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An Improved Particle Filter With a Novel Hybrid
Proposal Distribution for Quantitative Analysis of

Gold Immunochromatographic Strips
Nianyin Zeng , Zidong Wang , Fellow, IEEE, Hong Zhang, Kee-Eung Kim, Yurong Li, and Xiaohui Liu

Abstract—In this paper, a novel statistical pattern recognition
method is proposed for accurately segmenting test and control lines
from the gold immunochromatographic strip (GICS) images for the
benefits of quantitative analysis. A new dynamic state-space model
is established, based on which the segmentation task of test and
control lines is transformed into a state estimation problem. Espe-
cially, the transition equation is utilized to describe the relationship
between contour points on the upper and the lower boundaries of
test and control lines, and a new observation equation is developed
by combining the contrast of between-class variance and the unifor-
mity measure. Then, an innovative particle filter (PF) with a hybrid
proposal distribution, namely, deep-belief-network-based particle
filter (DBN-PF) is put forward, where the deep belief network
(DBN) provides an initial recognition result in the hybrid proposal
distribution, and the particle swarm optimization algorithm moves
particles to regions of high likelihood. The performance of proposed
DBN-PF method is comprehensively evaluated on not only an
artificial dataset but also the GICS images in terms of several
indices as compared to the PF and DBN methods. It is demonstrated
via experiment results that the proposed approach is effective in
quantitative analysis of GICS.

Index Terms—Gold immunochromatographic strip, particle fil-
ter, proposal distribution, deep belief network, dynamical model,
image segmentation, particle swarm optimization algorithm,
Monte Carlo.
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I. INTRODUCTION

NOWADAYS, biosensors have shown promising applica-
tions in various fields including global and public health

care, environmental research, agriculture and forensic sciences.
The gold immunochromatographic strip (GICS), as a kind of lat-
eral flow immunoassay, provides a unique point-of-care (POC)
test platform for the detection of various analytes with high
sensitivity, good specificity and short turnaround time [26], [31],
[37]. In particular, the GICS can achieve rapid detection of
target analytes in samples via transforming them into more easily
detectable signals on the test line by using nano-gold particles,
see Fig. 1 for the schematic diagram of the GICS. Currently,
the image-based quantitative test system, which can acquire
the color intensity of nono-gold labeled complexes in the test
line (signal intensity) has already shown promising application
potentials of the advance image processing techniques.

In recent years, great efforts have been devoted to the widen-
ing of the range of GICS applications and also the enhance-
ment of the detection performance of GICS by biochemistry
researchers [15], [26], [31], [43], [44]. In addition, there is an
increasing research interest in modeling the biochemical process
of GICS so as to optimize the characteristics of GICS [2],
[20], [23], [28], [41], [42]. In particular, we refer the readers
to two recent reviews [6], [27], and the reference therein for
more details. In fact, the practical need for more meaningful
diagnostics with quantitative results has been the thruster of the
development of image-based quantitative POC test systems that
are capable of quantitatively detecting target analytes in samples.
A focus of research along this direction has been on how to
accurately extract the test and control lines from GICS images
via image segmentation methods including the Otsu threshold
segmentation algorithm, the fuzzy c-means (FCM) clustering
approach, the cellular neural network (CNN) as well as some
latest algorithms in machine learning such as the deep belief
network (DBN) [4], [16], [19], [32], [39], [43].

It should be pointed out that it is indeed challenging to
accurately segment the test and control lines from GICS images
that exhibit inherent characteristics outlined as follows. First,
the boundaries of test and control lines are usually neither clear
nor definite (actually quite blurry) especially when the color of
the test line is relatively shallow. Second, the boundaries of test
and control lines are irregular yet serrated (i.e., not as smooth
as they seem to be) since both lines are generally sprayed on
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Fig. 1. Schematic diagram of the sandwich-type GICS.

the strip in a non-uniform manner. Furthermore, the reading
window of GICS images inevitably contains some interference
noises when the sample to be detected (e.g. urine, blood and
serum) flows over the membrane. To overcome the challenges
listed above, we attempt to establish a dynamic state-space
model for the segmentation of control line and test line, where
the state sequence represents the contour points of boundaries.
Then, we intend to develop a particle filter (PF) architecture,
in combination with the deep belief network (DBN) and the
particle swarm optimization (PSO) algorithm, for quantitative
interpretation of the GICS by accurately recognizing the test
and control lines from the obtained GICS images.

