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Abstract

The Gaussian process (GP) is a simple yet
powerful probabilistic framework for various
machine learning tasks. However, exact al-
gorithms for learning and prediction are pro-
hibitive to be applied to large datasets due
to inherent computational complexity. To
overcome this main limitation, various tech-
niques have been proposed, and in particu-
lar, local GP algorithms that scales ”truly
linearly” with respect to the dataset size. In
this paper, we introduce a hierarchical model
based on local GP for large-scale datasets,
which stacks inducing points over inducing
points in layers. By using different ker-
nels in each layer, the overall model becomes
multi-scale and is able to capture both long-
and short-range dependencies. We demon-
strate the effectiveness of our model by speed-
accuracy performance on challenging real-
world datasets.

1 Introduction

Gaussian Processes (GPs) are a flexible nonparametric
approach for machine learning, which allows learning
prediction functions using Bayesian framework. Their
main limitation, however, lies in the heavy computa-
tional demand, i.e. O(N3) in the number of training
instances N , making the exact GP inference tractable
only for at most a few thousand instances. To over-
come this limitation, a large number of approximation
methods have been suggested to tackle this compu-
tational demand to gain scalability while maintaining
most of its performance.
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Among various approximation methods, the most
intuitive and therefore most commonly studied are
inducing-point methods, which use a smaller pseudo-
dataset of size M � N that summarizes the original
data to reduce the computation to O(NM2) in usual
cases (Lázaro-Gredilla et al., 2010; Quiñonero-Candela
and Rasmussen, 2005; Seeger et al., 2003; Snelson and
Ghahramani, 2005, 2007; Titsias, 2009). These al-
gorithms have started from widely different motiva-
tions but are analyzed thoroughly by two papers (Bui
and Turner, 2014; Quiñonero-Candela and Rasmussen,
2005), which emphasized that these algorithms have
common processes and the only difference lies in what
prior they are using and what dependencies they are
maintaining.

Despite the improvement in complexity, inducing-point
algorithms are limited in medium-sized data, mainly
due to the fact that the representational capacity of the
model is restricted by the size of the pseudo-dataset.
Since each pseudo-data point can only represent a
small amount of information of the approximate poste-
rior, it is not possible to compactly represent the func-
tion with small amount of pseudo-data, especially for
highly varying functions with significant local struc-
tures. To maintain the desired accuracy, it is manda-
tory to scale M as the function gets complex and thus
inducing-point methods typically fall short of scalabil-
ity in terms of function complexity.

Another class of algorithms that address the scalabil-
ity are local GP methods. Starting with partition-
ing the input space into the blocks of M points each,
a local GP method replaces a single large global GP
with a collection of small local ones to gain scalability.
The computation is performed in O(NM2) with con-
stant M irrespective of the number of blocks, but the
independence assumption among blocks and the dis-
continuities at boundaries due to partitioning signifi-
cantly degrade performance. Bui and Turner (2014),
and Moore and Russell (2015) have overcome some
of these issues by keeping dependencies between ad-
jacent partitions and outperformed previous methods
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on large datasets.

In this paper, we are interested in an approximate GP
method that exhibits multi-scale hierarchical represen-
tation. Multi-scale hierarchical representation is often
desirable for modeling real-world data, since it is pos-
sible to facilitate long-range propagation of local cues
(Kato et al., 1996) for adaptation to the topology of
the data. With such spirit, we develop a new inducing-
point approximation scheme that effectively deals with
long-range dependencies with multi-scale while miti-
gating scaling issues related to function complexity,
and thus being capable of modeling more challenging
data. We follow the basic structure of local GPs so
that a large number of inducing points are maintained
while locally partitioned so that the computational
cost does not scale with function complexity. Then
we introduce inducing points over inducing points to
stack a hierarchical structure of inducing points, rather
than having direct dependencies only among adjacent
blocks at the same level. This is also a generalization of
local and global consideration as in PITC (Quiñonero-
Candela and Rasmussen, 2005) and PIC (Snelson and
Ghahramani, 2007) being able to learn long-range de-
pendencies.

