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Abstract

Most of the algorithms for inverse reinforcement
learning (IRL) assume that the reward function is
a linear function of the pre-defined state and action
features. However, it is often difficult to manually
specify the set of features that can make the true
reward function representable as a linear function.
We propose a Bayesian nonparametric approach to
identifying useful composite features for learning
the reward function. The composite features are
assumed to be the logical conjunctions of the pre-
defined atomic features so that we can represent the
reward function as a linear function of the compos-
ite features. We empirically show that our approach
is able to learn composite features that capture im-
portant aspects of the reward function on synthetic
domains, and predict taxi drivers’ behaviour with
high accuracy on a real GPS trace dataset.

1 Introduction
Inverse reinforcement learning (IRL) aims to recover the ex-
pert’s underlying reward function from her demonstrations
and the environment model[Russell, 1998]. IRL is applied to
increasingly various research areas, such as robotics[Argall
et al., 2009], computer animation[Lee and Popović, 2010],
preference learning[Erkin et al., 2010; Ziebartet al., 2008b]
and cognitive science[Bakeret al., 2009].

In the last decade, a number of studies on IRL algo-
rithms have appeared in the literature[Ng and Russell, 2000;
Abbeel and Ng, 2004; Ratliffet al., 2006; Syedet al., 2008;
Ziebartet al., 2008a]. Most of them, especially when deal-
ing with large state spaces, assume that the reward functionis
a linear function of some pre-defined features. The problem
then reduces to learning the unknown weights of the linear
function, but the result is highly dependent on the selection
of features. Hence, it is desirable to automatically construct
the features that compactly describe the structure of the re-
ward function[Abbeel and Ng, 2004].

FIRL [Levineet al., 2010] is one of the few IRL algorithms
that construct the features for the reward function. It is as-
sumed that the domain expert supplies the set of all poten-
tially relevant features asatomic features, and the algorithm
constructs the logical conjunctions of these features for the

reward function. GPIRL[Levineet al., 2011] is another IRL
algorithm that represents the reward function as a nonlinear
function of the atomic features using the Gaussian process
(GP). The reward features are implicitly learned as the hyper-
parameters of the GP kernel.

In this paper, we propose a Bayesian nonparametric ap-
proach to constructing the reward function features in IRL.
We extend Bayesian IRL[Ramachandran and Amir, 2007] by
defining a prior on thecomposite features, which are defined
to be the logical conjunctions of the atomic features. Since
the number of composite features is not known a priori, we
define the prior using the Indian buffet process (IBP) to infer
the features and the number of features. Our approach has
a number of advantages: First, it learns an explicit represen-
tation of the reward function features in the form of logical
formulas, which are readily interpretable. Second, it can ro-
bustly learn from a noisy behaviour data since it uses a prob-
abilistic model of the data. Third, it can incorporate the do-
main knowledge on the reward features and their weights into
the prior distribution since it is a Bayesian framework.

2 Preliminaries
We use the following notations throughout the paper:x is
a column vector with elementsxi andx−i = x\xi. X is
a matrix with elementsXi,j , X :,j is thej-th column ofX,
X−(i,j) = X\Xi,j , andX−i,j = X :,j\Xi,j .

We denote a discrete-state Markov decision pro-
cess (MDP) [Puterman, 1994] as a tuple M =
〈S,A, {T a}a∈A, r, γ〉 where S is the set of states,A
is the set of actions,T a is the state transition probability such
that T a

s,s′ = P (s′|s, a), r is the (state-dependent) reward
function, andγ ∈ [0, 1) is the discount factor.

A policy is defined as a mappingπ : S → A. The value
of the policyπ is defined as the expected discounted cumu-
lative rewards of executingπ, which satisfies the equation
vπ = r + γT πvπ whereTπ

s,s′ = P (s′|s, π(s)). Similarly,
theQ-function is defined by the equationQπ

:,a = r+γT avπ.
Given an MDPM, an optimal policyπ∗ maximizes the value
function for all the states. The value of an optimal pol-
icy should satisfy the Bellman optimality equation:v∗ =
maxa∈A(r + γT av∗).