As a sequential Monto Carlo technique, the PF has been
proven to be capable of dealing with nonlinear and non-Gaussian
problems [1], [42]. The greatest advantage of the PF method is
its suitability of representing the posterior distribution of states
by a set of random particles with associated weights. Over the
last few decades, the research on PF algorithms has maintained a
good momentum with remarkable progress in the application of
target tracking, signal and information processing, automation
and system modeling, etc [7], [10], [12], [13], [24], [29], [30],
[38], [42]. It is worth noticing that the PF approach has been suc-
cessfully applied to some image segmentation issues, see e.g. [3],
[34], [36]. In particular, a deep particle filter was proposed in [3]
for dynamically segmenting the left ventricle endocardium, in
which deep learning architectures were employed as the obser-
vation distribution and the results of transition and observation
models were combined to obtain the proposal distribution.

To investigate the segmentation of GICS images by the PF
approach, it is often necessary to establish a dynamic state-
space model [3] that consists of the transition and observation
equations, based on which the segmentation problem can be
transformed into an equivalent state estimation problem. In
practice, however, it is rather difficult to acquire the observation
and transition distributions of the corresponding model. In this
paper, a transition model is proposed to describe the relationship
between contour points on the upper and lower boundaries
of test and control lines. Then, a new observation model is
developed by a combination of two evaluation indices, which are
the contrast of between-class variance (CBCV) and uniformity
measure (UM). Based on the established model, the PF method
would stand out as a competitive candidate to address the optimal
solution to the state estimation problem.

For standard PF where the transition prior is exploited as
the proposal distribution, there is a degeneracy problem since
the latest available information cannot be utilized to generate
new values for the states. Furthermore, such kind of standard

PF might not work efficiently since only a few particles can
survive after some iterations (i.e., most particles have negligible
weight). In theory, the choice of proposal distribution is of
vital importance to the performance of the PF method. In this
paper, we aim to develop a novel proposal distribution that
utilizes a combination of deep belief network (DBN) and particle
swarm optimization (PSO) algorithm in order to improve the
performance of the PF approach. DBN, originally proposed by
Hinton, is a greedy and hierarchical learning model that has been
extensively investigated and widely applied in the field of ma-
chine learning [9], [21], [22], [25], [35], [39]. For example, in our
recent work [39] proposed, a DBN method has been exploited
to extract test and control lines from GICS images with a re-
markable segmentation performance. Nevertheless, if we were to
generate a swarm consisting of particles with recognition results
by DBN method, the computational burden might be unbearable
with sacrificed diversity. In this case, as a global stochastic opti-
mization algorithm, the PSO algorithm developed by Kennedy
and Eberhart [11] is introduced in this paper to generate the
swarm as well as move particles to regions of high likelihood.

The main contributions of this paper is primarily threefold.
1) A dynamic state-space model has been established for trans-
forming the segmentation problem into the problem of state esti-
mation. 2) The proposed dynamic state-space model consists of
the transition equation which describes the relationship between
contour points of the object to be segmented, and the observation
equation which is formed by a combination of the contrast of
between-class variance (CBCV) and uniformity measure (UM).
3) An innovative PF framework, which utilizes a combination
of DBN and PSO algorithm as the proposal distribution, is
proposed for segmenting the GICS images for the benefits of
quantitative analysis.

The remainder of this paper is organized as follows. In
Section II, the preliminaries about particle filter, deep belief
network, as well as particle swarm optimization algorithm are
presented. A dynamic state-space model for GICS images seg-
mentation is established in Section III. Section IV provides a
detailed introduction on the proposed DBN-PF segmentation
framework. In Section V, the performance of the proposed DBN-
PF approach is evaluated not only on an artificial dataset but also
on the segmentation of GICS images. Finally, conclusions are
drawn in Section VI.

II. PRELIMINARIES

In this section, we first briefly describe the basic theory of
particle filter (PF) methodology. Then, a brief and necessary sub-
section is provided to introduce the deep belief network (DBN)
as well as its core component named Restricted Boltzmann
Machine (RBM). In the end, the particle swarm optimization
(PSO) algorithm is introduced to move particles to regions of
high likelihood based on results of the trained DBN.

A. Particle Filter

Particle filter (PF) is a recursive Bayesian method based
on the non-parametric Monte Carlo simulation [5], [33], [42].
Generally, PF is able to be applied to any nonlinear systems with
an accuracy approximating to the optimum estimate.
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Fig. 2. Schematic diagram of RBM.

