) Vas
X s )
Q (5) — Ra(s) + 75, Pr(s'ls, a)Q, ("), 5 Quls) ~ Rals)t i
until convergence - VYoo maxa Yo, Pr(s'ls,a) Pr(ols’,a)Qa (s") Vas

until convergence

Algorithm 2 Point-based Value Iteration
Inputs: P andB = {bs, ..., b5} 2.3 Upper Bounds

Output: lower bound’ of a-vectors . Alg. 3 describes the fast informed bound (FIB) (Hauskrecht
f <_ea{tQa|a € A} where@) « blindStrategies”) 2000), which is a simple and fast upper bopdn the opti-
e}%/ ! mal @-function. The update in the second last line of Alg. 3
for eachh ¢ B do yields_an upper bound because t_he maximization e(_/dfr
taken independently for each statanstead of each beliéf
O‘;“’  argmaxer &(bao) Note also that the transition and observation functiong onl
a” — argmax, Rq(b) + 75, Pr(0]b, a)aao(bao) appear as a product, hence the product could be replaced by
0457 — }?a* + 720 Pr(olb, a*)ag-o TZ(s',0,5,a).
eng f((; U {an} In some situatio_ns, we can compute an upper bound
until convergence on the value function at specific belief points. Dét=
{{(b1,v1),...,(bn,v,)} denote a set of belief-bound pairs
such thatl’(b;) = v, returns an upper bound atb;. Since
V is only defined at a specific set of beliefs, we will call this

2.2 Lower Bounds set the domain o’ (i.e. dom(V)).
A simple and fast lower boun@ on the Q-function can It is often useful to infer an upper bound on the beliefs
be computed by finding the value function liind strate- outside of the domain of’. Since the optimal value func-

gies (Hauskrecht 1997) that ignore all observations by al- tion is convex, we can interpolate between the beliefs of the
ways executing the same action (see Alg. 1). In this algo- domain by solving a linear program. In particular, Alg. 4
rithm, each vectof) (s) is the value function of the blind ~ Shows how to compute the smallest upper bound possible

strategy that a|an$ executeswhich is a lower bound for for any peliefb given upper l_:)ound@ an(_jV on the 09“”.‘&'
the optimalQ-function. Q-function and value function. In addition to computing a

. y .
Point-based value iteration techniques (Pineau, Gordon, bounding valuey*, the algorithm returns the lowest convex

and Thrun 2006; Spaan and Vlassis 2005; Smith and Sim- combinationc™ of beliefs (!.e., d.istributionz*(B) of beliefs
mons 2005; Kurniawati, Hsu, and Lee 2008; Shani, Braf- ? € dom(V)). However, since linear programs are compu-

: : tationally expensive, sawtoothapproximation (Hauskrecht
man, and Shimony 2007) gradually refine a lower-bound . . .
of the optimal valﬁe fungti%n. Gi\)//en a s#& of belief ?OOO).(AIQ' 5) is used in most state of the art a!gorlt_hms
pointsb, they iteratively compute the value of each belief |ncIud|ng_ HSVI2 a_nd SARSOP. This approximation fmds
b with its gradient. Since the optimal value function is con- the best interpolation that involves one interior beliefrwi
vex, they find a set’ of hyperplanes known as-vectors ||~ 1 extreme points Qf th? beI_|efS|mpIex (denotecbyn
that provide a lower bound on the optimal value function. ffr‘]lg' 5). The cotmpubtatlon time Is ﬂﬂ%ﬂdﬁm(t‘ﬂuﬂ ‘}?d
Alg. 2 describes a generic point-based value iteration-tech € @pproximation becomes exactin the limit walem(V)
nigue. Specific implementations differ in how the set of contalns.the entire belief space. .SO there is a t(aQeoff. a
belief points is chosen as well as the order in which the PClynomialamountof computation is saved by avoiding lin-

value (and gradient) of each belief point is updated. Since €& Programs, but more belief-bound pairs may be neces-

