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Abstract

In many situations, it is desirable to optimize a sequence
of decisions by maximizing a primary objective while re-
specting some constraints with respect to secondary objec-
tives. Such problems can be naturally modeled as constrained
partially observable Markov decision processes (CPOMDPs)
when the environment is partially observable. In this work,
we describe a technique based on approximate linear pro-
gramming to optimize policies in CPOMDPs. The optimiza-
tion is performed offline and produces a finite state controller
with desirable performance guarantees. The approach outper-
forms a constrained version of point-based value iteration on
a suite of benchmark problems.

1 Introduction

Partially observable Markov decision processes (POMDPs)
provide a natural framework for sequential decision making
under uncertainty. The goal is to find a policy that maxi-
mizes the expected total return specified by a reward func-
tion. However, in many applications, there are several ob-
jectives and it may be desirable to ensure that some bounds
are respected for some secondary objectives. For instance,
in spoken dialog systems (Williams and Young 2007) the
main objective may be to minimize the number of turns
while ensuring that the probability of completing a booking
task is above some threshold. In mobile assistive technolo-
gies (Hoey et al. 2012; Grześ, Poupart, and Hoey 2013a),
the goal may be to maximize the probability of complet-
ing a task while bounding energy consumption. In wire-
less communications, the goal of opportunistic spectrum ac-
cess (Zhao et al. 2007) is to maximize the utilization of wire-
less spectrum by allowing multiple devices to use the same
wireless channel while satisfying regulatory requirements
on the maximum collision rate between devices. To that ef-
fect, POMDPs have been extended to constrained POMDPs
(CPOMDPs) by allowing secondary objectives to be speci-
fied with corresponding bounds on the expectation of those
objectives (Isom, Meyn, and Braatz 2008).

We propose a novel approach based on approximate lin-
ear programming to optimize policies in CPOMDPs. When
the reachable space of beliefs is finite, an optimal policy can

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

be found exactly by linear programming. Since the space of
reachable beliefs is often infinite (or too large to enumerate),
we consider an approximate linear program that works with
a subset of beliefs. Although the linear program is approx-
imate, we show that its solution is an upper bound on total
rewards. Since the resulting policy is a finite state controller,
we also show how to compute the exact value of each objec-
tive by solving a system of linear equations. We also devise
an iterative approach to increase the subset of beliefs and
ensure that in the limit of an infinitely large belief set, the
exact optimal policy is found. The approach is evaluated on
a set of benchmark problems. The quality of the policies and
the running time outperform the state of the art, which con-
sists of a constrained version of point-based value iteration
and a minimax quadratically constrained program (Kim et
al. 2011).

2 Background
We consider a partially observable Markov deci-
sion process (POMDP) defined formally by a tuple
〈S,A,O, T, Z,R, γ, b0〉 where S is the set of states s,
A is the set of actions a, O is the set of observations o,
T (s′, s, a) = Pr(s′|s, a) is the transition distribution,
Z(o, s′, a) = Pr(o|s′, a) is the observation distribution,
R(s, a) ∈ R is the reward function, γ ∈ (0, 1) is the
discount factor and b0(s0) = Pr(s0) is the initial belief
at time step 0. Since the underlying state of the system is
not directly observable, the decision maker can maintain a
belief b(st) = Pr(st) about the current state st at each time
step t. The belief can be updated as time progresses based
on Bayes’ theorem. For instance, the belief bao obtained
after executing a in b and observing o is

bao(s′) ∝
∑
s

b(s) Pr(s′|s, a) Pr(o|s′, a) ∀s′ (1)

A policy π : B → A is a mapping from beliefs to actions. In
a POMDP, there is a single objective consisting of the reward
function. The goal is to find a policy π∗ that maximizes the
expected discounted sum of rewards.