Consider the dynamic state space model of a nonlinear system
as follows:

State transition model: xt = f(xt−1, wt−1) (1)

Observation model: yt = g(xt, vt) (2)

where t is the time index. xt and yt represent the state and
observation variables, respectively. f(·) and g(·) represent the
state transition and observation functions, respectively. wt and
vt denote independently and identically distributed noises of
process and measurement, respectively.

According to the law of large numbers, the PF is designed
to approximate the posterior distribution p(xt|y1:t) via a set of
weighted samples {xi

t, w
i
t}Ni=1, which are drawn from an im-

portance proposal distribution q(·), i.e. {xi
t ∼ q(xt|xi

t−1, y1:t)}
(i = 1, . . . , N). The weight for each sample can be calculated
by the following recursive formula:

wi
t = wi

t−1

p(yt|xi
t)p(x

i
t|xi

t−1)

q(xt|xi
t−1, y1:t)

(3)

Finally, the estimated state can be approximated by weighted
sum of N samples:

x̂t ≈
N∑

i=1

w̃i
tx

i
t (4)

where w̃i
t is the normalized weight:

w̃i
t = wi

t

1
∑N

j=1 w
j
t

(5)

B. Deep Belief Network

1) Restricted Boltzmann Machine: The Restricted Boltz-
mann Machine (RBM) is a stochastic neural network that can
learn the distribution of input data [9], [39]. As shown in Fig. 2,
the network also severs as a bipartite graph composed by one
visible layer and one hidden layer, where visible units v are
connected to hidden units h by a set of weighted connections.
Especially, there are no connections existing between two units
in the same layer.

The joint probability distribution p(v, h|θ) between visible
and hidden layers in an RBM can be defined as follows:

p(v, h|θ) = e−E(v,h|θ)

Z(θ)
(6)

where E(v, h|θ) = −∑m
i=1

∑n
j=1 wijvihj −

∑m
i=1 bivi −∑n

j=1 ajhj denotes the energy function, Z(θ) =∑
v,h e

−E(v,h|θ) denotes the partition function, and θ = (w, b, a)
is the model parameter. Then, the most concerned marginal
probability of visible layer, termed the likelihood function, can
be calculated by:

p(v|θ) =
∑

h e
−E(v,h|θ)

Z(θ)
(7)

In particular, the conditional probabilities p(h|v, θ) and
p(v|h, θ) can be easily computed by the simple law of algebraic
addition since any two units in the same layer are independent
from each other. Here we set the sigmoid function σ(x) =
(1 + e−x)−1 as the activation function, and the equations are
given as:

p(hj = 1|v, θ) = σ

(
m∑

i=1

wijvi + aj

)
(8)

p(vi = 1|h, θ) = σ

⎛

⎝
n∑

j=1

wijhj + bi

⎞

⎠ (9)

The training procedure of an RBM is aimed to configure a
desirable parameter θ = (w, b, a) for the whole network. The
judgment criterion of network property is whether it well fits
the given training data, which can be achieved by maximizing
the log likelihood function:

θ∗ = arg max
θ

T∑

t=1

ln p(v(t)|θ) (10)

where T represents the number of the training set.
Although the gradient ascent algorithm can be applied to

obtain the gradient equation of each model parameter according
to the objective function, the Gibbs sampling was introduced in
[8] to approximate the joint probability distribution p(v, h|θ).
Furthermore, a fast learning algorithm, named the contrastive
divergence (CD) [8], was proposed to speed up the sampling
process. In particular, CD algorithm performs satisfactorily for
model recognition even at k = 1, which can be represented by:

h(0) ∼ p(h|v(0)), v(1) ∼ p(v|h(0)) (11)

Therefore, the update rules for parameters θ = (w, b, a) are
given as:

wt+1 = wt + ε(p(h|v(0))[v(0)]T − p(h|v(1))[v(1)]T ) (12)

bt+1 = bt + ε(v(0) − v(1)) (13)

at+1 = at + ε(p(h|v(0))− p(h|v(1))) (14)

where ε represents the learning rate and t represents the time
index.

2) Deep Belief Network: Deep belief network (DBN), pro-
posed by Hinton [9] in 2006, has been widely studied and
extensively applied to deal with a variety of deep learning tasks.
The DBN is a deep neural network composed by a stack of
RBMs together with a logistic regression, as shown in Fig. 3. It
is actually a greedy and hierarchical learning model, in which
a bottom-up learning strategy is adopted. More specifically, the
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Fig. 3. Flowchart of DBN.