The IRL refers to the problem of inferring the reward
function of an expert given an MDP\r and the expert’s be-



haviour dataD. We assume thatD = {τ1, . . . , τN} is
generated by executing an optimal policy with respect to
the unknown reward vectorr, where then-th trajectory
τn is an H-step sequence of state-action pairs,i.e., τn =
{(sn,1, an,1), . . . , (sn,H , an,H)}.

2.1 BIRL: Bayesian Framework for IRL
Ramachandran and Amir[2007] proposed a Bayesian frame-
work for IRL by modeling the compatibility of the reward
with the behaviour data as the likelihood and the preference
on the rewards as the prior. The likelihood is defined as an
independent exponential, or softmax, distribution:

P (D|r, η) =
∏N

n=1 P (τn|r, η)

=
∏N

n=1

∏

(s,a)∈τn

exp(ηQ∗
s,a(r))

P

a′∈A exp(ηQ∗
s,a′ (r)) (1)

whereη is the parameter representing the confidence of ac-
tions being optimal, andQ∗(r) is the optimalQ-function
computed usingr. Assuming that the reward entries are in-
dependently distributed, the prior on the reward function is
defined asP (r) =

∏

s∈S P (rs). Various distributions such
as the uniform, normal, or Laplace distribution can be used
as the prior depending on the domain knowledge on the re-
ward function. The reward function is then inferred from
the posterior distribution, using Markov Chain Monte Carlo
(MCMC) for estimating posterior mean[Ramachandran and
Amir, 2007] or gradient ascent for estimating the maximum-
a-posteriori (MAP)[Choi and Kim, 2011].

2.2 Indian Buffet Process
The Indian buffet process (IBP)[Ghahramaniet al., 2007]
defines a distribution over binary matrices with infinitely
many columns. This process can be explained by a culi-
nary metaphor: The customers enter an Indian buffet one
after another and choose dishes from an infinite number of
dishes. The first customer chooses dishes whose number
is distributed by Poisson(α). Thereafter, thei-th customer
chooses the dishj with a probability ofζj/i whereζj is the
number of customers who have previously chosen the dish
j. In addition, thei-th customer chooses new dishes whose
number is distributed by Poisson(α/i). LetZ be anM × K
binary matrix whereM andK is the total number of cus-
tomers and dishes, whose elementsZij = 1 indicates that
the i-th customer chooses the dishj. By taking the limit
K → ∞, we obtain the probability distribution induced by
the IBP:

PIBP(Z|α) =
∏K

k=1

α
K

Γ(ζk+ α
K

)Γ(M−ζk+1)

Γ(M+1+ α
K

) (2)

whereζk =
∑M

m=1 Zmk. The parameterα controls the spar-
sity of the matrix.

3 BNP-FIRL: Bayesian Nonparametric
Feature Construction for IRL

We assume that the reward vector is linearly parameterized so
thatr = Φw, whereΦ = [φ1, . . . ,φK ] is a reward feature
matrix whosek-th columnφk is an |S|-dimensional binary
vector representing thek-th reward feature, andw is anK-
dimensional weight vector.

As we have mentioned in the introduction, most of the
IRL algorithms assume that the reward features are already
given, and just compute the weights[Ng and Russell, 2000;
Abbeel and Ng, 2004; Ratliffet al., 2006; Syedet al., 2008;
Ziebartet al., 2008a]. In contrast, the goal of our work is to
learn the reward features as well as to compute the weights.
A small assumption made here is that a domain expert pro-
vides a set of (binary) atomic features, which includes all the
relevant indicators that may possibly influence determining
the rewards in some unknown way. Since the true reward
function is hardly a linear function of the atomic features,we
should learn the reward features as (non-linear but hopefully
not too complex) functions of atomic features, so that we can
still represent the reward function as a linear function of re-
ward features. We refer to the reward features ascomposite
featuresin order to distinguish them from atomic features.

In the following sections, we describe our Bayesian non-
parametric approach to the feature construction in IRL, where
the composite features are constructed by taking the logical
conjunctions of the atomic features. We first define a non-
parametric prior over the logical conjunctions of the atomic
features using the IBP. We then derive the posterior over
the composite features and the reward weights by extending
BIRL. Finally, we present an MCMC algorithm for the pos-
terior inference.