The paper is organized as follows: in the following sec-
tion, some existing GP approximation methods will be
briefly reviewed. We then introduce the hierarchical
representation and the inference algorithm in section
3. The demonstration of the proposed algorithm on
challenging data showing that our hierarchical multi-
scale representation can handle complex functions and
long-range dependencies without scaling the computa-
tional cost, is presented in section 4.

2 Background

2.1 Gaussian process regression

The Gaussian process (GP) (Rasmussen and Williams,
2006) is the distribution over functions with a real con-
tinuous domain, for which any finite samples has joint
Gaussian distribution. It is parameterized by a mean
function, which is usually assumed to be µ(x) = 0
and a covariance function k(x,x′). Given a GP-
distributed random function f(x) and D-dimensional
input points {xn}Nn=1, the vector of function values
f = {f(xn)}Nn=1 is therefore a multivariate Gaussian,
f ∼ N (0,Kff ), (Kff )n,n′ = k(xn,xn′). One of the
popular choices is the squared exponential covariance,

kSE(x,x′) = σ2 exp
(
−‖x−x′‖2

2l2

)
, where the hyperpa-

rameters σ2 and l2 specify the prior variance and cor-
relation length-scale, respectively.

This paper will mainly consider non-linear Bayesian

regression: in regression, the main objective is to pre-
dict the function value f∗ at test point x∗ given the
noisy observation y = f + ε, ε ∼ N (0, σ2

nI) on the
input points. Thus, the observations are Gaussian
y ∼ N (0,Kff + σ2

nI), and prediction can be done by
computing the predictive distribution p(f∗|y), which is
also Gaussian and thus can be computed analytically.
After a simple manipulation of Gaussians, the mean
and covariance are given by

µ∗ = k∗f (Kff + σ2
nI)−1y (1)

Σ∗ = k∗∗ − k∗f (Kff + σ2
nI)−1kf∗, (2)

where k∗∗ and k∗f are covariance function evaluated
on test-test inputs and test-train inputs.

When performing regression using GPs, hyperparam-
eters {σ2, l2} and the noise variance σ2

n are often se-
lected by maximizing a marginal likelihood, p(y) =
N (0,Kff + σ2

nI) as specified above. Although such
an objective is generally non-convex, the maximiza-
tion is usually performed by gradient-based meth-
ods. These calculations have a bottleneck in com-
puting (Kff +σ2

nI)−1, requiring O(N3) computations
per iteration in optimization. The prediction can
be made in O(N2) per test point with pre-computed
(Kff +σ2

nI)−1. Because of the cubic computation time
bottleneck, GP cannot be straightforwardly applied to
large datasets.

2.2 Inducing-point methods

To mitigate high computational demand in GPs, a
number of approximation methods have been pro-
posed. Here we review inducing-point methods, which
represent the latent function with its values u =
{um}Mm=1 at pseudo-input points {x†m}Mm=1, compris-
ing a pseudo-dataset. These approximation methods
can be seen as replacing the full GP prior with the
sparse ones with some of the dependencies being re-
moved; referring to Bui and Turner (2014), the sparse
models used by these methods can be explained in the
KL minimization framework.

More specifically, consider the joint GP prior
p(f , f∗) = N (0,K(f ,f∗)(f ,f∗)). Inducing-point meth-
ods introduce conditional independence p(f , f∗) =∫
p(f |u)p(f∗|u)p(u)du so that the information on

training values f are passed only via the pseudo-
input values u. p(f |u) is further approximated to
obtain a simpler model. The most simple yet pop-
ular method is the Fully Independent Training Con-
ditional (FITC) approximation (Snelson and Ghahra-
mani, 2005). FITC assumes conditional independence
among every function values f given u, which turns
out to be equivalent to a factor analysis model.

The inducing points can be learned using variational
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inference (Titsias, 2009), as well as its stochastic vari-
ant for large data (Hensman et al., 2013). It can be
also extended so that inducing points have a differ-
ent covariance function (Figueiras-Vidal and Lázaro-
gredilla, 2009).