RBM at the bottom is firstly pre-trained using training data as
its inputs. Once the parameters of the lower-layer RBM are
determined, then the output of hidden feature activations can
be utilized as the input of visible units for the higher-layer
RBM. Finally, a logistic regression is added to the top of the
stack of RBMs so that the network can achieve tasks such as
classification, recognition and etc [39].

The training process of DBN includes two main phases:
pre-training and fine-tuning. The pre-training stage is going to
determine the unknown parameters of RBMs, i.e., θ = (w, b, a),
with the CD algorithm mentioned above in a bottom-up manner.
It is of essential importance for constructing a power config-
uration of DBN, which suffices desirable property of feature
extraction. In the fine-tuning stage, a back propagation or gra-
dient descent algorithm is used to make a slight adjustment of
network parameters.

C. Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO), proposed by Kennedy and
Eberhart [11], is a global optimization algorithm illuminated
by the wildlife population behaviors such as fish school or
bird flock, etc. The basic PSO and improved PSOs have been
extensively utilized to solve various practical issues, owing to
its effectiveness of interpreting intractable optimization prob-
lem and its easy implementation with rapid convergence to a
reasonable solution [14], [44], [45].

In PSO, particles of a swarm are aimed to find the global
optimum, and they move with a certain velocity in iterations.
During the procedure of optimization, each particle adjusts
its velocity according to the optimal solution of individual
and population. We suppose that a swarm including S
particles flies in the D-dimensional search space. At tth
iteration, the position and velocity of the ith particle are
respectively expressed by xi(t) = (xi1(t), xi2(t), . . . , xiD(t))
and vi(t) = (vi1(t), vi2(t), . . . , viD(t)). Similarly, the optimal
solution of individual and population are denoted by pi(t) =
(pi1(t), pi2(t), . . . , piD(t)) and pg(t) = (pg1(t), pg2(t),
. . . , pgD(t)), which represent the best position encountered by
itself and the best position in the whole swarm, respectively.
Then, the update equations of particles are described as follows:

vid(t+ 1) = w × vid(t) + c1 × r1 × (pid(t)− xid(t))

+ c2 × r2 × (pgd(t)− xid(t)),

xid(t+ 1) = xid(t) + vid(t+ 1), (15)

where w represents the inertia weight, c1 and c2 denote
acceleration coefficients, r1 and r2 denote two random numbers
from [0,1].

Fig. 4. The diagram of the GICS image segmentation based on the dynamic
model. Left: The detection window of GICS image; Middle: Segmentation
contour with yellow markers; Right: Detailed sequential annotation of the
segmentation contour.

III. DYNAMIC STATE-SPACE MODEL FOR GICS
IMAGES SEGMENTATION

Gold immunochromatographic strip (GICS), labeled with
the colloidal gold nanoparticle, is an immunochromatographic
methodology based on the high specificity of antigen-antibody
interaction. Recently, image-based quantitative analysis of GICS
has become a hotspot for research and there is a practical need to
develop an effective image segmentation approach to accurately
extract the test and control lines from GICS images. Generally,
the GICS images acquired by the established quantitative in-
strument [39] should be preprocessed at first so as to obtain
the detection window of GICS, as shown in Fig. 4. Therefore,
the problem of segmenting test and control lines from GICS
images can be transformed into that of determining the upper
and lower boundaries contour points of test or control line, which
can be represented by a state sequence denoted by {xt|t ∈ T},
xt ∈ R2. In this context, the problem to be solved in this paper
can be considered as the state estimation problem of a state-space
model, where the transition distribution in the model is repre-
sented by p(xt|xt−1) and the observations {yt|t ∈ T} (yt ∈ R)
are conditionally independent given the process {xt|t ∈ T}with
marginal distribution p(yt|xt).

A. Transition Model

In order to segment the GICS images, a transition model
should be developed so as to describe the relationship between
contour points on the upper and lower boundaries of test and
control lines. It should be mentioned that the upper and lower
boundaries of test and control lines are irregular (not as smooth
as they seem), which might be resulted from various external
factors, such as temperature, humidity, colloidal gold and non-
uniform permeation of specimens [43]. Here, we model the rela-
tionship between contour points by the following discrete-time
dynamic system:

xt = xt−1 + vt−1 (16)
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where vt−1 represents the system noise, which is typically
determined by the structure, reaction rates, and concentrations
of antibodies, antigens, or complex material [41]. It can be
considered as the zero-mean uncorrelated Gaussian noises (with
covarianceQ = 2 in this paper) due to the random nature as well
as the different sources for the system noise.

