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Abstract. It is well known that automatic lip-reading (ALR), also known
as visual speech recognition (VSR), enhances the performance of speech
recognition in a noisy environment and also has applications itself. How-
ever, ALR is a challenging task due to various lip shapes and ambiguity
of visemes (the basic unit of visual speech information). In this paper, we
tackle ALR as a classification task using end-to-end neural network based
on convolutional neural network and long short-term memory architec-
ture. We conduct single, cross, and multi-view experiments in speaker
independent setting with various network configuration to integrate the
multi-view data. We achieve 77.9%, 83.8%, and 78.6% classification ac-
curacies in average on single, cross, and multi-view respectively. This
result is better than the best score (76%) of preliminary single-view re-
sults given by ACCV 2016 workshop on multi-view lip-reading/audio-
visual challenges. It also shows that additional view information helps to
improve the performance of ALR with neural network architecture.

1 Introduction

Human understands speech from not only acoustic information but also visual
clues. An extreme case is shown in the McGurk effect [1], a visual information
of /ga/ with an acoustic of /ba/ is perceived as /da/. Similar phenomenon also
appears in machines using deep learning approach [2]. These observations present
that visual information gives significant clues to the speech recognition in both
human and machine.

Automatic lip-reading (ALR), also known as visual speech recognition (VSR)
or speech reading, is understanding speech using only visual information (move-
ments of the lips, face, tongue and so on) without acoustic information. In audio-
visual speech recognition (AVSR), ALR has an important role in enhancing the
performance of speech recognition through audio-visual data fusion. Further-
more, stand-alone ALR is a useful component of various applications such as a
visual password, silent speech interface, and forensic video analysis.

ALR performance is measured by word or phrase classification error rate of
utterance in the form of lip image sequence. ALR is a challenging task because
of many visual factors such as various mouth shapes, changes of illumination,
and head poses variation [3].
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There are several types of experimental setups in ALR task; speaker depen-
dent (SD) or speaker independent (SI), single-view or multi-view. In SD setting,
one speaker data are used for both training and evaluation. On the other hand,
evaluation is performed to the unseen speaker(s) in SI setting. In the multi-view
setting, we use the data recorded from the multiple cameras with various angles
simultaneously [4] while the data in a single-view setting is recorded from one
camera angle.

Classical approaches are based on visual feature extraction methods, such as
principal component analysis, discrete wavelet transform, discrete cosine trans-
form, active appearance model [5], local binary pattern [6], optical flow [7], Eigen-
lips [8], histograms of oriented gradients [9], internal motion histograms, motion
boundary histograms, and their mixed models [8, 10]. For multi-viewpoint lip-
reading, [11] adopt a minimum cross-pose variance analysis technique.

Thanks to recent successful achievements in deep neural network approach
in machine learning community, people started to apply neural network to ALR
and AVSR. For example, feature extraction has been done by deep autoencoder
[2] without massive hand-crafted engineering work. Recently, [12] show that with
end-to-end neural network architecture, they can achieve a state-of-the-art per-
formance in speaker dependent setting, compared to classical feature-based ap-
proaches.

In this paper, we tackle the ALR task using an end-to-end neural network
approach without hand-crafted feature extraction in multi-viewpoint SI setting
experiment. Our work motivated by recent works of video and image recognition
researchers that use convolutional neural network (CNN) with long short-term
memory (LSTM) for understanding video and image data [13–15].

2 Background

2.1 Problem Specification

We deal with three ALR tasks given by ACCV 2016 workshop on multi-view
lip-reading/audio-visual challenges1 (MLAC 2016) as follows:

– Single-view ALR: Train and test on data recorded from a single camera view.
– Cross-view ALR: Learn and transfer knowledge from a source view (e.g., the

frontal view) to enhance learning for a target view (e.g., the profile view).
– Multiple-view ALR: Train and test on synchronized data recorded from mul-

tiple camera views.

2.2 Convolutional Neural Network

CNN is a biologically inspired variant of multi-layer perceptron containing small
sub-regions of a visual field called receptive field [16]. Unlike fully connected
layered network, CNN has sparse connectivity and shared weights for the purpose

1 http://ouluvs2.cse.oulu.fi/ACCVW.html
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of increasing computational efficiency and global representation power. CNN
is now the most popular and effective selection for learning visual features in
computer vision and machine learning fields.