Although FITC assumes full conditional indepen-
dence, we could make approximation more accurate
by retaining more dependencies. Bayesian Commit-
tee Machine (BCM) (Tresp, 2000), later renamed to
Partially Independent Training Conditional (PITC)
in (Quiñonero-Candela and Rasmussen, 2005), retains
intra-block dependency to achieve better prediction.
Partially Independent Conditional (PIC) (Snelson and
Ghahramani, 2007) extends PITC to retain dependen-
cies between training input values f and test input val-
ues f∗ so that f∗ can directly benefit from intra-block
dependency while incurring a small amount of addi-
tional computation.

There are also a number of methods that do not fol-
low this framework, e.g. Sparse Spectrum Gaussian
Process (SSGP) (Lázaro-Gredilla et al., 2010) com-
putes spectral points (instead of inducing points) to
approximate stationary covariance function for time-
series data.

2.3 Local GP methods

Local GP methods simply decompose the input do-
main into smaller regions and predict using training
inputs only in the region where the test input belongs
to. Local GP methods have attracted a lot of attention
lately, since inducing-point methods typically need to
grow the size of the pseudo-dataset in order to increase
their representational power, and as such they do not
perform well on large and complex datasets in prac-
tice1. However, it is also well known that local GP
methods heavily suffers from discontinuities in the pre-
dictions at the boundaries of regions. As such, prior
studies focused on mitigating this discontinuity by us-
ing the information from adjacent blocks, e.g. combin-
ing local regressors (Nguyen-Tuong et al., 2009; Park
et al., 2011).

More recent approaches propose probabilistic models
for achieving this. The tree-structured GP approxi-
mation (Bui and Turner, 2014) removes most of the
full inter-block dependencies of PIC while retaining
dependencies among adjacent blocks. From the lo-
cal GP perspective, it can be seen as introducing de-
pendencies among inducing points in adjacent blocks.
This algorithm imposes a chain structure in time se-
ries data and a tree structure in higher dimensional

1Despite the local partitioning in PIC and PITC, they
still lack scalability since the overall number of inducing
points must increase with the global complexity of the data.

data and shown to outperform inducing point meth-
ods described in the previous section. The GP random
field (Moore and Russell, 2015) constructs a pairwise
Markov model between local blocks, which results in
additional inter-block dependencies that mitigate the
discontinuity in 2D data, but the exact inference be-
comes intractable. The paper introduces a new Bethe-
type objective for approximate inference, which turns
out to be a generalization of BCM in an unsupervised
learning setting.

2.4 Multi-scale GP algorithms

Real-world datasets typically exhibit multi-scale struc-
ture, having significant features at multiple scales of
time and space. If we force GP models with the sim-
ple single-scale covariance function to represent such
dataset, they only adapt to one of these scales, and
eventually fails to represent the overall structure effi-
ciently (see figure 2).

The multi-scale trait in a dataset can be generally
modeled by introducing hierarchy, i.e. multiple lev-
els of different scales, with the top level having the
largest scale (Wainwright et al., 2001). This idea has
been explored in hierarchical multi-scale GP models
that impose a GP prior on the mean of GP, result-
ing in a hierarchy of GPs with different scales at each
level, and the covariance function of the marginal GP
becomes the sum of covariance functions at each level
(Fox and Dunson, 2012; Park and Choi, 2010).

There are also multi-scale models that do not have a
hierarchical representation. For example, Walder et al.
(2008) extended FITC by allowing inducing points to
have different length-scales. However, since this model
is a variant of FITC, it still needs an increasing number
of inducing points to adequately capture hierarchical
structure in the data.