π∗ = argmaxπ E

[∑
t

γtR(st, at)|π
]

(2)

A constrained POMDP (Isom, Meyn, and Braatz 2008)
allows multiple objectives to be considered. One of the ob-

THIS IS A PRELIMINARY VERSION OF THIS PAPER
THE FINAL VERSION WILL APPEAR IN THE AAAI DIGITAL LIBRARY



jectives is optimized, while the remaining objectives are
bounded. Without loss of generality, we will assume that the
primary objective is maximized and therefore we will denote
it by the reward function, while the secondary objectives are
assumed to be upper bounded and therefore we will denote
them by cost functions.1 Hence, a CPOMDP can be defined
by a tuple 〈S,A,O, T, Z,R, {Ck}1..K , {ck}1..K , γ, b0〉
where Ck(s, a) ∈ R is the kth cost function with upper
bound ck (among K cost functions). The algorithms de-
scribed in this paper can also work with different discount
factors for each objective, but to keep the exposition simple
we will assume that the same discount factor is used for all
the objectives. The goal is to find a policy π∗ that maximizes
the expected discounted sum of rewards while ensuring that
the expected discounted sum of costs remains bounded.

π∗ = argmaxπ E

[∑
t

γtR(st, at)|π
]

(3)

subject to E

[∑
t

γtCk(st, at)|π
]
≤ ck ∀k (4)

Note that the actual sum of discounted costs may be
higher than the bound since the bound only applies to the
expectation (average). It is tempting to change the definition
of CPOMDPs to bound actual costs, however, in stochastic
domains, this often makes the problem infeasible or leads
to conservative policies that do not perform well most of the
time. A bound on actual costs means that the probability that
the costs exceed the bounds should be zero. For instance,
disastrous states such as a robot crash or system failure can
rarely be completely ruled out, which means that all policies
will have a non-zero probability of exceeding desirable cost
bounds. A more practical alternative is simply to bound the
probability that some undesirable states are reached. This
can be done within the CPOMDP framework by assigning a
cost of 1 to undesirable states and 0 to the other states. The
expected discounted sum of costs corresponds to the prob-
ability of reaching an undesirable state when the discount
factor is 1 and the process terminates as soon as an undesir-
able state is reached.

The optimization of CPOMDP policies is notoriously dif-
ficult. We cannot restrict ourselves to deterministic policies
since the optimal policies may all be stochastic (Altman
1999; Kim et al. 2011). This is due to the presence of multi-
ple objectives, where it may be necessary to randomize over
multiple actions in order to tradeoff between costs and re-
wards. An exact solution can be obtained by solving a mini-
max quadratically constrained optimization problem (Kim et
al. 2011), however this approach is intractable. A suboptimal
dynamic programming technique (Isom, Meyn, and Braatz
2008) as well as a constrained version of point-based value
iteration (Kim et al. 2011) have also been proposed. How-
ever, the non-convex nature of the optimal value function
complicates dynamic programming and point-based value
iteration. Alternatively, we can think of the CPOMDP as a

1The sign of each objective can be flipped to ensure that the
primary objective is maximized while the secondary objectives are
upper bounded.

constrained belief MDP. By treating the beliefs as states, the
problem becomes fully observable, however the number of
reachable beliefs may be very large (even infinite). In the
next sections we describe how to optimize a policy by solv-
ing an approximate linear program for a subset of reachable
beliefs.

3 Constrained Belief State MDPs

Let B be the space of beliefs. We can then treat con-
strained POMDPs as constrained belief state MDPs (Alt-
man 1999). The constrained MDP that is equivalent to a
constrained POMDP can be formally defined by a tuple〈
S̄, A, T̄ , R̄, {C̄k}1..K , {ck}1..K , γ, s̄0

〉
. Here S̄ = B and

s̄0 = b0. The transition function T̄ (b′, b, a) = Pr(b′|b, a)
can then be expressed in terms of beliefs such that

Pr(b′|b, a) =
∑

{o|bao=b′}
Pr(o|b, a) (5)

Similarly, the reward and cost functions can be defined in
terms of beliefs

R̄(b, a) =
∑
s

b(s)R(s, a) (6)

C̄k(b, a) =
∑
s

b(s)Ck(s, a) ∀k (7)

Suppose that we restrict B to the space of reachable be-
liefs. When there are finitely many reachable beliefs, we can
solve constrained POMDPs by linear programming:

max
{y(b,a)} ∀b,a

∑
b,a

y(b, a)R̄(b, a) (8)

s.t.
∑
a′

y(b′, a′) = δ(b′, b0) + γ
∑
b,a

y(b, a) Pr(b′|b, a) ∀b′

∑
b,a

y(b, a)C̄k(b, a) ≤ ck ∀k

y(b, a) ≥ 0 ∀b, a
Here, δ(b1, b2) is a Dirac delta that returns 1 when b1 = b2
and 0 otherwise. The variables y(b, a) can be interpreted
as the (discounted) occupancy frequencies of each b, a pair.
Overall, the above linear program corresponds to the dual
linear program for MDPs (Puterman 2009) with the addition
of cost constraints (Altman 1999). We can extract an opti-
mal stochastic policy π∗ from the occupancy frequencies by
normalizing them:

π∗(a|b) = Pr(a|b) = y(b, a)∑
a′ y(b, a′)

(9)

Similarly, the optimal expected total reward and costs are

V ∗
R(b0) =

∑
b,a

y(b, a)R̄(b, a) (10)

V ∗
Ck

(b0) =
∑
b,a

y(b, a)C̄k(b, a) ∀k (11)
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4 Approximate Linear Programming

In most applications, the space of reachable beliefs is not fi-
nite and is unknown. We propose to approximate the linear
program in (8). To obtain this approximation we will con-
sider a finite set of beliefs B̂. This set does not have to con-
tain reachable beliefs. It just has to be a set of beliefs that
contains the corner beliefs as well as some other beliefs to
”cover” well the space of reachable beliefs. Here, corner be-
liefs are degenerate beliefs corresponding to each state. As
we will see shortly, the corner beliefs are needed to ensure
that any belief in the simplex can be interpolated. We will
describe an iterative approach in the next section to gradu-
ally define B̂. Let’s define an approximate belief state MDP
with respect to B̂. The main issue is that the beliefs that are
reachable from B̂ may not be in B̂. We resolve this by re-
placing any belief outside of B̂ by a convex combination of
beliefs in B̂. This idea is inspired from POMDP algorithms
(e.g., HSVI (Smith and Simmons 2005), SARSOP (Kurni-
awati, Hsu, and Lee 2008) and GapMin (Poupart, Kim, and
Kim 2011)) that represent upper bounds with a set of belief-
value pairs and interpolate the value of any other belief as a
convex combination of those belief-value pairs.

Let b be a belief that is not in B̂ = {bi}1..|B̂|. Since
there may be many convex combinations of the bi’s that
equal b, we select the convex combination that minimizes
the weighted Euclidean norm of the difference between b
and each bi by solving the following linear program:

min
{wi} ∀i

∑
i

wi||b− bi||22 (12)

s.t.
∑
i

wibi(s) = b(s) ∀s∑
i

wi = 1 and wi ≥ 0 ∀i

Let’s use the above linear program to interpolate all be-
liefs bao that can be reached from some b ∈ B̂ in one step.
We define w(bi, b

ao) = wi to be the probability wi associ-
ated with bi when interpolating bao. We can then make use of
this interpolation probability to define an approximate tran-
sition function T̃ .

T̃ (b′, b, a) = P̃r(b′|b, a) =
∑
o

Pr(o|b, a)w(b′, bao) (13)

In turn, we can use this approximate transition model di-
rectly in the linear program in (8) to obtain an approximately
optimal policy. Alg. 1 summarizes the steps to obtain this
approximately optimal policy.

5 Policy Evaluation

Since the policy returned by Alg. 1 is based on an approxi-
mate transition function, there is a need to evaluate the ex-
pected reward and costs of the policy. It turns out that the
policy is a stochastic finite state controller (Hansen 1998b)
for which we can easily compute the exact expected dis-
counted total reward and costs by solving a system of lin-
ear equations. Let N be the set of nodes n in the controller

Algorithm 1 Approximate LP

1: inputs: CPOMDP, B̂
2: outputs: π, V̂ ∗

R(b0)

3: for each b ∈ B̂, a ∈ A, o ∈ O do

4: Compute w(b′, bao) ∀b′ ∈ B̂ by solving LP (12)
5: end for
6: P̃r(b′|b, a) ← ∑

o Pr(o|b, a)w(b′, bao) ∀b, b′ ∈ B̂

7: {y, V̂ ∗
R(b0)} ← solve LP in (8) with B̂ and P̃r(b′|b, a)