the only relevant beliefs are those that are reachable from sary tohac_hleve the_ sa;]me Ievgl of fat(;c:..lr?%y. "& the_ worst
the initial beliefb,, a popular approach consists of grow- CaS€, the increase in the number of belief-bound pairs may

ing the set of belief points with the beliefs visited while P& €Xponential since it takes exponentially many beliefs to
executing a heuristic policy (Smith and Simmons 2005; densely cover a|h5|—d|men§|onal Space. AIternaUyer, one
Kurniawati. Hsu. and Lee 2008: Shani. Brafman. and Shi- €an rgduce the number of interpolations by caching the dis-
mony 2007). In particular, when this policy is obtained by ~Liutionsc” that are repeatedly computed at the same be-
a one step lookahead (Eq. 2) with respect to a decreasing!'efs (Hauskrecht20Q0). We W'.” apply th|s techn_|queto-m|t
upper bound of the value function, then convergence to the '9at€ the cost of LP interpolations, while ensuring a bound
optimal value function is guaranteed (Smith and Simmons thatis as tight as possible.

2005). This approach can be further refined to focus on the .

beliefs reachable by the optimal policy by adapting the be- 3 Closing the Gap

lief set as the heuristic policy changes (Kurniawati, Hsul a ~ We propose a new algorithm called GapMin that minimizes
Lee 2008). the gap between lower and upper bounds on the optimal



Algorithm 4 UB (LP upper bound interpolation)

Algorithm 6 Gap minimization

Inputs: P, b, Q andV

Outputs: upper bound* and distributiorc*

v<—maXaZ b(s)Qa(s) _

LP: ¢* « argmin, Zbedom )C c(b)V(b)
SthGdom V) ( ) ( S) Vs

@
) = b(
c(b) >0 Vb e dor@( )

v* InlIl( Zbedom V) ¢ (b) ( ))

4
1%

Algorithm 5 UB (sawtooth upper bound interpolation)

Inputs. P, b, Q andV

Outputs: upper bound* and distributionc*
v« max, y_ b(s Qa( )

for eachb € dom( )\ {es]s € S} do

() — minsb(s)/b(s)
f(0) = V(b) =32, b(s)V (es)
end for

b* «— argming c(b) f(b) -
v* — min(v, ¢(b*) f(b*) + >, b(s)V (es)) B
c*(es) < b(s) — Zbedom(\/)\{e |seS} b(s)e(b) Vs
c*(b*) « c(b*) andc* (b) « 0 Vb # b*

value function. The algorithm gradually increases a lower
bound by point-based value iteration similar to previous
techniques. It distinguishes itself from previous alduoris

in the upper bound computation and the exploration tech-
nigue. The upper bound is gradually decreased by find-
ing belief points for which the upper bound is not tight and
adding them to the domain &f. Each time some new belief-
bound pairs are added 16, the reduction is propagated to
other reachable beliefs. This can be done efficiently by con-
structing an augmented POMDP and computing the fast in-
formed bound of this augmented POMDP. As a result, we
do not need to interpolate between the belief-bound pairs of
V too often and using LP-interpolation instead of sawtooth
interpolation does not make a big difference in the overall
running time.

GapMin (Alg. 6) executes four major steps repeatedly:
a) it finds belief point®3’ at which the lower bound is not
optimal and belief-bound pairg’ that improve the upper
bound, b) point-based value iteration is then performed to
update the sdt of a-vectors that represent the lower bound,
c) an augmented POMDP’ is constructed with the new
belief-bound pairs and d) the improvements induced by the
new belief-bound pairs are propagated throughout the up-
per bound by computing the fast informed bound7t
GapMin is reminiscent of policy iteration techniques in the
sense that it alternates between finding beliefs at which the

bounds can be improved and then propagating the improve-

ments through the bounds by policy evaluation-like tech-
nigues. Similar to HSVI2 and SARSOP, the bounds in Gap-
Min are also guaranteed to converge to the optimal value
function in the limit.