3 Hierarchically-partitioned Gaussian
Process Approximation

We propose a GP approximation framework that com-
bines the advantages of inducing-point methods, lo-
cal GPs and multi-scale GPs. We start with the lo-
cal FITC: N input points and M inducing points are
both partitioned into K blocks with possibly different

sizes denoted by {xBk
}Kk=1 and {u(1)

Bk
}Kk=1 respectively

(the superscript (1) explicitly denotes that the induc-
ing points are at the lowest level). It is also naturally
assumed that function values are divided into blocks
{fBk
}Kk=1. They are conditionally independent to func-

tion values in other blocks given the inducing points
in the corresponding block. The tree-structured GP
(Bui and Turner, 2014) then constructs a spanning
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(a) PITC (b) Tree GP (c) GPRF (d) HPGPA

Figure 1: Graphical models of the different local-GP based fully probabilistic approximation methods.

tree over blocks that introduce dependencies among
inducing points in adjacent blocks.

In contrast, our model introduces hierarchical depen-
dencies among blocks to represent dependency among
blocks that are far apart, i.e. a hierarchy of inducing-
point blocks over inducing-point blocks. In the tree
structure representing the hierarchy of inducing-point
blocks, the input region corresponding to a block at
a specific level is defined to be the union of the input
regions corresponding to its children. Therefore, the
root node corresponding to the inducing-point block
covers the whole input region. The full joint distri-

bution over {{u(h)
Bk
}Kh

k=1}Hh=1 and {fBk
}Kk=1 is factored,

given by

q({{u(h)
Bk
}Kh

k=1}
H
h=1, {fBk

}Kk=1)

= q({{u(h)
Bk
}Kh

k=1}
H
h=1)

K∏
k=1

q(fBk
|u(1)

Bk
) (3)

q({{u(h)
Bk
}Kh

k=1}
H
h=1)

= q(u(H))

KH−1∏
k=1

q(u
(H−1)
Bk

|u(H)) ·∏
l∈children(Bk)

q(u
(H−2)
l |u(H−1)

Bk
)... (4)

Similar to FITC and PIC, minimizing KL divergence
KL(p(f ,u)|q(f ,u)) yields the following distributions:

q(u(H)) = p(u(H)) = N (0,Ku(H),u(H)) (5)

q(u
(h)
k |u

(h+1)
l=par(k)) = p(uk|ul)

= N (Kuk,ul
K−1ul,ul

ul,

Kuk,uk
−Kuk,ul

K−1ul,ul
Kul,uk

) (6)

q(fk|u(1)
k ) = p(fk|uk)

= N (Kfk,uk
K−1uk,uk

uk,

Kfk,fk −Kfk,uk
K−1uk,uk

Kuk,fk) (7)

which turns out to be identical to the conditional dis-
tributions in the unapproximated model. Figure 1
compares the graphical model of HPGPA with relevant
local GP models. The test input point is assigned to
the closest block in the lowest level (e.g. Bk), and the
prediction is done locally with the marginal posterior

of local inducing points p(u
(1)
Bk
|y) since the function

values are conditionally independent to those in other
blocks:

p(f∗Bk
|y) =

∫
p(f∗Bk

|u(1)
Bk

)p(u
(1)
Bk
|y)du

(1)
Bk
. (8)

3.1 Inference and training

Inference, i.e. computing the marginal posterior of

local inducing points {p(u(1)
Bk
|y)}Kk=1, is done by the

upward-downward algorithm for Gaussian networks
Desbouvries et al. (2006). In upward pass, we re-
cursively calculate p(uk|y∈uk

,ul=par(k)) with eq. 6
and eq. 7. Due to the assumption that uk is con-
ditionally independent to those of y that belong to
other region given its parent ul, the distribution is
equivalent to p(uk|y,ul=par(k)). In the downward

pass, we start by calculating p(u(H)|y), and pro-
ceed to lower levels, recursively computing p(uk|y) =∫
p(ul=par(k)|y)p(uk|y,ul)dul. Training, i.e. hyper-

parameter fitting, requires computing the marginal
likelihood and its gradient. These can be easily com-
puted with intermediate results obtained in the infer-
ence algorithm. The computational cost is O(L3K) ≈
O(NL2) where K is the number of blocks at the lowest
level and L is the average number of observations per
block. Note that hierarchical structure does not in-
crease asymptotic complexity since the total number
of blocks does not exceed 2K. The overall inference
and training algorithm is similar to Bui and Turner
(2014): see supplementary material for details.
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(a) Local GP
(smse: 11.289)