8: π(a|b) ← y(b, a)/
∑

a′ y(b, a′) ∀b, a

such that we associate a node nb to each belief b. The action
chosen in node nb is determined by the policy Pr(a|nb) =
π(a|b). The transition to the next node nb′ is determined by
the interpolation distribution Pr(nb′ |nb, a, o) = w(b′, bao).
Since the transition distribution is based on the interpolation
distribution, we can’t assume that the distribution over states
is given by b when the system is in node nb. However, we
can compute the joint occupancy frequency y(nb, s) that the
system is in node nb when the true underlying state is s, by
solving the following system of linear equations.

yπ(nb′ , s
′) = δ(b′, b0)b0(s

′) + γ
∑

a,b,s,o

π(a|nb) (14)

Pr(s′|s, a) Pr(o|s′, a)w(b′, bao)yπ(nb, s) ∀b′, s′

The exact expected total reward and costs can then be
computed by the following expectations:

V π
R (b0) =

∑
b,s,a

yπ(nb, s)π(a|b)R(s, a) (15)

V π
Ck

(b0) =
∑
b,s,a

yπ(nb, s)π(a|b)Ck(s, a) ∀k (16)

We can also show that the approximately optimal total re-
ward V̂ ∗

R obtained by solving the approximate LP (8) based
on B̂ is an upper bound on the exact optimal total reward
V ∗
R . In order to show this, let’s analyze the LP in (8) and

its equivalent dual. As mentioned earlier, the LP (8) can be
interpreted as estimating occupancy frequencies, based on
which expected total costs can be bounded while maximiz-
ing the expected total reward. The dual of this LP is also
very informative:

min
{V(b)}∀b,{zk}∀k

∑

b

δ(b, b0)V(b) +
∑

k

ckzk (17)

s.t. zk ≥ 0 ∀k
V(b) ≥ R̄(b, a)−

∑

k

C̄k(b, a)zk + γ
∑

b′
Pr(b′|b, a)V(b′) ∀b, a

Here, the variables V(b) can be interpreted as a penalized
value function obtained based on a weighted combination
of the reward function and the cost functions. The variables
zk denote the weights of the cost functions. In other words,
the dual shows that an optimal policy can be obtained by
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optimizing a single objective composed of the reward func-
tion from which we subtract a weighted combination of the
costs. This is a natural thing to do when combining several
objectives into a single objective. Since the scale of the re-
ward and the cost functions may not be the same, it is not
always clear how to set the weights to adjust the scales. The
dual LP essentially shows that the weights should be opti-
mized simultaneously with the adjusted value function. We
are now ready to show that the approximate value V̂ ∗

R(b0) is
an upper bound on the optimal value V ∗

R(b0)

Theorem 1. The approximately optimal value V̂ ∗
R(b0) found

by solving LP (8) or its dual (17) with the subset B̂ is an
upper bound on the exact optimal value V ∗

R(b0).

Proof. Consider the dual LP (17) with the subset B̂. Its op-
timal value is V̂ ∗

R(b0) and let its optimal weights be ẑ∗. Con-
sider the dual LP (17) with the entire belief space B. Its
optimal value is V ∗

R(b0) and let its optimal weights be z∗.
Instead, if we fix the weights to ẑ∗, the optimal value of this
partly instantiated dual LP (let’s call it V ∗

R,ẑ∗(b0)) is an up-
per bound on V ∗

R(b0).
V ∗
R,ẑ∗(b0) ≥ V ∗

R(b0) (18)
This follows from the fact that the dual LP is a minimization
problem and therefore the value of any feasible solution is an
upper bound on the optimal value. Note also that by fixing
the weights to ẑ∗, we are also reducing the problem to a
POMDP with a single objective. Hence,

V ∗
R,ẑ∗(b0) = V∗(b0) +

∑
k

ckẑ
∗
k (19)

where V∗ is the optimal value function of this single objec-
tive POMDP. If we restrict the belief space to B̂ by interpo-
lation in this single objective POMDP, we obtain an upper
bound V̂∗ on V∗.