Alg. 7 describes a search for beliefs at which the lower or
upper bound is not tight. This search is done in a breadth-

Inputs: P o
Output: lower bound™ and upper bound), V/
Q) « fastinformedBoun@®)
V — {(es, max, Q.(s))|s € S}
I' — blindStrategiegP)
B«— QandB «—
repeat o
[B', V'] — suboptimalBelief&P?, Q, V', T)
B—BUB
I' — pointBasedValuelterati¢®, B)
V—vVuv o
P’ — augmentedPOMDPP, Q, V')
Q — fastlm‘ormedBoun(t}D )
Qa(s) — ) Vas
V(b) — Inaxa Q. (b) Vb € dom(V)
until convergence

first manner with a priority queue that ranks beliefs accord-
ing to a score that measures the gap between the upper and
lower bound at the belief weighted by the probability of
reaching this belief. In contrast, HSVI2 and SARSOP per-
form their search in a depth-first manner, which tends to
find beliefs that are deeper, but less significant for the-over
all bounds. Hence, it is often the case that fewer beliefs
are needed to construct equally tight bounds when the be-
liefs are found by a breadth-first search. The search selects
actions according to a one-step lookahead with the upper
boundV'. This is the same action selection strategy as for
HSVI2 and SARSOP, which ensures that actions are tried
until they become suboptimal. This guarantees that upper
and lower bounds will converge to the optimal value func-
tion in the limit. The beliefs reached based on each obser-
vation are scored by measuring the gap between the upper
and lower bound weighted by the probability of reaching
that belief. The beliefs with a gap lower than some tolerance
threshold (adjusted based on the discount factor and search
depth) are discarded since their contribution to the gap of
the initial belief is negligible. The remaining beliefs ane
serted in the priority queue in order of decreasing score. At
each visited belief, we verify whether the lower and upper
bounds can be tightened by a one-step look ahead search.
The search terminates when the queue is empty or a prede-
termined number of suboptimal beliefs have been found. It
returns a seB of beliefs for which the lower bound can be
improved and seV of belief-bound pairs that improve the
upper bound. The priority queue ensures that beliefs are ex-
amined in decreasing order of potential contribution to the
gap of the initial belief.

Given a set of belief-bound pails, we can propagate any
improvement to the upper bound by repeatedly computing
the following update for eactb, v) € V:

)+ 'yZPr o|b, a)UB(byo

,Q.V)

v = max R(
a

However, notice that the number of calls to the upper bound
interpolation functiorlB is |.A||O| per update and to fully



Algorithm 7 Suboptimal Beliefs

Algorithm 8 Augmented POMDP

Inputs. P, Q, V, T andtolerance -
Output: lower bound beliefd and upper boundl
score «— maxXger a(beo) — UB(b, Q, V)
queue «— {(b, gap,1,0)}
while queue # () do
(b, score, prob, depth) «— pop(queue)
a* «— argmax, R,(b)+ o
v >, Pr(o|b,a)UB(bso, Q, V)
val " Ry (b) +~7 2, Pr(ofb,a*)UB(ba+0, Q, V)
val — UB(b,Q,V)
if @ — w* > tolerance then
V —VUu{(,val )}
end if
val® — Rg+(b) + v >, Pr(olb, a*) maxaer o(ba+o)
val «— maxqer a(b)
if val® — val > tolerance then
B — BuU {b}
end if
depth «— depth + 1
for eacho € O do o
gap <— maXaqer a(bao) - UB(ba*oa Q, V)
if y4erth gap > tolerance then
prob, « probPr(o|b, a*)
score — prob,Y*Pt gap
queue — insertqueue, (by«,, score, prob,, depth))
end if
end for
end while

propagate an improvement we may need to compute thou-
sands’ of updates. When the interpolation is done by linear
programming, this is quite expensive, which is why HSVI2
and SARSOP use the sawtooth interpolation procedure. We
follow an alternative approach (Hauskrecht 2000) that-dras
tically reduces the number of calls to the interpolationcfun
tion.