3.1 Prior for Feature Construction
Given a matrix of atomic features, defined asΨ =
[ψ1, . . . ,ψM ] where the m-th column ψm is an |S|-
dimensional binary vector representing them-th atomic fea-
ture, we define the constructed composite feature matrix as
Φ = f(x,Z,U ;Ψ) with:

φk =
∧

m∈{1,...,M} s.t.
xm=1∧Zm,k=1

ψ̃
(k)

m

wherex is an M -dimensional binary vector indicating the
participation of them-th atomic feature in any of the com-
posite features,Z is anM × K binary matrix indicating the
participation of them-th atomic feature in thek-th composite
feature, andU is also anM × K binary matrix indicating
whether them-th atomic feature is negated in the formula for

thek-th composite feature so that̃ψ
(k)

m = ψm if Um,k = 1

andψ̃
(k)

m = ¬ψm otherwise.
We define the prior onZ, U , andx as follows: first, we

start withZ that indicates which atomic features are used
for each composite feature. Each composite feature generally
consists of more than one exchangeable atomic features. In
addition, we do not know a priori the numberK of columns
in Z, which is the number of the composite features to be
constructed. Thus, analogous to the latent feature modeling,
we use the IBP as the prior onZ:

P (Z|α) = PIBP(Z|α). (3)

Note that, by using the IBP, we inherently assume thatK
is unbounded even though it is at most3M . The rationale
behind our assumption is thatZ can have duplicated columns
as well as infinitely many zero columns. Second, we use the
Bernoulli distribution for every entry of the binary matrixU ,



Figure 1: Graphical model of BNP-FIRL

so that the atomic features are negated withp = 0.5:

P (U) =
∏

m,k P (Um,k) =
∏

m,k PBer(Um,k; 0.5). (4)

Finally, we define the prior on the binary vectorx. Since
xm = 0 implies that the atomic featureψm is not used at
all for any composite feature, we use the prior that favorsx
being sparse. Specifically, we use the Bernoulli distribution
with p = κ whereκ is Beta distributed withβ = [β1, β2]:

P (κ|β) = PBeta(κ;β = [β1, β2])

P (xm|κ) = PBer(xm;κ). (5)

This is analogous to controlling the row-wise sparsity in the
IBP proposed by Rai and Daumé III [2008].

By combining Eqns (3), (4), and (5), the prior is defined as

P (Φ|α,β,Ψ) = P (x|β)P (Z|α)P (U) (6)

whereP (x|β) =
∫

∏

m P (xm|κ)P (κ|β)dκ.

3.2 Posterior Inference
BNP-FIRL extends BIRL by using the prior defined in the
above and treating the behaviourD = {τ1, . . . , τN} as being
drawn from the generative process as follows:

κ|β ∼ Beta(β = [β1, β2])

xm|κ ∼ Bernoulli(κ)

Z|α ∼ IBP(α)

Um,k ∼ Bernoulli(0.5)

wk ∼ P (wk)

Φ := f(x,Z,U ;Ψ)

r := Φw

τn|r, η ∼
∏

(s,a)∈τn

exp(ηQ∗
s,a(r))

P

a′∈A exp(ηQ∗
s,a′ (r)) .

Fig 1 shows the graphical model of BNP-FIRL. Note that, as
in BIRL, the reward weightswk ’s are assumed to be indepen-
dently distributed so thatP (w) =

∏K

k=1 P (wk).
The posterior over the composite features for the reward

function and the associated weights is then formulated as

P (Φ,w|D,Θ) ∝ P (D|Φ,w, η)P (w)P (Φ|α,β,Ψ) (7)

whereΘ = {η, α,β,Ψ}, P (D|Φ,w, η) is the BIRL likeli-
hood defined in Eqn (1) withr = Φw, P (w) is the prior
on the weights, andP (Φ|α,β,Ψ) is the prior on the com-
posite features defined in Eqn (6). Note thatα controls the
number of composite features to be constructed andβ con-
trols the total number of the unique atomic features used in

Algorithm 1 MCMC algorithm for BNP-FIRL
Initializex,Z ,U ,w.
for t = 1 to T do

for m = 1 to M do
Samplexm according to Eqn (8).