V̂∗(b) ≥ V∗(b) ∀b (20)
This inequality was shown by Hauskrecht (2000) and it is
used to derive upper bounds on the optimal value function
in several point-based value iteration techniques (Smith and
Simmons 2005; Kurniawati, Hsu, and Lee 2008; Poupart,
Kim, and Kim 2011; Grzes and Poupart 2014). Intuitively,
Eq. 20 follows from the fact that the optimal value function
of a single objective POMDP is piece-wise linear and con-
vex (Sondik 1971; Smallwood and Sondik 1973), and there-
fore belief interpolation necessarily yields values at least
as high as when we do not interpolate. Finally, the optimal
value of the dual LP based on B̂ is

V̂ ∗
R(b0) = V̂∗(b0) +

∑
k

ckẑ
∗
k (21)

The proof is completed by combining Eq. 18-21 as follows.
V ∗
R(b0) ≤ V ∗

R,ẑ∗(b0) (by Eq. 18)

= V∗(b) +
∑
k

ckẑ
∗
k (by Eq. 19)

≤ V̂∗(b0) +
∑
k

ckẑ
∗
k (by Eq. 20)

= V̂ ∗
R(b0) (by Eq. 21)

Since the exact expected total reward V π
R (b0) of the pol-

icy π found by Alg. 1 is never greater than the exact opti-
mal value V ∗

R(b0), it also follows that V π
R (b0) ≤ V ∗

R(b0). To
summarize, the value found by the approximate linear pro-
gram is an upper bound on the optimal value, while the exact
value of the resulting policy is a lower bound on the optimal
value. The gap between these bounds is useful to determine
how well B̂ approximates the belief space. In the next sec-
tion we will describe a procedure to incrementally generate
B̂ until the gap is below a desirable threshold.

We also need to analyze the expected total costs computed
in the approximate LP. In principle, the bounds ck imposed
on the expected total costs ensure that the resulting policy
does not yield higher costs than ck in expectation. However,
as mentioned before, the expected total costs are not exact
due to B̂. This is why it is important to compute the exact
expected total costs V π

Ck
(b0) as shown in Eq. 11. If there is

a cost function for which V π
Ck

(b0) > ck, then we have a
problem since the solution is technically infeasible and we
should not use the resulting policy. Unfortunately, Thm. 2
shows that the exact expected total costs may not satisfy the
bounds.

Theorem 2. The exact expected total costs V π
Ck

(b0) of the
policy π found by solving the approximate LP based on B̂
may be higher or lower than ck.

Proof. We give two examples where in one case V π
Ck

(b0) >
ck and in the other case V π

Ck
(b0) < ck. Suppose we have a

single cost function such that C(b, a) = R(b, a) ∀b, a and
the approximate LP finds a suboptimal policy π for which
the approximate expected total cost bound is tight, then

V π
C (b0)

1
= V π

R (b0)
2
< V ∗

R(b0)
3≤ V̂ ∗

R(b0)
4
= c (22)

Relation 1 follows from the assumption C(b, a) =
R(b, a) ∀b, a. Relation 2 holds since π is suboptimal. Re-
lation 3 follows from Thm. 1. Relation 4 follows from the
assumption that the approximate expected total cost bound
is tight and C(b, a) = R(b, a) ∀b, a. For the second case, set
the cost function to be the negative of the reward function,
i.e., C(b, a) = −R(b, a) ∀b, a. Then opposite relations hold
based on the same explanations.

V π
C (b0)

1
= −V π

R (b0)
2
> −V ∗

R(b0)
3≥ −V̂ ∗

R(b0)
4
= c (23)

A simple approach to ensure that V π
Ck

(b0) ≤ ck ∀k is to
(artificially) lower the bounds ck until the exact costs satisfy
the original bounds. For instance, if we have a single cost
function C and after solving the approximate LP the exact
expected total cost V π

C (b0) of the resulting policy π exceeds
the bound c, then we can do a binary search to find an artifi-
cial bound ĉ such that the exact cost tightly matches the true
bound, i.e., V π

C (b0) = c.
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6 Belief Set Generation

Alg. 2 describes a generic approach to alternate between
solving an approximate LP based on B̂ and adding new be-
liefs to B̂ until the gap between V̂ ∗

R(b0) and V π
R (b0) is less

than some desirable threshold ε.