We noticed that we repeatedly make calls to the interpo-
lation for the same beliefs,, and that the optimal con-
vex combinationc* returned by UB tends to be the same
even when the input’ changes. Sinc& induces a con-
vex function,c* is always a convex combination of beliefs
that form a small convex hull of the desired belief. WHife
changes, the resulting convex combination rarely changes.
Hence, one can cache the resultirigfor each call to UB
(one call for each,,). Givenc*, we can quickly compute
v* = Z(b,v)ef/ ¢*(b)v, which is computationally negligible
in comparison to solving an LP. We can then quickly prop-
agate improvements at the cost of only one LP-interpolation
per beliefb,,. The propagation won't be as good as if we
resolved the LP for each interpolation, but it is very clase i
practice. Note that the LPs are resolved periodically (afte
each search for new beliefs where the bounds are not tight),
so this does not affect the asymptotic convergence of the
bounds to the optimal value function.

It turns out that propagating improvements with

Inputs: P = (S, A,0,T,Z, R,~,bo), @ andV
Output: P’ = (8", A,0,TZ R, ~,b;)
S — dom(V)
for eachb € §’,a € A, 0 € O do

[val, c| — UB(bao, Q,V)

TZ(V,b,a,0) — c(t/)Pr(olb,a) Vo' € S’
end for
RL(b) — 32, b(s)Ra(s) Ya€ Abe S
(val, b)) « UB(bg, Q, V)

LP caching is equivalent to solving a discrete belief
MDP (Lovejoy 1991; Hauskrecht 2000). The interpolation
essentially re-maps eaél), to a convex combination of be-
liefs in the domain ol’. Since the domain df" always con-
tains the extreme points of the belief simplex, which cor-
respond to each state, we can view this belief MDP as an
augmented POMDP with additional states corresponding to
the interior beliefs of the domain of. Alg. 8 describes how

to construct this augmented POMDP. The combined transi-
tion and observation functiofiZ is obtained by the convex
combination of each reachable beligf, according toV'.
Finally, we perform the propagation of the improvements
by computing the fast informed bound of this augmented
POMDP according to Alg. 3.

4 Experiments

We experimented with the suite of benchmark problems
posted on Cassandra’s POMDP websiteDut of the 68
problems, we discarded four of them (1d.noisy, 4x4.95,
baseball and bulkhead.A) due to parsing issues and report
results for the remaining 64 problems. Whenever the dis-
count factor was 1, we changed it to 0.999 and whenever
there was no start belief, we set it to a uniform distribution
over the entire state space. We compare GapMin with saw-
tooth (ST) and LP interpolation to HSVI2 and SARSOP by
running the implementations provided in the ZMba&nd
APPL* packages.

We ran the four algorithms on each problem to compare
the quality of the lower and upper bounds as well as the size
of their representations. Each run was terminated as soon as
the gap between the lower and upper bound was less than
one unit at the 3rd significant digit or when 1000 seconds
was reached. GapMin found a near optimal policy (gap less
than one unit at the third significant digit) for 46 problems
(out of 64) in comparison to 32 for HSVI2 and 31 for SAR-
SOP. In Tables 1 and 2, we report the results for the 33 prob-
lems that were not solved (near) optimallyddi/solvers. For
each problem, (near) optimal gaps are highlighted and when
none of the techniques find a (near) optimal gap, the small-
est gap is highlighted. Among the 18 problems that were not
solved (near) optimally bany solver, GapMin with LP in-
terpolation found the smallest gap for 7 problems in compar-

2http://www.cassandra.org/pomdp/index.shtml
Shttp://www.cs.cmu.edu/trey/zmdp/
“http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/



Table 1: Results: comparison of the gap, lower bound (LB),
upper bound (UB), # ak-vectors (I'|) to represent the lower
bound, # of belief-bound pair$\(|) to represent the upper
bound and time (seconds) for runs terminated after 1000 sec-
onds or when the gap is less than one unit at the 3rd signifi-
cant digit.