B. Observation Model

In this paper, a new observation model is developed by a
combination of the contrast of between-class variance (CBCV)
and uniformity measure (UM). Note that the CBCV and UM are
widely used as evaluation indices for the performance of image
segmentation [40].

For a gray-level image f(m,n), we assume the state to be xt

at time t, and the corresponding CBCV can then be calculated
by the following equations [40]:

CBCV (xt) = w0 × w1 × (μ0 − μ1)
2 (17)

where

w0 =
Kxt

K0
, w1 = 1− Kxt

K0
(18)

μ0 =
1

Kxt

∑

(m,n)∈Rxt

f(m,n), μ1 =
1

K0

∑

(m,n)∈R0

f(m,n)

(19)

Here, Rxt
and R0 represent the areas of segmentation region

and the whole detection region, Kxt
and K0 represent the pixel

numbers of segmentation region and the whole detection region,
respectively. Therefore, w0 and w1 denote the proportions of
segmentation region and background. μ0 and μ1 denote the
average gray-values of segmentation region and background.

The UM is defined as the similarity of property about region
element, which can be calculated based on the variance of the
feature evaluated at each pixel belonging to the region [40].
Therefore, for a gray-level image f(m,n), the UM at time t can
be computed as follows:

UM(xt)

= 1
1

β

{ ∑

(m,n)∈Rxt

[
f(m,n)− 1

Kxt

∑

(m,n)∈Rxt

f(m,n)
]2}

(20)

where β is a normalization factor. Therefore, the observation
model for GICS images can be modeled as:

f(xt) = αCBCV (xt) + γUM(xt) +mt (21)

where α and γ are the weighting coefficients, mt stands for the
measurement noise. Meanwhile, the corresponding observation
distributionp(yt|xt) can be described as the following likelihood
distribution:

p(yt|xt) ∝ e
1

f(xt) (22)

IV. DBN-PF METHOD FOR SEGMENTING GICS IMAGES

The main task that we like to accomplish in this study is the
delineation of upper and lower boundaries contour points of test

Fig. 5. The proposal distribution of the DBN-PF method.

and control lines, namely, the state sequence {xt|t ∈ T}. In gen-
eral, the optimal solution to the state estimation problem can be
obtained by the PF approach based on the previously established
dynamic state-space model. However, the standard PF (where
the transition prior is employed as the proposal distribution) has
a degeneracy problem since it ignores the most recent evidence
yt and therefore only a few particles can survive. In this case, it is
of vital importance to choose an efficient proposal distribution
in the particle filter method. In particular, various intelligent
methods have been proposed to optimize the distribution of
particles in their propagation process in the PF, which can be
find in the survey paper [17]. For this purpose, an innovative
particle filter framework, namely, deep-belief-network-based
particle filter (DBN-PF), is proposed in this paper that utilizes
a combination of DBN and PSO algorithm as the proposal
distribution, see Fig. 5 for more details.

To illustrate proposed DBN-PF method, the role of DBN
is to first provide an initial recognition result. According to
the characteristic of GICS images, three features (namely, the
gray intensity, distance and difference features) are selected as
the input of the DBN so as to distinguish the control and test
lines. For each pixel in the region of interest, a square window
winsize× winsize in the neighborhood are extracted to obtain
gray intensity of pixels. Note that, for pixels near the image
border, a mirroring approach is introduced to get intensity values
of regions inside the window but beyond the image border.
In addition, the distance feature denotes the distance to the
center and the difference feature stands for the difference of
intensity values between two lines and background. Therefore,
a discriminative DBN model, as shown in Fig. 6, is established
to obtain the initial segmentation result based on the theory
introduced in Section II-B.

Next, the PSO algorithm is utilized to move particles to
regions of high likelihood. In particular, the observation model
(21) is selected as the objective function of PSO. That is, the
bigger the value of (21) the higher the likelihood. Compared
with the transition prior, the proposal distribution of DBN-PF
method takes advantage of the latest available information to
generate new values for the states.

Remark 1: The weight wt of DBN-PF method is upper
bounded and, therefore, the convergence is ensured based on
the theorem introduced in [33].