(b) Tree-GP
(smse: 4.976)

(c) HPGPA-single
(smse: 7.161)

(d) HPGPA-multi
(smse: 0.315)

Figure 2: Various local GP based algorithms interpolating synthetic data. The green, red, and blue lines show
original signal, training data, and prediction of each algorithm respectively. The local GP method can easily
fail on an interpolating task with missing intervals much larger than the local block, especially when there exist
various trends. In contrast, multi-scale HPGPA can handle such cases, high-level inducing points effectively
capturing long-term trends (using flexible kernels like spectral mixture would easily interpolate the problem;
nevertheless, simple SE kernel is used in this case to pedagogically demonstrate the limitation).

3.2 Multi-scale regression

The model and algorithm explained above will not
work well under single-scale assumption, i.e. enforc-
ing the same covariance function in every layer. With
K blocks in the lowest level, inducing points of the
root block will be K times more sparse than in the
leaf blocks. In such a case, the length-scale of the sin-
gle covariance function will be fit to the value close to
that at the lowest level, which is too short for higher
level inducing points and render them useless. In some
sense, a single-scale HPGPA will degenerate to a naive
local GP as the size of data increases.

Here we use the technique by Melkumyan and Ramos
(2011) that deals with constructing multi-task co-
variance functions out of arbitrary stationary covari-
ance functions. In case of a stationary covariance
function given by a convolution of basis functions:
k(τ = x− x′) =

∫
g(τ − u)g(u)du, if we define cross-

covariance function as convolving two basis functions
each from different covariance functions, it is proved
that it guarantees the nonnegative definiteness of over-
all covariance function. Making use of the convolution
theorem, the cross-covariance function of arbitrary sta-
tionary kernels k1 and k2 can be obtained from Fourier
and inverse Fourier transform,

k1,2(τ ) = (2π)−
D
2

∫
F−1

[√
F [k1(τ − u)]

]
· F−1

[√
F [k2(u)]

]
du. (9)

For example, in the case of SE kernel with two differ-
ent hyper-parameters, we obtain the following cross-

covariance,

k1(τ ) = σ1 exp

[
−1

2
τ>P−11 τ

]
(10)

k2(τ ) = σ2 exp

[
−1

2
τ>P−12 τ

]
(11)

k1,2(τ ) = σ1σ2
|P 1|

1
4 |P 2|

1
4

|(P 1 + P 2)/2| 12
· exp

[
−τ>(P 1 + P 2)−1τ

]
. (12)

The prior variance σ’s except the lowest-level data ker-
nel vanish during inference, so there is no need of op-
timizing σ’s at each level. As for optimizing length-
scales, there are two choices: (1) optimize length-scales
independently at each level, or (2) tie the length-scales
with the average distance among inducing points at
the corresponding level. The first option turned out
to over-fit, so we chose the second option, e.g. dou-
bling at each level in the case of a 1D binary tree.

The power of multi-scale HPGPA is demonstrated in
figure 2, compared to a number of local GP methods
on a synthetic dataset that contains long-term as well
as short-term trends.

3.3 Discontinuities at boundaries

In tree-GP and single-scale HPGPA, the continuity at
a boundary of blocks can be guaranteed by placing in-
ducing points at the boundaries. If two points each
in adjacent blocks in tree-GP, or two points each in
adjacent blocks and one point in their parent block
in HPGPA are placed at the same site, p(uk|upar(k))
of corresponding points from eq. 6 is guaranteed to
give the same mean with zero variance. This tying
constraint is kept throughout the inference process, re-
sulting in a continuous prediction over adjacent blocks.