problem algorithm gap LB UB [T [V] time
aloha.10 hsvi2 9.0 5354 5444 4729 na. 997
|S| =30 sarsop 95 5352 5447 48 2151 1000
|[A] =9,|0| =3 gapMin ST 103 5341 5444 136 510 67
v = 0.999 gapMin LP 76 5365 5442 152 383 96
aloha.30 hsvi2 38 1212 1249 2062 na. 100D
|S| =90 sarsop 74 1177 1252 86 1245 999
[A] =29,|]0| =3 gapMin ST 113 1136 1249 44 701 80P
v = 0.999 gapMin LP 111 1136 1247 46 442 799
cheng.D3-1 hsvi2 11 6417 6428 16 n.a. 99y
|S| =3 sarsop 15 6417 6432 10 1836 100p
|[A] =3,]0| =3 gapMin ST 10 6412 6422 8 33 2§
v = 0.999 gapMin LP 10 6412 6422 8 8 25|
cheng.D3-2 hsvi2 10 8240 8250 8 n.a. 404
|S| =3 sarsop 12 8240 8252 6 866 100
|[A] =3,]0| =3 gapMin ST 10 8235 8245 3 21 1§
v = 0.999 gapMin LP 10 8235 8245 3 7 22|
cheng.D3-3 hsvi2 105 7457 7562 13 n.a. 9on
|S| =3 sarsop 129 7457 7585 8 2437 999
|A| =3,]0| =3 gapMinST 10 7452 7462 7 149 56
v = 0.999 gapMin LP 10 7452 7462 7 15 37
cheng.D3-4 hsvi2 41 5827 5868 15 n.a. 998
|S| =3 sarsop 48 5827 5875 5 1799 100p
|A| =3,]0| =3 gapMinST 10 5822 5832 8 65 79
v = 0.999 gapMin LP 10 5822 5832 5 16 37
cheng.D3-5 hsvi2 26 8673 8698 63 n.a. 99p
|S| =3 sarsop 34 8673 8706 10 2704 100D
|A| =3,]0| =3 gapMinST 10 8668 8678 9 28 34
v = 0.999 gapMin LP 10 8668 8678 10 8 1§
cheng.D4-1 hsvi2 167 6715 6882 19 na. 99p
|S| =4 sarsop 180 6715 6894 10 6222 100p
|A| =4,]0| =4  gapMinST 10 6710 6720 11 476 55
v = 0.999 gapMin LP 10 6711 6721 11 45 28
cheng.D4-2 hsvi2 63 8381 8443 22 n.a. 99b
|S| =4 sarsop 71 8378 8450 8 2321 99
|[A] =4,]0| =4 gapMin ST 10 8376 8386 12 323 13
v = 0.999 gapMin LP 10 8376 8386 13 48 114
cheng.D4-3 hsvi2 55 7661 7715 20 n.a. 99y
|S| =4 sarsop 60 7660 7721 11 4720 100p
|[A] =4,]0| =4 gapMin ST 10 7656 7666 10 144 91
v = 0.999 gapMin LP 10 7656 7666 10 37 64
cheng.D4-4 hsvi2 65 7670 7735 18 n.a. 99y