Remark 2: It is not always beneficial for PF to use the like-
lihood/observation information to adjust the prior. The method
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Fig. 6. Flow diagram of the DBN-based GICS image segmentation.

works well when the observation noise is comparably small, see
the detailed analysis given in [18].

For a better illustration, the pseudocode of the proposed DBN-
PF algorithm in this paper is described as follows:

(a) Deep belief network
Calculate three discriminative features as the input of

DBN X .
Establish the DBN model and train the deep architecture
θ = (w, b, a).

Obtain the initial recognition result Y .
(b) Particle swarm optimization algorithm

For i = 1, 2, . . . , N
Initialize the particles with acquired Y .
Iterate the velocity and position of particles with the

objective function (21)
Update the individual-best pi and global-best pg .

(c) For i = 1, 2, . . . , N , sample {xi
t ∼ q(xt|xi

t−1, y1:t)}
according to PSO results

(d) For i = 1, 2, . . . , N , evaluate the importance weights:

wi
t = wi

t−1

p(yt|xi
t)p(x

i
t|xi

t−1)

q(xt|xi
t−1, y1:t)

(e) For i = 1, 2, . . . , N , normalize the weights:
w̃i

t = wi
t

1
∑N

j=1 wj
t

(f) Resample procedure
(g) Output the estimated state: x̂t ≈

∑N
i=1 w̃

i
tx

i
t

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, a series of simulations and experimental tests
are designed to show the effective of the proposed DBN-PF
approach. To make the study more comprehensive and convinc-
ing, an artificial dataset is created in this paper on the basic of
the characteristic of GICS images. In particular, the accuracy of
image segmentation can be verified via the designed artificial
dataset. After that, the proposed DBN-PF approach is utilized to

solve the problem of GICS image segmentation. Furthermore,
the performance of the proposed DBN-PF approach is also
compared with those of PF and DBN in term of several indexes
so as to demonstrate the superiority of the proposed algorithm.

In this paper, a four-layer DBN with 100 hidden nodes is
established to accomplish the recognition task. The window
size is set as 13 and the network has 171 input nodes. In the
training procedure, the learning rate is set as 1, and the deep
learning architecture iterates 20 times independently to reduce
random effects in the experiments. In PSO, a swarm with 100
particles is generated to find out regions of high likelihood, the
inertia weight w is set as 1.5 and the acceleration coefficients c1
and c2 are equal to 2. Note that two parameters α and γ in the
observation model (21) are set as 0.5 and 1000, respectively.

A. Simulations on An Artificial Dataset

According to the characteristic of GICS images, an artificial
image dataset composed by four groups is designed to accurately
evaluate the performance of image segmentation, where each
group includes eight images with different level of gray value.
Especially, the line in each image which is similar to the test or
control line in GICS images, has a serrated and blurry boundary.
Besides, the dataset is disturbed by noises with different intensi-
ties. Therefore, it should be mentioned that these characteristics
greatly increasing the difficulty for segmentation. Three trials
are carried out when the number of blurry row n is set as 2,
3 and 4, respectively. Here, one of the groups in the dataset is
shown in Fig. 7 (n = 4). In our experiments, three groups are
used as the training set, and the remaining one is exploited as
the testing set. Besides, a cross-validation method is utilized in
this paper to guarantee the effectiveness of experiments, and the
mean results are reported.

Here, we choose some representative cases to demonstrate the
segmentation performance of different approaches. As shown
in Fig. 8, the segmentation results are obtained when the group
(k = 4, n = 3) corrupted by the largest additional white noise
with standard deviation 2 is used as the testing data, while images
2, 8 represent different levels of gray value in Fig. 7.

Fig. 8 shows that there is a great difference in the segmentation
performance among three methods. The traditional PF method
yields the worst results among three methods, for the reason that
there is a degradation problem when moving particles according
to the state equation. The DBN method can achieve a relatively
satisfactory result owing to its powerful learning capacity of
deep architecture. However, it fails to recognize the serrated and
blurry boundary of each image. It is worth pointing out it is the
key and difficult to accurately segment the serrated and blurry
boundary since it contains medical testing information in GICS
images. In contrast, the proposed DBN-PF methodology obtains
the best result, which can well distinguish the serrated and blurry
boundaries.

Next, we calculate the accuracy of image segmentation by
counting the proportion of pixels that are classified correctly.
The segmentation accuracies are shown in Table I when the
numbers of blurry row n equal to 2, 3 and 4, respectively.