We obtain a feature map at layer h with input x pixel at coordinates (i, j)
as the following equation:

hij = a((W ∗ x)ij + b) (1)

, where weight matrix W and bias vector b is the filter of this feature map, a is
activation function for non-linearities.

2.3 Long Short-Term Memory

Recurrent neural network (RNN) is designed for processing sequential data by
sharing weights across several time steps. Due to its vanishing gradient problem
that appears to long-sequence training data, its variations including LSTM [17]
become popularized in practical applications. LSTM consists of memory cells
connected recurrently to each other, which is replacing hidden units of standard
RNN. End-to-end learning architecture with LSTM is the typical model when
dealing with a sequence dataset.

We update LSTM hidden state ht at every timestep t as follows:

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf )

ct = it ∗ tanh(Wcxt + Ucht−1 + bc) + ft ∗ ct−1
ot = σ(Woxt + Uoht−1 + Voct + bo)

ht = ot ∗ tanh(ct)

(2)

, where xt is an input at time t and Wi, Wf , Wc, Wo, Ui, Uf , Uc, Uo, Vo are
weight matrices, bi, bf , bc, bo are bias vectors, subscripts represent input(i),
forget(f), cell(c) and output(o) variables [18, 19].

3 Dataset

3.1 OuluVS2 Database

OuluVS2 database, publicly provided by CMVS2, contains video recordings from
52 speakers with five different camera views at the same time. It has three
collections of data - ten continuous digit strings, ten daily-use short English
phrases, and five randomly selected TIMIT sentences.

OuluVS2 provides region of interest (ROI) videos, which were preprocessed
by segmenting individual utterances and cropping off ROIs, for digit strings and
phrases collection. We use visual part of phrases collection, which are same as

2 The Center of Machine Vision Research, Department of Computer Science and En-
gineering, University of Oulu, Finland
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Table 1. Data separation according to speakers. The test set is given by MLAC 2016,
validation set is randomly chosen as the same size of test samples. (Total 7,800 samples
with 52 speakers, ID 1 to 53 except 52.)

Data Set Speaker IDs #Samples

Training 1,2,3,10,11,12,13,18,19,20,21,22,23,24,25, 4,200
27,33,35,36,37,38,39,45,46,47,48,50,53

Validation 4,5,7,14,16,17,28,31,32,40,41,42 1,800

Test 6,8,9,15,26,30,34,43,44,49,51,52 1,800

the preliminary experiments conducted by MLAC 20163. Every phrase was ut-
tered three times in this collection, the total number of samples is 52(speakers) ·
5(views) ·3(utterances) ·10(phrases) = 7, 800, where maximum length of utter-
ance is 36.

The preliminary experiments use three different methods including HiLDA
[20], RAW+PLVM (raw pixel values classified by latent variable models [21]).
All the experiments are single-view ALR tasks, and the best result is about 76%
accuracy with 45◦ view data and RAW+PLVM.

OuluVS2 database is more suitable for SI experiment than SD setting because
of relatively large number of speakers and a small number of the utterance of each
speaker. It is considerable, though out of the scope of this paper, to evaluate with
a semi-SD setting that trains with multiple speakers and test unseen utterance
among them.

(a) Original images with various sizes.

(b) After pre-processing with fixed size and maximized contrast.

Fig. 1. Examples of original and pre-processed lip images for a frontal, 30◦, 45◦, 60◦,
profile view image from the left to the right.

3 http://ouluvs2.cse.oulu.fi/preliminary.html
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3.2 Data Pre-Processing

First of all, we extract image frames from each ROI video by FFmpeg4 command
line tool with option qscale:v=1. After that, we resize all images of each view
into the same size since the size of each image varies even in the same viewpoint,
which enables us to conduct multi-viewpoint experiment easily. Square shape
is a reasonable choice because profile view ROI image has longer height than
width, unlike the others.

We have three options for pre-processing on the image itself; (1) Color: origi-
nal RGB color image (2) Gray†: convert into grayscale with maximized contrast.
(3) Color†: RGB color with maximized contrast.