end for
for m = 1 to M do

for k = 1 to K do
SampleUm,k according to Eqn (9).

end for
end for
for m = 1 to M do

for k = 1 to K do
if

P

i6=m
Zi,k > 0 then

SampleZm,k according to Eqn (10).
end if

end for
Proposeξ = 〈K+,Z+,U+,w+〉: K+ ∼ Poisson(α/M).
Acceptξ with probabilitymin{1, ρZ}.

end for
for k = 1 to K do

Proposew′ ∼ N (wk, λ).
Acceptw′ with probabilitymin{1, ρw}.

end for
end for

the construction. In other words,α andβ are the parameters
that control the column-wise and the row-wise sparsity of the
composite feature matrixΦ, respectively.

We infer the composite features and the reward weights
from the posterior using an MCMC algorithm described as
follows (Algorithm 1): we first updatexm by sampling from
the probability distribution conditioned on the rest of theran-
dom variables,

P (xm = 1|D,x−m,Z,U ,w,Θ)

∝ P (D|f(x,Z,U ;Ψ),w, η)(β1 +
∑

i6=m xi)

P (xm = 0|D,x−m,Z,U ,w,Θ)

∝ P (D|f(x,Z,U ;Ψ),w, η)(β2 + M −
∑

i6=m xi). (8)

Note in the above that, instead of drawing the Bernoulli distri-
bution parameterκ from Beta(β = [β1, β2]) and then drawing
xm, we have collapsedκ for an efficient inference.

Next, in order to sampleUm,k which indicates whether we
should negate the atomic featureψm in the composite feature
φk, we sample it from the likelihood

P (Um,k|D,x,Z,U−(m,k),w,Θ)

∝ P (D|f(x,Z,U ;Ψ),w, η) (9)

since the prior onUm,k is uniformly random in{0, 1}.
We then sampleZm,k, which indicates whether the atomic

featureψm appears in the composite featureφk. For the sake
of exposition, we rephrase the IBP culinary metaphor into
our context, the atomic features being the customers and the
composite features being the dishes. The first atomic feature
chooses Poisson(α) composite features. Them-th atomic
feature chooses thek-th composite feature (already chosen by
preceding atomic features) with probability

∑m−1
i=1 Zi,k/m

and additionally chooses Poisson(α)/m new composite fea-
tures, whereZi,k = 1 indicates that thei-th atomic feature
ψi have chosen thek-th composite featureφk.



This metaphor and the exchangeability of the atomic fea-
tures leads to the update method forZm,: [Rai and Dauḿe
III, 2008] as follows: first, for the composite features that are
already chosen (i.e.,

∑

i6=m Zi,k > 0), we updateZm,k ac-
cording to the conditional distribution

P (Zm,k = 1|D,x,Z−m,k,U ,w,Θ)

∝ P (D|f(x,Z,U ;Ψ),w, η)
∑

i6=m Zi,k

P (Zm,k = 0|D,x,Z−m,k,U ,w,Θ)

∝ P (D|f(x,Z,U ;Ψ),w, η)(M −
∑

i6=m Zi,k). (10)

Second, for choosing the new composite features, we sam-
ple Zm,k using the Metropolis-Hastings (MH) update: we
first sample ξ = 〈K+,Z+,U+,w+〉 where K+ ∼
Poisson(α/m), Z+ is them × K+ binary matrix whose en-
tries in them-th row are set to 1 and others are set to 0, and
them × K+ binary matrixU+ andK+-dimensional vector
w+ are drawn from the corresponding priors. We then accept
ξ with probabilitymin{1, ρZ} where

ρZ =
P (D|f(x, [Z,Z+], [U ,U+];Ψ), [w;w+], η)

P (D|f(x,Z,U ;Ψ),w, η)
. (11)

In the above equation,[X,Y ] denotes horizontal concatena-
tion, and[x;y] denotes vertical concatenation.