It can be observed that the PF method obtains the lowest
accuracy, which is lower than other two methods over 10%.
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Fig. 7. One group of the artificial dataset includes eight images with different levels of gray value. The rightmost image is the detailed annotation of the serrated
and blurry boundary (n = 4).

TABLE I
THE SEGMENTATION ACCURACY

Fig. 8. Two typical simulation results of three approaches on the artificial
dataset. Left column: Original images; Right column: Segmentation results of
the PF, DBN and the proposed DBN-PF approaches.

Both DBN and proposed DBN-PF methods can provide high
accuracy, while the proposed DBN-PF method outperforms the
DBN method about 1%. There is an interesting phenomenon
that the segmentation accuracy of the proposed DBN-PF method
drops slightly when the number of blurry row is set as a bigger
value (n = 4), while the DBN method remains steady. Nonethe-
less, the proposed DBN-PF method still outperforms the DBN
method. The improvement of the proposed DBN-PF method
may owe to the improved proposal distribution, which can move
particles to regions of high likelihood. To verify this issue in
more detail, therefore, the estimated filtering distributions by the
PF and proposed DBN-PF approaches are shown in the Fig. 9.

From the Fig. 9, it is obvious that the posterior distributions
obtained by the proposed DBN-PF approach are much more
accurate than the posterior distributions obtained by the PF ap-
proach. The maximum probability of the posterior distributions
obtained by the PF approach is 0.15, while the value obtained
by the proposed DBN-PF approach is 0.5. Hence, the proposal

distribution of the proposed DBN-PF approach is effective via
considering the new observing information. The proposed DBN-
PF approach can well solve the degeneracy problem of particle
filters, therefore, it can provide an accurate estimation.

In addition, the value of objective function (21) for each image
can be obtained and utilized to further verify the performance
of DBN-PF method. The greater the value, the better the perfor-
mance of the algorithm. The results are shown in Fig. 10 in the
form of boxplot when the numbers of blurry row n equal to 2,
3 and 4, respectively. For the sake of simplicity, we only select
2 images from each test group which are (2) and (8) in Fig. 7 to
show their values of objective function.

As shown in Fig. 10, the PF method provides not only the
lowest mean values of the objection function but also more
dispersive results. The DBN method can obtain a better perfor-
mance, but is still lower than the proposed DBN-PF method.
Compared to the other two methods, the proposed DBN-PF
method yields superior results in most cases. Meanwhile, it
is obviously that the proposed DBN-PF method provides a
significant improvement over the traditional PF approach in the
segmentation performance owing to the novel hybrid proposal
distribution.

Finally, the impact of the number of particles for the proposed
DBN-PF method is considered in this paper. The results of this
part are depicted in Fig. 11.

From Fig. 11, we can find that the segmentation accuracy of
the proposed DBN-PF approach is increasing with the number
of particles. In addition, the accuracy increases slightly when
the number of particles over 100, while the computational com-
plexity of the algorithm increases greatly. In order to balance
the computational complexity and the accuracy of the algorithm,
therefore, the number of particles is selected as 100 in this paper.
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Fig. 9. Estimated filtering distributions by the PF and proposed DBN-PF approaches. (a) and (b): Posterior distributions of two dimensions of state via the PF
approach. (c) and (d): Posterior distributions of two dimensions of state via the DBN-PF approach.

B. Simulations on GICS Images

1) Results of GICS Images Segmentation: In this section, we
apply the proposed DBN-PF approach to the segmentation of
GICS images. The objective is to extract the control line and test
line which contain the useful information from GICS images.
In our experiments, the human chorionic gonadotropin (hCG)
is chosen as the analyte specimen. In particular, several groups
of GICS images with different levels of specimen concentration
from low to high are analyzed to demonstrate the performance
of methods. Note that the color of test line is relative to the con-
centration of the analyte specimen. It should be pointed out that
it is a challenging issue to accurately extract the test and control
lines. For reasons of space and simplicity, two typical examples
are utilized to demonstrate the segmentation performances, as
shown in Fig. 12. Especially, the specimen concentrations are
respectively set as 75 ml and 500 ml, representing the low and
high concentrations.

From Fig. 12, it can be observed that all three approaches
are capable to extract the control and test lines from the GICS
images, even when the specimen concentration is at a low level.
The extracted test and control lines obtained by the PF approach
and the proposed DBN-PF approach are closer to the actual
width of both lines than the result of DBN approach. That is, the
results obtained by the DBN method are only part of the actual
test and control lines. However, the boundary of test and control
lines cannot be accurately recognized by the PF approach.