We conduct experiments for selecting both size and image option, and the
result is shown in Table 2. Experiments performed by 2D-CNN + LSTM archi-
tecture details in section 4. As a result, we use 20 by 20 pixel color image with
maximized the contrast, i.e. all pixel values in each channel are normalized as
mapped into [0,1] interval.

Table 2. Comiparison among various pre-processing options. All the results are ob-
tained from validation set. Resizing into 20 by 20 pixels with contrast-maximized
color image is the best option. All the later experiments are performed with this pre-
processed data. †: Contrast is maximized.

Image Size Color Gray† Color† Average

25x25 75.5 % 77.1 % 76.5 % 76.4 %
20x20 77.6 % 78.6 % 80.8 % 79.0 %
15x15 76.8 % 74.9 % 78.2 % 76.6 %
10x10 71.8 % 75.9 % 75.1 % 74.3 %

Average 75.4 % 76.6 % 77.6 %

4 Proposed Method

Output
(Probabilities of class)

Input
(Image Sequence)

Visual Model
(CNN)

Temporal Model
(LSTM)

Fig. 2. Overall architecture which returns probabilities of each class from an input of
image sequence of a single utterance.

We combine visual model and temporal model based on CNN, LSTM for
the basic neural network architecture in Fig.2. We define visual models with

4 https://ffmpeg.org/about.html
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various settings as 2D-CNN and 3D-CNN for automatic feature extraction. We
also define temporal model as LSTM that learns the temporal features of the
image sequence and classify the utterance into a phrase.

4.1 Visual Model

Input Feature Maps#1
Feature Maps#2

Convolution

(3x3)

Max-Pooling

(2x2)

Fully Connected

Max-Pooling

(2x2)

Convolution

(3x3)

Visual 

Features

Fig. 3. 2D-CNN Architecture

2D-CNN Two convolutional layers with 16 to 256 filters in the shape of (3,3)
used for feature extraction of lip region images. Each convolutional layer has a
successive max-pooling layer for downscaling by the shape of (2,2). Last one fully
connected layer with 8 to 64 dimension outputs used to the final output of image
feature. We adopt dropout [22] technique for improving generalization power of
the network. We use hyperopt [23] to find the optimal hyper-parameters (number
of filters, output dimension of the fully connected layer) for our network.

3D-CNN In the same way of equation (1), we generate the feature map from
a 3D input where the x pixel at 3-dimensional coordinates (i, j, k) as following
equation:

hijk = a((W ∗ x)ijk + b) (3)

We construct 3D-CNN as almost same as 2D-CNN, the filter shapes are
(1,3,3) and (2,3,3) for the first and the second convolutional layer respectively
as shown in Fig.4. (a). The shape of pooling size is (1,2,2) for every max-pooling
layer, and the remaining parameters are same as 2D-CNN. Strictly speaking, the
five view data is not a 3-dimensional data. However, we conduct an experiment
with 3D-CNN to find out the possibilities of learning some features or not.

Merge Channels We make an input image having 15 channels from the five
view data with three (RGB) channels as shown in Fig.4. (b). The places in
the same pixel position of each view data are the different locations in actual.
Although it looks somewhat weird, we conduct this experiment as the same
reason as 3D-CNN.
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Merge Images As shown in Fig.4. (c), we append five images from the different
view at the same time into a single image as an input of the visual model. In this
architecture, we expect to learn all the five view feature by 2D-CNN. While out
of our experiment, a more elaborate configuration is that all five images avoid
convolving each other along the edges.

Merge Features The last variation is shown in Fig.4. (d). We merge the fea-
tures that are generated by 2D-CNN from the images in the different view at
the same time. We design this architecture to learn each view image separately
and to combine them into a single feature for an input of the temporal model.

3D-Feature Maps

3D-Convolution

(a) 3D-CNN

2D-Feature Maps
RGBx5 channels

2D-Convolution

with 15 channels

(b) Merge channels

2D-Convolution

2D-Feature Maps

(c) Merge images

2D-Convolution

2D-CNN

Merge

(Concat)

(d) Merge features

Fig. 4. Various visual model suggestions for the multi-view setting.

4.2 Temporal Model

We design the temporal model as a classifier that has inputs generated by the
visual model and an output as probabilities of each class. It consists of two
successive LSTM layer with 128 memory cells that lead to one FC layer having
the same number of class, 10 output dimension. We select 128 by experiments
using hyperopt which yield lowest validation loss between 8 to 256.