Finally, we sample the weightswk, again using the MH
update. We first samplew′ ∼ N (wk, λ) and then accept it
with probabilitymin{1, ρw} where

ρw =
P (D|f(x,Z,U ;Ψ),wnew, η)P (w′)

P (D|f(x,Z,U ;Ψ),w, η)P (wk)
. (12)

with wnew formed by takingwnew
k = w′ andwnew

−k = w−k.
The posterior mean is commonly used for inferring the re-

ward function since it is known to minimize the square er-
ror LSE(r, r̂) = ||r − r̂||2 [Ramachandran and Amir, 2007].
We thus estimate the posterior mean of the reward function.
On the other hand, when we show the learned composite fea-
tures, we choose the sample with the maximum posterior,i.e.,
〈Φ̂MAP, ŵMAP〉 = argmax〈Φ(t),w(t)〉 P (Φ(t),w(t)|D,Θ)

andr̂MAP = Φ̂MAPŵMAP. This is because the sample mean is

ill-defined forΦ̂
(t)

’s with different dimensions.

4 Experimental Results
In this section, we show the performance of BNP-FIRL in a
number of problem domains and compare it to FIRL[Levine
et al., 2010] and GPIRL[Levine et al., 2011].1 The per-
formance was evaluated using the expected value difference
(EVD) 1

|S| ||v
∗(r) − vπ(r′)(r)||1 wherer is the expert’s re-

ward function (i.e., the ground truth),r′ is the learned reward
function, andπ(r′) is the optimal policy computed usingr′.
The EVD thus can be seen as a measurement of the loss in
the optimality incurred by using the policy from the learned
reward function instead of the expert’s reward function. Inor-
der to evaluate how well the composite features are learned,
we computed the EVD on the same problem instance (i.e., the

1code available at http://graphics.stanford.edu/projects/gpirl

Table 1: Learned features for32 × 32 objectworld domain.
Weights Reward features

φ1 8.61 d(s, c1) < 3 ∧ d(s, c2) < 2
φ2 -11.53 d(s, c1) < 3 ∧ ¬(d(s, c2) < 2)
φ3 -7.29 d(s, c1) < 3 ∧ ¬(d(s, c2) < 2) ∧ d(s, c3) < 9
φ4 0.51 ¬(d(s, c3) < 9)

training problem instance) where the expert’s behaviour data
was generated, and on additional random problem instances
(i.e., transfer problem instances) as well.

4.1 Objectworld Domain
The first set of experiments was performed on the objectworld
domain[Levineet al., 2011], where the agent can move north,
south, east, west, or stay in the current location in anN × N
grid. Each action has a failure probability of 0.3 which makes
the agent move in a random direction. There are a number of
colored objects randomly placed in the grid, each of them
with one of theC ≥ 2 colors.

We prepared a total ofCN atomic features of the form
“d(s, ci) < j” indicating that the distance between the agent’s
locations and the nearest colori object is less thanj, where
i ∈ {1, . . . , C} andj ∈ {1, . . . , N}. The true reward func-
tion was set to

rs =







1 if d(s, c1) < 3 ∧ d(s, c2) < 2,

−2 if d(s, c1) < 3 ∧ ¬(d(s, c2) < 2),

0 otherwise.

We generated 10 random training problem instances by sam-
pling the locations of objects and their colors, and gathered
trajectories of length 20. In order to measure how well the
learned reward function generalizes to novel yet similar prob-
lem instances, we measured EVD on additional 10 transfer
problem instances for each training problem instance, gener-
ated in the same way we prepared training problem instances.

The top row in Fig 2 shows the EVD performances when
the trajectories are generated by the optimal policy. BNP-
FIRL outperformed FIRL in the experiments. This is mainly
due to the fact that BNP-FIRL is allowed to have multiple
composite features for each state, whereas FIRL can only
have one because of the way the algorithm constructs the
composite features. Tbl 1 shows the 4 reward features and
the corresponding weights found by BNP-FIRL. In compari-
son, FIRL produced a total of 21 features. On the other hand,
BNP-FIRL was on par in performance with GPIRL. Nonethe-
less, one of the advantages of using BNP-FIRL is that the
learned features are explicitly represented and thus readily in-
terpretable.

The bottom row in Fig 2 shows the EVD performances
when the trajectories are generated from anǫ-greedy policy. It
is interesting to observe that BNP-FIRL outperforms GPIRL
and FIRL. We conjecture that this is due to the likelihood in
BNP-FIRL being particularly robust to noisy behaviour data.