In multi-scale HPGPA, however, this simple trick does
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Figure 3: Interpolation errors versus train/test computation times of different approximation algorithms on the
power consumption dataset. The numbers next to FITC and VSGP plots are the number of the global inducing
points used, and the numbers next to SDE plots are the order of approximation. The pairs of numbers next to
other plots are the sizes of blocks at the lowest level and inducing points per block. The MSLL results of VSGP
and SDE lie outside the plot region(> 0.2).

not work. Considering the variance of p(uk|upar(k)) for

instance, we have k1−k>1,2k−12 k2,1. If we have inducing
points at the same point, exponential terms become 1
and results in variance given by

var = σ2
1 − σ2

1

|P 1|
1
4 |P 2|

1
4

|(P 1 + P 2)/2| 12
. (13)

Since this is the geometric mean over arithmetic mean,
the only condition when the variance vanishes is when
two kernels have the same length-scale. It is there-
fore not possible to enforce a continuous prediction in
HPGPA with the same trick used in tree-GP or single-
scale HPGPA. Nonetheless, small prediction jumps at
boundaries were insignificant compared their perfor-
mance on a large dataset in practice. This issue can be
resolved by introducing additional dependencies with
approximate inference algorithms (Wainwright et al.,
2001), and will be considered in future work.

4 Experiments

We consider two challenging large-scale real-world pre-
diction tasks to demonstrate the performance of the
proposed method, comparing speed-accuracy trade-
offs as in previous literature (Bui and Turner, 2014;
Chalupka et al., 2013; Snelson and Ghahramani, 2007).
In the experiments, the squared exponential kernel,

kSE(x,x′) = σ2 exp
(
−‖x−x′‖2

2l2

)
is used, and the hy-

perparameters are found by BFGS (Broyden-Fletcher-
Goldfarb-Shanno) algorithm until convergence or max-
imum 50 iterations. Here we use two widely used
metrics, SMSE (standardized mean squared error) and
MSLL (mean standardized log loss) (Rasmussen and
Williams, 2006). Our method is implemented in MAT-
LAB using the GPML package and extending the tree-
GP code2 and executed on workstations with two Intel
Xeon E5-2660 v3 @ 2.60GHz CPUs.

2[GPML] http://www.gaussianprocess.org/gpml/code
/matlab/doc [Tree-GP] https://github.com/thangbui/tsgp
[HPGPA] https://github.com/dlqudwns/HPGPA
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Figure 4: Interpolation errors versus train/test computation times of different approximation algorithms on the
terrain dataset. The numbers next to the plots follow the description of figure 3, while the third numbers of
HPGPA plots indicate the fanout (3×3 or 9×9) of the tree. The MSLL results of VSGP lie outside the plot
region(> 0.3).

4.1 Power consumption data

The first experiment concerns with interpolating miss-
ing intervals in a large-scale time-series data. The
dataset, household electric power consumption, was
obtained from the UCI machine learning repository
(Lichman, 2013)3. This dataset is a recording of ac-
tive power consumption at every minute, which is
smoothed with a moving average filter of length 60
(one hour) in order to remove certain noises in the
data. In order to make the experiments with all the
algorithms feasible, we used a portion of data of length
184320, which corresponds to 128 days. We stress that
using more data is not an issue for our method since
it scales very well. 50 intervals of length 64 are re-
moved in training, and they are interpolated with all
the methods and compared with the original data. The
length of the missing interval is an important issue be-
cause local GP based methods start to collapse when
the size of missing interval is longer than the size of

3https://archive.ics.uci.edu/ml/datasets/
Individual+household+electric+power+consumption

a single local block. Our method constructs a binary
tree over the local blocks, and the length-scale of the
kernels are tied to be doubled at each level.

We compared the hierarchically-partitioned GP ap-
proximation model with FITC, local GP, tree-GP,
VSGP (Walder et al., 2008) and SDE (Sarkka et al.,
2013). The VSGP algorithm is a multi-scale FITC
variant introduced before, while SDE is a powerful al-
gorithm specialized in dealing with time-series data
that uses linear Gaussian state space model. In case
of the local GP algorithm used here, we used local in-
ducing points to represent the corresponding block of
data in order to impose the same condition with other
algorithms (tree-GP and HPGPA). Although there are
many other algorithms (PIC, VFE, SSGP, etc...) to be
compared with, their trends were very similar to that
of FITC, thus their results are omitted in this paper.