Algorithm 2 Iterative Approximate Linear Programming
1: inputs: CPOMDP, ε
2: outputs: π

3: B̂ ← {cornerBeliefs} ∪ {b0}
4: repeat

5: [π, V̂ ∗
R(b0)] ← approximateLP(CPOMDP, B̂)

6: yπ ← solve Eq. 14
7: V π

R (b0) ←
∑

b,s,a y
π(nb, s)π(a|b)R(s, a)

8: B̂ ← B̂ ∪ beliefGeneration(CPOMDP, π, B̂, n)

9: until V̂ ∗
R(b0)− V π

R (b0) ≤ ε

A variety of techniques can be used to generate new be-
liefs that are added to B̂ at each step (Shani, Pineau, and
Kaplow 2013). Alg. 3 describes a simple approach inspired
from envelope techniques used in planning (Dean et al.
1995). It considers the beliefs that can be reached in one
step from any belief in B̂ by executing π. Since there may
be too many beliefs to be added, we can prioritize the beliefs
by adding the n reachable beliefs with the largest weighted
Euclidean distance to the beliefs in B̂ based on the interpo-
lation performed by LP (12).

Algorithm 3 Belief Generation
1: inputs: CPOMDP, π, B̂, n
2: outputs: B̂′ (such that |B̂′| ≤ n)
3: B̂′ ← ∅
4: for each b ∈ B̂, o ∈ O do
5: bo(s′) ← ∑

s,a b(s) Pr(s
′|s, a) Pr(o|s′, a)π(a|b) ∀s′

6: distbo ← distance of bo to B̂ ∪ B̂′ by LP (12)
7: if distbo > 0 then
8: B̂′ ← B̂′ ∪ {bo}
9: end if

10: if |B̂′| > n then /* reduce the size of B̂′ */
11: for each b′ ∈ B̂′ do
12: distb′ ← dist. of b′ to B̂∪B̂′\{b′} by LP(12)
13: B̂′ ← B̂′ \ {argminb′∈B̂′ distb′}
14: end for
15: end if
16: end for

The following theorem shows that the iterative approxi-
mate LP technique with envelope belief generation is guar-
anteed to converge to a (near) optimal policy when given
enough time.

Theorem 3. Alg. 2 is guaranteed to converge to a (near)
optimal policy π of the CPOMDP, i.e., V ∗

R(b0)−V π
R (b0) ≤ ε.

Proof. We give an informal proof. We first show that Alg. 2
terminates and then we show that when it terminates it con-
verges to a (near) optimal policy of the CPOMDP. Suppose

Table 1: Single objective POMDPs are augmented with a
cost function that assigns a cost of 1 to all state-action pairs
with low rewards as specified in the third column and a cost
of 0 otherwise.

Problem Reward Range Low Reward Threshold
query.s3 1.199 to 7.48 ≤ 2.75
query.s4 1.199 to 7.48 ≤ 2.75
iff -65 to 20 < 0
tiger-grid -1 to 0.75 ≤ 0
machine -15 to 0.994 < 0
milos-aaai97 0 to 150 < 150

that Alg. 2 does not terminate in the sense that V̂ ∗
R(b0) −

V π
R (b0) remains greater than ε. As the number of iterations

increases, B̂ will contain an increasing number of reachable
beliefs since Alg. 3 is guaranteed to generate new reachable
beliefs unless the current policy is evaluated accurately (er-
ror less than ε). As the number of iterations goes to infinity,
B̂ will eventually contain enough beliefs to accurately eval-
uate all policies that Alg. 1 produces infinitely often. Since
Alg. 2 terminates as soon as Alg. 1 produces a policy that is
evaluated accurately, we have a contradiction. Next, suppose
that the algorithm terminates, but it converges to a subopti-
mal policy π. By Thm 1, we know that V̂ ∗

R(b0) ≥ V ∗
R(b0).

Since V ∗
R(b0) ≥ V π

R (b0) and the algorithm terminates when
V̂ ∗
R(b0) − V π

R (b0) ≤ ε, then V ∗
R(b0) − V π

R (b0) ≤ ε, which
yields a contradiction.