In contrast, the proposed DBN-PF approach provides a satis-
factory performance, which includes more effective information
with a more accurate boundary. In addition, the value of objective
function (21) for each GICS image is also utilized to further
verify the performance of the proposed method. For the sake of
simplicity, we similarly only select two typical results of three
approaches for segmenting GICS images are shown in Fig. 13,
and the corresponding concentrations are 75 ml and 500 ml,
respectively.

As shown in Fig. 13, the proposed DBN-PF approach can
obtain the biggest mean value of objective function among three
methods both in the control line and test line, and also the mean
square errors of the DBN-PF method are relatively minimum in
most cases. Hence, the DBN-PF method outperforms the other
two approaches.

2) Quantitative Analysis of the GICS: In order to achieve
the quantitative determination of analyte specimen, a feature
parameter, termed relative integral optical density (RIOD) is
introduced to characterize the result of GICS. It is defined by
the ratio of integral optical density (IOD) of the control line
and test line, which is described by the following equation [43]:

RIOD =
IODt

IODc
=

∑N
i=1 lg

G0

Gt
i

∑M
j=1 lg

G0

Gc
j

(23)

where IODt and IODc represent values of IOD for the test
line and control line, and Gt and Gc denote the gray intensity of
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Fig. 10. Simulation results of three approaches on the artificial dataset. (a–b):
The value of objective function when n is set as 2. (c–d): The value of objective
function when n is set as 3. (e–f): The value of objective function when n is set
as 4.

Fig. 11. The impact of the number of particles on the segmentation accuracy.

pixels on the test and control lines, respectively. G0 stands for
the mean value of gray intensity in the reading window. After
that, the least square approach is applied to get straight fitted
lines for four methods, as shown in Fig. 14, on the basis of the
RIOD points acquired by the segmentation results of GICS
images under different concentrations.

For a comprehensive comparison, we compare the results
of proposed DBN-PF method with traditional PF, DBN and
the SDPSO-based CNN method developed in [43]. As shown
in Fig. 14, all four approaches present a good corresponding
relationship between the hCG concentration and the value of
RIOD. That is, the RIOD is suitable for being the feature

Fig. 12. Simulation results of three approaches for segmenting the GICS
images. Left column: Original images with different levels of specimen concen-
tration; Right column: Segmentation results of the PF, DBN and the proposed
DBN-PF approaches.

Fig. 13. Two typical simulation results of three approaches for segmenting the
GICS images. (a–b): The value of objective function on the control line. (c–d):
The value of objective function on the test line.

parameter of GICS to realize the quantitative determination.
For the same batch of quantitative strips, the fitted line is the
working line when applied in the quantitative analysis of GICS.
The bigger the correlation coefficient is, therefore, the more
accurate the test result is. Hence, a detailed comparison among
four methods has been made in Table II, where the correlation
coefficient serves as an evaluation indicator.

From Table II, it can be inferred that the correlation coefficient
of proposed DBN-PF approach is 0.982, while the PF approach
and DBN approach are both 0.977, the SDPSO-based CNN
method is 0.972. Therefore, the proposed DBN-PF approach
is more suitable as a novel way of image-based method for
quantitative analysis of GICS systems.
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Fig. 14. Straight fitted lines for four methods based on the RIOD points.

TABLE II
THE COMPARISON OF FITTING RESULTS AMONG FOUR METHODS

VI. CONCLUSIONS

In this paper, a dynamic state-space model consisting of
the transition and observation equations has been established,
thereby facilitating the transforming of the image segmentation
problem into the associated state estimation problem. Specifi-
cally, the transition equation describes the relationship between
contour points on the upper and lower boundaries of test and
control lines, and the observation equation is developed by a
combination of the CBCV and UM. Meanwhile, we have devel-
oped an innovative PF, which utilizes a combination of DBN and
PSO algorithm as the proposal distribution, to solve the problem
of image segmentation and achieve the goal of quantitative anal-
ysis of GICS. Experimental results have demonstrated that the
proposed DBN-PF approach can achieve superior performance
when applied to the segmentation of GICS images. In partic-
ular, the proposed method can be considered as a new pattern
recognition approach for the problem of image segmentation
since simulation results have shown a significant improvement
in the segmentation problem in terms of several indices. In the
near future, some intelligent approaches [17] can be further
investigated to fight sample degeneracy and impoverishment in
the particle filters.
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