4.2 Simulated-highway Domain
The second set of experiments was done on the simulated-
highway domain[Levineet al., 2011], where the agent drives
a vehicle by moving one lane left or right at speeds{1, 2, 3, 4}



Figure 2: Averages and standard errors of the EVD on 10 randominstances of the32 × 32 objectworld domain, withTop
row: trajectories generated by the optimal policy, andBottom row: trajectories generated byǫ-greedy policy (ǫ = 0.2). Left
two columns: fix C = 4 (the number of colors) and vary|D| (the number of trajectories).Right two columns: vary C and fix
|D| = 50.

Figure 3: Averages and standard errors of the performance
results over 10 instances of the highway domain.

on a three-lane highway. The actions that change the lane
or speed fail with probability 0.3. There are other vehicles
driving at speed 1, each of them being either a civilian or a
police vehicle and either a car or a motorcycle (a total com-
bination of 4 categories). We prepared an expert that prefers
to drive as fast as possible but avoids driving at speeds 3 or
4 within a distance of 2 from a police vehicle. We also pre-
pared 3 types of atomic features: The first indicate the cur-
rent speed (4 features) and the second indicate the current
lane (3 features). The third indicate the distance to the near-
est car from each category, of the form “d(s, c) ≤ j” where
c ∈ {police, civilian}×{car, motorcycle} andj ∈ {0, . . . , 5}
(24 features). We generated the trajectory data by executing
the optimal policy for 200 time steps.

Fig 3 shows that BNP-FIRL again performs better than
FIRL. On the other hand, BNP-FIRL performs slightly worse
than GPIRL although, as shown in Fig 4, the learned reward
functions from the two algorithms were very similar to the
true one. On the other hand, FIRL was not able to capture
good features for the reward function and as a result, the
learned reward function is very different from the true one.

4.3 Taxi Driver Behaviour Prediction

The final set of experiments was done on learning the taxi
drivers’ preference using the GPS trace data collected in
San Francisco[Piorkowski et al., 2009]. We modeled the

road network as a graph, which consists of 20531 road
segments obtained from the OPENSTREETMAP.2 As in
Ziebart et al. [2008b], we assumed that the taxi drivers try
to reach a destination in a trip by taking the road segments
according to their preferences. Note that each trip typically
has a different destination. We used the goal-oriented MDP
Mg to define the environment model, where the states are
road segments, and the state transitions correspond to taking
one of the road segments at intersections. The rewards were
assumed to be negative everywhere except at the destination,
which was represented as an absorbing goal stateg with a
zero reward.

The composite featuresφ(s,a),k and the weightswk were
assumed to be independent of the destination. In other
words, given the destinationg, the reward was calculated
as rg = F (g) · w where wk < 0, F(g,a),k(g) = 0
and F(s,a),k(g) = φ(s,a),k for all s ∈ S\{g}. This
change leads to a slight modification to the likelihood so
that P (D|Φ,w, η) =

∏

n P (τn|rgn
, η;Mgn

) wheregn is
the destination in the trajectoryτn. Note that, although we
have different MDPsMgn

for each trajectory due to differ-
ent destination, they all share the same reward featuresΦ and
weightsw.

We prepared state-dependent atomic features representing
the properties of the road segments, such as the type, the
speed limit, the number of lanes, and one-way.3 We also
prepared action-dependent atomic features representing the
angle of the turn.4

Among the traces of 500 taxis in the original data, we
selected 500 trips from 10 taxis, visualized in Fig 5. The

2http://www.openstreetmap.org
3type ∈ {highway, primary street, secondary street, living

street}, speed limit∈ {below 20 mph, 20-30 mph, 30-40 mph, above
40 mph}, # lanes∈ {1, 2, 3+}. These features were obtained using
the OPENSTREETMAP

4turn angle∈ {hard left, soft left, straight, soft right, hard right,
u-turn}.



Figure 4: Rewards for the states at each speed for the highwaydomain. The numbers
below the figures present the speed and the brightness of eachstate represents the reward
(brighter=higher).