|S| =4 sarsop 69 7669 7738 6 1371 100p
|[A] =4,]0| =4 gapMin ST 10 7665 7675 16 362 3l
v = 0.999 gapMin LP 10 7665 7675 11 40 109
cheng.D4-5 hsvi2 91 7884 7975 35 n.a. 994
|S| = sarsop 96 7884 7980 14 2584 100p
|[A] =4,]0| =4 gapMin ST 10 7879 7889 19 453 41
v = 0.999 gapMin LP 10 7879 7889 17 46 197
cheng.D5-1 hsvi2 59 6549 6608 19 n.a. 996
|S| =5 sarsop 64 6549 6613 9 3002 999
|[A] =3,]0| =3 gapMin ST 10 6544 6554 1 125 24
v = 0.999 gapMin LP 10 6544 6554 1 22 2§
cit hsvi2 0.0951 0.7430 0.8381 3739 n.a. 975
|S| = 284 sarsop 0.0491 0.7909 0.8399 3108 1368 967
|A| =4,|O| =28 gapMinST | 0.8378 0.0000 0.8378 1 123 872
v = 0.990 gapMinLP | 0.8378 0.0000 0.8378 1 104 855
ejsl hsvi2 7.8 421.3 429.1 13 n.a. EE)
|S| =3 sarsop 48.8 421.3 470.1 9 37237 1000
|A| =4,]0| =2  gapMinST 04 4211 4215 9 23 54
v = 0.999 gapMin LP 0.3 421.2 421.6 9 11 65
ejs2 hsvi2 91 1781 1872 8 n.a. 99y
|S| =2 sarsop 115 1781 1896 7 12629 1000
|[A| =2,]0| =2  gapMinST 10 1777 1787 6 21 22
~ = 0.999 gapMin LP 10 1776 1786 6 5 13
ejs4 hsvi2 20.2 -1336 -1134 7 na. 99p
|S| =3 sarsop 228 -133.6 -110.8 2 5107 1000
|A| =2,]0| =2  gapMinST 10 -1341 -133.1 2 76 26
~ = 0.999 gapMin LP 10 -1341 -133.1 2 7 13
fourth hsvi2 0.3758 0.2416 0.6174 3345 na. 994
|S| = 1052 sarsop 03300 0.2875 0.6175 3595 888 97p
|A| =4,|O| =28 gapMinST | 0.6176 0.0000 0.6176 1 20 532
v = 0.990 gapMinLP | 0.6176 0.0000 0.6176 1 21 669
hallway2 hsvi2 0.5250 0.3612 0.8862 2393 na. 997
|S| =92 sarsop 0.5247 0.3737 0.8984 262 1519 992
|A]l =5,|O| =17 gapMinST | 0.3718 0.4173 0.7891 294 460  94p
v = 0.950 gapMinLP | 0.4279 0.3621 0.7900 153 256 7%9
hallway hsvi2 0.250  0.945 1.195 1367 n.a. 996
|S| = 60 sarsop 0210 0.995 1.206 456 1713 998
|[A] =5,|0| =21 gapMinST | 0078 1.008 1.086 290 549 765
v = 0.950 gapMin LP 0.085 1.003 1.089 159 299 845