5 Experiments and Results

Basic protocol of experiments is SI setting, and the data is divided into the train,
validation, and test sets as shown in Table 1. In order to improve generalization
performance, we add dropout [22] layers between the layers. Learning is per-
formed by Adam [24] optimizer with default learning rate 0.001, and categorical
cross entropy objective loss function used. We evaluate the result on test data
with the weights having minimum validation loss during the training until 200
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...

...

...

...

t1

t2

tn

V-Model

V-Model

V-Model
Probs.

of Class

LSTM LSTM

LSTMLSTM

LSTM LSTM FC

Fig. 5. Unfolded view of temporal model architecture, It returns probabilities of each
class with inputs as t1, t2, ..., tn images in a single utterance. V-Model: Visual Model.

epoch. All experiments are performed by deep learning framework Keras [25]
with Theano backend [19].

5.1 Single-View ALR

Table 3. Single-view word test accuracy results for each camera view. The best perfor-
mance is obtained by profile view. †: Approximated accuracies from the graph image
of preliminary single-view experiment given by MLAC 2016

Our Results (Accuracy of Test Data)
Training Data (1)Frontal (2)30◦ (3)45◦ (4)60◦ (5)Profile Average

(1)Frontal 81.1 %
(2)30◦ 80 %
(3)45◦ 76.9 % 77.9 %
(4)60◦ 69.2 %
(5)Profile 82.2 %

Single-View Baseline Results† (Accuracy of Test Data)
Method (1)Frontal (2)30◦ (3)45◦ (4)60◦ (5)Profile Average

DCT-PCA-HMM† 63% 62% 62% 63% 57% 61%

DCT-HiLDA-HMM† 74% 72% 73% 73% 68% 72%

RAW-PLVM† 73% 75% 76% 75% 70% 74%

Table 3. represents the single-view experiment result on test data. The base-
line accuracies are given by MLAC 2016 as a preliminary experiments5 in the
form of a graph. The accuracies are approximated from the chart.

5 http://ouluvs2.cse.oulu.fi/preliminary.html
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The average accuracy is 5% higher than the average accuracy using RAW-
PLVM method which is the best in the baseline. Moreover, all accuracies except
60◦ view are higher than the best score (76%) of the single-view baseline.

Our neural network produces the reasonable result of the prediction. The
confusing phrases are similar to those of human. ”Thank you” and ”See you”
pair is the most confusing as presented by confusion matrix in Fig.6.
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Fig. 6. An example of the confusion matrix. (profile view result with test accuracy:
82.2%)

5.2 Cross-view ALR

As the first stage (cross-view), we conduct a cross-view experiment by training
all the data in train set. In other words, we train frontal, 30◦, 45◦, 60◦, profile
view data all together, and test each view separately. In this approach, we get the
average accuracy 82.6%, and all of the results are better than preliminary results.
We infer from this result that neural networks learn and transfer knowledge from
a view to the other view by simply learning with the data altogether without
further work.

In the second stage (cross-view2), we perform ALR tasks with each view data
using the neural network initialized by the weights from the first stage result,
as similar as fine-tuning. We choose the weights for testing with min-validation-
loss, note that there is no improvement with 30◦, 45◦ view data. As a final
result, we get 83.8% in average and 86.4% in the best (profile view), and this
is outperformed the preliminary results. The confusion matrices of profile view
show that the progress of increasing performance as shown in Fig.7.
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Table 4. Cross-view ALR test accuracy and validation-loss results for each camera
view. CV (cross-view): Train all the training data mixed, CV2 (cross-view2): Train
each view data individually after train all the training data mixed.