Figure 5: GPS traces of 500
trips from 10 taxis collected in
San Francisco.

accumulated distance of the trips was 1137 miles. We
then segmented the GPS traces and mapped them to the
road segments using a preprocessing algorithm described in
Lou et al. [2009].

We compared BNP-FIRL to two baseline methods and two
IRL algorithms in the literature. As for the first baseline,
we used the shortest path to the destination. As for the sec-
ond baseline, we used the optimal policy from an MDP with
heuristically set reward weightw′. A simple heuristic would
be counting the feature visitations in the trace data, and set
the reward weights accordingly. Since we enforce the reward
weights to be negative, we used the normalized counts of fea-
ture visitations offset by the maximum count value. As for
the two IRL algorithms, we chose the maximum entropy IRL
(MaxEntIRL) [Ziebartet al., 2008a] and the gradient ascent
BIRL (MAP-BIRL) [Choi and Kim, 2011]. Since both algo-
rithms depend on a pre-defined set of features, we supplied
the set of all atomic features. We do not report the results
from FIRL and GPIRL since it was not straightforward to
modify them to appropriately handle multiple MDPs sharing
the same reward features and weights.

Tbl 2 shows the average prediction accuracy and their stan-
dard errors. The prediction accuracy was measured in terms
of the turn and the route predictions. For each trip, we com-
puted the path from the origin to the destination using the al-
gorithms. The correct actions taken at the intersections were
counted in the turn prediction accuracy, and the ratio of the
total distance taking the correct road segments was calcu-
lated for the route prediction accuracy. All the results were
obtained by the 5-fold cross validation. Tbl 3 presents the
weights and composite features learned by BNP-FIRL, which
are fairly intuitive. For example, making hard left turns (φ1)
is avoided with the highest penalty. Making turns on a high-
way is also highly undesirable except making a soft right turn
to take an exit ramp (φ2). It was also found that taxi drivers
prefer to take the primary street (φ9) or the road with 20-30
mph limit (φ8), rather than the highway (φ5) or the road with
speed limit higher than 40 mph (φ3). This was because the
trips were generally short, the average distance being 2.27
miles.

5 Conclusion
We presented BNP-FIRL, a Bayesian nonparametric ap-
proach to constructing reward features in IRL. We defined the

Table 2: Driver behaviour prediction results.
Turn prediction (%) Route prediction (%)

Shortest path 77.06 (±0.14) 32.91 (±0.21)
MDP (w′) 83.79 (±0.21) 43.42 (±0.23)
MaxEntIRL 80.27 (±0.67) 42.80 (±1.07)
MAP-BIRL 84.97 (±0.58) 46.87 (±0.92)
BNP-FIRL (MAP) 86.22 (±0.24) 48.42 (±0.54)
BNP-FIRL (Mean) 86.28 (±0.18) 48.70 (±0.70)

Table 3: Learned features for driver behaviour prediction.
Weights Reward features

φ1 -2.40 hard left turn
φ2 -1.98 highway∧¬(secondary street)∧¬(below 20 mph)

∧¬(soft right turn)∧¬(straight)
φ3 -1.38 above 40 mph
φ4 -0.41 ¬(highway)∧¬(oneway)
φ5 -0.27 highway
φ6 -0.24 ¬(straight)
φ7 -0.21 ¬(below 20 mph)∧¬(2 lanes)∧¬(oneway)
φ8 -0.12 20-30 mph
φ9 -0.11 primary street

reward features as the logical conjunctions of the atomic fea-
tures provided by the domain expert, and formulated a non-
parametric prior over the reward features using the IBP. We
derived an MCMC algorithm to carry out the posterior in-
ference on the reward features and the corresponding reward
weights.

We showed that BNP-FIRL outperforms or performs on
par with prior feature-learning IRL algorithms through exper-
iments on synthetic domains. In comparison to FIRL, BNP-
FIRL produces more succinct sets of features with richer rep-
resentations and learns better reward functions. In compar-
ison to GPIRL, BNP-FIRL produces the set of features that
are explicitly represented and readily interpretable. We also
presented reward feature learning results on a real GPS trace
data collected from taxi drivers, predicting their behaviour
with higher accuracy than prior IRL algorithms.
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