Table 2: Results continued (1000 seconds limit).

problem algorithm gap LB UB [’ |V]| time

iff hsvi2 0.924 8.931 9.855 7134 n.a. 999
|S| =104 sarsop 0.775 9.095 9.871 6811 1991 997
|A| =4,|O0| =22 gapMinST | 0.722 9214 9936 544 741 785
vy = 0.999 gapMinLP | 0660 9.261 9920 532 831 94
learning.c2 hsvi2 0.090 1.549 1.639 4082 n.a. 996
|S| =12 sarsop 0.093 1.556 1.648 4903 2054 996
|A| =8,|0| =3 gapMin ST 0.078 1.553 1.631 810 2038 893
~ = 0.999 gapMin LP 0.024 1.558 1.582 470 582 88%
learning.c3 hsvi2 0.250 2.364 2.614 4229 n.a. 948
|S| =24 sarsop 0.222 2.446 2.668 981 4094 997
|A| =12,|0| =3 gapMin ST 0.214 2.442 2.655 446 1387 944
~ = 0.999 gapMin LP 0.180 2.441 2.622 515 518 94y
learning.c4 hsvi2 0.567 3.055 3.622 4569 n.a. 999
|S| = 48 Sarsop 0.321 3.358 3.679 923 3717 98P
|A| =16, |0O| =3 gapMin ST 0.363 3.308 3.671 349 894 858
~ = 0.999 gapMin LP 0.353 3.306 3.658 500 365 989
machine hsvi2 349 6318 66.66 662 na. 982
|S| = 256 sarsop 3.57 63.18 66.75 150 2742 998
|A| =4,|0| =16 gapMinST 298 6293 6590 77 476 81
~ = 0.990 gapMin LP 3.20 62.39 65.59 67 292 85p
milos-aaai97 hsvi2 1831 4915 6746 3965 na 998
|S| =20 sarsop 19.61 49.74 69.35 3699 4465 997
|Al =6,|0| =38 gapMin ST | 17.67 4989 67.55 1212 1889 774
~ = 0.900 gapMin LP 15.42 49.97 65.39 581 1144 73D
mit hsvi2 0.0939 0.7910 0.8849 5539 na. 1000
|S| = 204 sarsop 0.0665 0.8189 0.8854 2820 1861 999
| Al =4,|O| =28 gapMinST | 00388 0.8447 0.8835 152 143  80p
vy = 0.990 gapMinLP | 0.0554 0.8279 0.8833 120 130 859
pentagon hsvi2 0.1920 0.6341 0.8261 4361 n.a. 997
|S| =212 sarsop 0.1311 0.6962 0.8273 3196 1228 971
| Al =4,|O| =28 gapMinST | 0.8258 0.0000 0.8258 1 191 990
vy = 0.990 gapMinLP | 0.8258 0.0000 0.8258 1 121 893
query.s2 hsvi2 42  490.7 495.0 1366 n.a. 992
|S| = sarsop 55 490.7 4963 113 2992 999
|Al =2,]0| =3 gapMin ST 10 4904 4914 37 1916 224
vy = 0.990 gapMin LP 10 4905 4915 31 212 57
query.s3 hsvi2 26.2 546.8 573.1 1203 n.a. 997
|S| =27 sarsop 28.1 546.8 5748 112 3132 999
|A| =3,|]0| =3 gapMin ST 10.8 546.7 557.5 154 4066 686
v = 0.990 gapMin LP 70 5467 5537 119 1323 70f
query.s4 hsvi2 51.9 569.5 621.4 2846 n.a. 999
|S| =81 sarsop 54.3 569.1 623.4 166 6782 1040
|Al =4,|]0| =3 gapMin ST 46.1 569.6 615.6 377 2601 958
v = 0.990 gapMin LP 432 5695 6127 169 921 93!
sunysb hsvi2 0.2396 0.5566 0.7963 4370 n.a. 997
|S| = 300 sarsop 0.3233 0.4748 0.7980 3537 1229 986
|A| =4,|O| =28 gapMinST | 0.7962 0.0000 0.7962 1 99 930
~ = 0.990 gapMinLP | 0.7961 0.0000 0.7961 1 107 974
tiger-grid hsvi2 0.388 2.138 2525 3394 n.a. 990
|S| = 36 sarsop 0.262 2.267 2.529 945 2165 997
|A| =5,|0| =17 gapMinST | 0106 2.296 2402 386 506 91p
~ = 0.950 gapMin LP 0.132 2.271 2.402 255 435 923

ison to 5 problems for GapMin with sawtooth interpolation,
4 problems for SARSOP and 2 problems for HSVI2. In gen-
eral, the GapMin variants require much fewewvectors and
belief-bound pairs to represent the upper and lower bounds
than HSVI2 and SARSOP, which demonstrates the effec-
tiveness of the breadth-first search.