Accuracy of Test Data
Training Data (1)Frontal (2)30◦ (3)45◦ (4)60◦ (5)Profile Average

CV All 80.6 % 81.1 % 85 % 82.5 % 83.6 % 82.6 %

All+(1)Frontal 82.8 %
All+(2)30◦ 81.1 %

CV2 All+(3)45◦ 85 % 83.8 %
All+(4)60◦ 83.6 %
All+(5)Profile 86.4 %

Loss of Validation Data
Training Data (1)Frontal (2)30◦ (3)45◦ (4)60◦ (5)Profile Average

CV All 0.4372 0.4957 0.4109 0.3391 0.5606 0.4487

All+(1)Frontal 0.3216
All+(2)30◦ 0.4957

CV2 All+(3)45◦ 0.4109 0.424
All+(4)60◦ 0.3371
All+(5)Profile 0.5546

0

4

8

12

16

20

24

28

32

36

Single-View(82.2%) Cross-View(83.6%) Cross-View2(86.4%)

Fig. 7. The confusion matrices of test accuracies in profile view setting. It shows that
a gradual improvement from single-view to cross-view. The x-axis is prediction classes;
the y-axis is true classes with the same label in Fig.6.
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This result indicates that the test performance of target view has been im-
proved by transferring knowledge of other source view data. For instance, in the
profile view, the accuracy is 82.2% in single-view (train profile view data only)
then 1.4% improved in cross-view (train five view data altogether). Finally, we
get 86.4% accuracy in cross-view2 (initialize weights by the cross-view result and
train profile view data once more) which is 4.2% higher than single-view.

5.3 Multiple-view ALR

Table 5. Multi-view results of prediction accuracy using various architectures.

Method Test Acc.

3D-CNN (MV-3D) 76.1 %
Merge Channels (MV-MC) 78.9 %

Merge Images (MV-MI) 80.0 %
Merge Features (MV-MF) 79.4 %

We conduct four types of architecture explained in section.4. In this exper-
iments, we use hyper-parameters already tuned in the single-view experiment
because we have not enough time to optimize each network one by one. Despite
we adopt the hyper-parameters from single-view experiments, the multi-view
result is better than the single-view result in average.

It infers that the more features (five times more than the single view) in a
single frame help the network in the average performance.

On the other hand, the result is worse than cross-view in spite of using same
data. The difference between them is the number of samples, the numbers of
training sample are 4,200 (cross-view) vs. 840 (multi-view). We know that the
number of samples impacts the neural network performance, more data is always
better.

Table 6. The average computational times (minutes) of training data for 200 epochs.
We use 1 GPU (Geforce GTX 1080) for each experiment.

Method Time #Samples Input Dimension

Single-view 6 840 20 · 20 · 3 = 1, 200
Cross-view 30 4,200 20 · 20 · 3 = 1, 200

3D-CNN (MV-3D) 38 840 5 · 20 · 20 · 3 = 6, 000
Merge Channels (MV-MC) 7 840 20 · 20 · 15 = 6, 000

Merge Images (MV-MI) 20 840 100 · 20 · 3 = 6, 000
Merge Features (MV-MF) 23 840 (20 · 20 · 3) · 5 = 6, 000
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Table 6. shows the elapsed time in the average of each experiment. We use 1
GPU, and measure the time for 200 epoch. Cross-view experiment takes exactly
5 times more time than single-view because of the same architecture and the
training data size. Note that the elapsed times in the multi-view are various in
the range between 7 and 38 depending on the architecture. 3D-CNN takes 5.4
times more time than Merge Channels.

All of the experiment results are summarized in Fig.8.

Single-view Cross-view Cross-view2 Multi-viewRAW+PLVM
(Single-view)

Fig. 8. The summary graph of the prediction accuracies. RAW+PLVM is the best
result of the preliminary single-view experiment given by MLAC 2016. MV-3D: 3D-
CNN, MV-MC: Merge Channel, MV-MI: Merge Images, MV-MF: Merge Features.

6 Conclusions

In this paper, we propose an end-to-end neural network architecture for speaker
independent ALR task with multi-view data (OuluVS2 database). The evalu-
ation is performed by experiments in single-view, cross-view, and multi-view
setting. We report that the accuracies are 77.9%, 83.8%, and 78.6% in average;
82.2%, 86.4%, and 80.0% in the best respectively. All of the results are better
than the best single-view result (76%) of the baseline. These results show that
ALR performance is improved by multi-view data using neural network archi-
tectures.

We expect that the best score would come out in the multi-view result before
experiments are performed, but the results are different as we reported. One of
the reason is the lack of samples in the multi-view experiment in spite of more
complex feature than a single view. Experiments with various data augmentation
from multi-view data are future work.

OuluVS2 database provides the original high-resolution videos, experiment
with this large size of the input video is another considerable future work.
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