7 Experiments

We compared empirically our algorithm (CALP) to a
constrained version of point-based value iteration (CP-
BVI) (Kim et al. 2011) on a set of benchmark problems. The
other existing algorithms for CPOMDPs are approximate
dynamic programming (Isom, Meyn, and Braatz 2008) and
quadratically constrained optimization (Kim et al. 2011).
Since they were shown to underperform CPBVI (Kim et
al. 2011), we do not report results for them. Both CPBVI
and CALP are implemented in Matlab without any explicit
parallelization (other than the automated parallelization per-
formed by Matlab’s virtual machine) and were run on a 64-
bit CentOS Linux machine with 24 cores (1.2 GHz), 132
Gb of RAM, Matlab R2013b and CPLEX 12.6. The toy, qcd
and ncity problems are CPOMDP benchmarks from (Kim
et al. 2011). The remaining problems are single objective
POMDPs from http://www.pomdp.org that we augmented
with costs. We set the cost to one for all state-action pairs
with a reward below some threshold defined in Table 1 and
zero for all other state-action pairs. The bound on the ex-
pected cumulative discounted costs ensures that the resulting
policy will not visit undesirable state-action pairs too often.
Hence the goal is to maximize expected total rewards while
bounding the frequency of low reward events.

Table 2 summarizes the results. The algorithms ran un-
til convergence of the optimal value to 3 significant digits
or a time limit of 1000 seconds (which ever occured first).
Since the algorithms may take extra time to complete the last
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iteration, the reported times are often slightly above 1000
seconds. The expected reward and cost were computed by
running 1000 simulations of 1000 steps for CPBVI. In the
case of CALP, the expected reward and cost were computed
by iteratively solving a system of linear equations with pre-
cision set to 3 significant digits. CPBVI did not find a policy
that respects the cost bound c for several problems, which
was denoted by n.a. in the table. This happened when CP-
BVI was not able to do enough iterations in 1000 seconds to
plan over a sufficiently long planning horizon. When CALP
found a policy that does not respect the cost bound due to the
approximate nature of the linear program, the cost bound
was artificially lowered by binary search (see the end of
Section 5) until the exact expected cost tightly satisfies the
bound. The time taken by the binary search is included in the
results. Overall, CALP found policies that are better than or
as good (when taking the standard deviation into account) as
the policies found by CPBVI in less time than CPBVI. We
also report the upper bound on the optimal value found by
CALP in the last column. The difference between the last
two columns gives an upper bound on the loss in value due
to the interpolation with respect to B̂. Since the difference is
0 for toy, qcd and ncity, CALP found an optimal policy for
those CPOMDPs.

8 Related Work

This work can be viewed as an extension to the literature
on fully observable constrained MDPs, where it is common
to use dual linear programming (Altman 1999). Dual for-
mulations have also been developed for dynamic program-
ming (Wang et al. 2007) and reinforcement learning (Yang,
Li, and Schuurmans 2009) in unconstrained MDPs. This
work is also related to approximate linear programming
(ALP) techniques for infinite state spaces in unconstrained
MDPs (Schweitzer and Seidmann 1985; de Farias and
Van Roy 2003). They use basis functions to restrict the space
of value functions while we use interpolation to reduce the
number of belief states. This approach is commonly used
in point-based value iteration techniques for unconstrained
POMDPs (Pineau et al. 2003; Shani, Pineau, and Kaplow
2013) where interpolation also leads to an upper bound on
the optimal value function (Smith and Simmons 2005; Kur-
niawati, Hsu, and Lee 2008; Poupart, Kim, and Kim 2011;
Grzes and Poupart 2014).

Our work is also related to the literature on finite state
controllers for unconstrained POMDPs (Hansen 1998b). In-
stead of optimizing controllers by policy iteration (Hansen
1998a; Poupart and Boutilier 2003) or non-linear program-
ming (Amato, Bernstein, and Zilberstein 2006), we use ap-
proximate linear programming, which allows constraints on
secondary objectives to be taken into account. Finally, we
focus on the offline optimization of CPOMDPs while Un-
durti and How (2010) developed an online forward search
technique for CPOMDPs.

9 Conclusion

We proposed a new approach to optimize policies for con-
strained POMDPs. The technique is based on approximate

linear programming. It outperforms the state of the art in
terms of both solution quality and time. The policies found
are finite state controllers which are also advantageous for
deployment in resource constrained applications such as em-
bedded systems as well as smartphones (Grześ, Poupart, and
Hoey 2013b). In future work, it would be interesting to ex-
tend this work to constrained decentralized POMDPs (Wu,
Jennings, and Chen 2012) and to explore reinforcement
learning techniques for CPOMDPs.
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