Figure 1 compares the lower and upper bounds for long
running times on 8 of the 18 problems that were not solved
optimally by any of the solvers. The circles correspond to
GapMin with LP interpolation, stars to GapMin with saw-
tooth interpolation, solid lines to HSVI2 and the dash-edtt
lines to SARSOP. The GapMin variants clearly outperform
HSVI2 and SARSOP on 5 of the problems (hallway, hall-
way2, machine, mit and tiger-grid). GapMin with LP in-
terpolation also finds a tighter upper bound, but a slightly
looser lower bound for iff. It did not perform well on cit and
pentagon. This can be explained by the fact that the upper
bound for those two problems was already quite good and
most of the work was about tightening the lower bound for
which GapMin has no advantage over HSVI2 and SARSOP.
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Figure 1: Comparison of lower and upper bounds for GapMim WP interpolation (circles), GapMin with sawtooth interpo
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Table 3: Results with 50000 seconds limit.

problem algorithm gap LB UB N |V] time

cit hsvi2 0.0182 0.8192 0.8373 29803 n.a. 497p0
|S| = 284 sarsop 0.0169 0.8228 0.8396 21168 9337 49916
|A| =4,|O| =28 gapMinST | 0.0226 0.8141 0.8367 739 681 48931
v = 0.990 gapMinLP | 00149 0.8215 0.8364 648 614 45473

hallway hsvi2 0.179 0.994 1.173 15374 na. 49951
|S| = 60 sarsop 0.178 1.013 1.191 3053 12869 49992
|[A| =5,|0| =21 gapMin ST 0.043 1.015 1.058 947 2611 34828
v = 0.950 gapMin LP 0.036 1.016 1.051 851 1904 43184

hallway2 hsvi2 0.4211 0.4319 0.8530 18505 n.a. 49983
|S| =92 sarsop 0.4482 0.4336 0.8818 1901 10908 499173
|A| =5,|O| =17 gapMinST | 0.2620 0.4605 0.7225 1647 2809 46687
v = 0.950 gapMinLP | 02256 0.4680 0.6936 1135 1798 36746
iff hsvi2 0.199 9.302 9.501 40984 n.a. 50000
|S| = 104 sarsop 0.290 9.259 9.549 54016 12237 49966
|[A| =4,|0| =22 gapMin ST 0.634 9.273 9.908 1614 4502 34472
v = 0.999 gapMin LP 0.156 9.275 9.431 1626 6231 40046

machine hsvi2 289 6318 66.07 7857 na. 49998
|S| = 256 sarsop 3.02 63.18 66.20 996 22591 49963
|[A| =4,|0O| =16 gapMin ST 1.67 63.17 64.84 139 3807 49241
v = 0.990 gapMin LP 1.14 63.17 64.30 173 1988 49036

mit hsvi2 0.0575 0.8273 0.8848 34461 na. 49942
|S| = 204 sarsop 0.0196 0.8655 0.8851 20662 12097 49616
|A| =4,|O| =28 gapMinST | 0.0105 0.8714 0.8819 861 984 41564
v = 0.990 gapMinLP [ 0.0091 0.8721 0.8812 832 1051 43640

pentagon hsvi2 0.1349 0.6910 0.8258 29033 na. 4994
|S| =212 sarsop 00702 0.7570 0.8271 21950 7534 49994
|A| =4,|O| =28 gapMinST | 0.8249 0.0000 0.8249 1 713 44437
v = 0.990 gapMinLP | 0.1497 0.6747 0.8244 425 846 40436
tiger-grid hsvi2 0.217 2286 2502 28182 na. 49948
|S| =36 sarsop 0.231 2290 2522 5333 12504 49987
|[A] =5,|0| =17 gapMinST | 0.055 2322 2377 2404 3752 386]5
v = 0.950 gapMinLP | 0052 2321 2373 2404 3778 43254

In Table 3, we report the size of the lower and upper bound

lems for HSVI2 and 31 for SARSOP. GapMin also finds
representations for the lower and upper bounds that are
1.5 to 50 times more compact than HSVI2 and SARSOP
for the more difficult problems (Table 3). Our next step
is to extend GapMin to factored POMDPs. The main is-
sue is that LP interpolation yields linear programs with ex-
ponentially many variables and constraints. However, it
should be possible to use column and constraint genera-
tion techniques similar to what has been done to tackle fac-
tored MDPs by linear programming (Guestrin et al. 2003;
Schuurmans and Patrascu 2001).
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