Figure 3 shows the data recovery performance versus
computation time under different parameter settings.
Although FITC gradually improves with the number
of inducing points, it is outperformed by other GP
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Figure 5: The visualization of interpolations made by GP methods on the terrain dataset. The white dotted
lines represent the block boundaries at the data level, and the black squares are the missing sites.

methods since it requires a lot of inducing points to
capture the short-term as well as long-term trends in
the data. VSGP followed a similar trend to FITC.
On the other hand, local GP performs worst in terms
of accuracy since the length of missing intervals is
larger than those of local blocks. Tree-GP performs
better than local GP since it is able to harness the
information from adjacent blocks, but surpassed by
HPGPA with only twice the amount of computation.
This is because the hierarchical multi-scale aspect of
HPGPA was able to accurately capture the long-term
trend over the missing intervals. SDE, which is one
of the special GP implementations on time series do-
main, shows similar smse to that of HPGPA; however,
HPGPA shows better MSLL and can be applied to
other domains.

4.2 Terrain data

In the second experiment, we compare the perfor-
mances of algorithms in a 2D terrain dataset where
the task is to predict the altitude of corresponding lo-
cation4. We used 729 × 729 (531k) sized data, which
was down-sampled from the original 3645× 3645 data
(corresponds to 183km×183km region). 80 randomly
picked sites of size 15× 15 (3.75km by 3.75km) are re-
moved in training, interpolated by all the algorithms,
and compared with the original data. The locations to
be missed out from the data were randomly selected
with probability proportional to the variance of alti-
tudes in order to make the interpolation challenging
(predicting the altitudes of a site in the ocean would
be not interesting!). The tree in HPGPA algorithm
was constructed in the way that each parent node has
3× 3 (9) or 9× 9 (81) children, and the length-scales
of the kernels were tied to increase/decrease at each
level proportional to the area of the region covered by
the block.

Figure 4 shows the quality of recovered intervals versus
the computation time. The results are very similar
to the power consumption dataset experiment in the

4http://data.gov.uk/dataset/os-terrain-50-dtm.

previous section: FITC does not scale well, local/tree
GP makes inaccurate predictions although quite fast
while HPGPA clearly makes better predictions than
other methods.

This situation can be directly observed by visualiza-
tion, shown in figure 5: FITC creates blurry images
due to the deficiency of inducing points. Local GP and
tree-GP are not able to interpolate well with a single-
scale kernel, creating “sink holes”. However, HPGPA
successfully recovers the image close to the original im-
age by learning complex trends with the hierarchical
multi-scale modeling.

5 Conclusions and Future Work

We presented HPGPA, a scalable multi-scale approxi-
mation method for GPs using hierarchical representa-
tion. HPGPA harnesses the advantages from the scal-
ability of local GP methods with local blocks and the
expressibility of hierarchical GP methods with multi-
scale kernels, thus successfully captures various trends
at different scales present in large complex datasets.
HPGPA leverages cross-covariance kernels originally
proposed for multi-task GPs in order to deal with dif-
ferent kernels at each level of the hierarchy. Inference
and training are done efficiently via message passing
algorithm, which results in the same asymptotic com-
putational complexity as that of local GP. We demon-
strated the effectiveness of HPGPA through experi-
ments on challenging regression tasks on real-world
large datasets.

The first and foremost remaining work to be done as
future work is extending the model to mitigate the
small prediction discontinuities remaining in the cur-
rent model. It would be interesting to investigate other
types of hierarchical structures that still lend them-
selves to efficient inference algorithms. Other promis-
ing directions for future work would be developing a
richer representation of the relationship among induc-
ing points at adjacent levels, adopting some of the
insights behind the deep GP model (Damianou and
Lawrence, 2013).
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