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Abstract reward function. GPIRLLevineet al,, 2011 is another IRL
algorithm that represents the reward function as a nonlinea
function of the atomic features using the Gaussian process
(GP). The reward features are implicitly learned as the hype
parameters of the GP kernel.

In this paper, we propose a Bayesian nonparametric ap-
proach to constructing the reward function features in IRL.
We extend Bayesian IRIRamachandran and Amir, 2003y
defining a prior on theomposite featuresvhich are defined
to be the logical conjunctions of the atomic features. Since
the number of composite features is not known a priori, we
define the prior using the Indian buffet process (IBP) torinfe
the features and the number of features. Our approach has
a number of advantages: First, it learns an explicit represe
tation of the reward function features in the form of logical
formulas, which are readily interpretable. Second, it aan r
bustly learn from a noisy behaviour data since it uses a prob-
abilistic model of the data. Third, it can incorporate the do
main knowledge on the reward features and their weights into
the prior distribution since it is a Bayesian framework.

Most of the algorithms for inverse reinforcement
learning (IRL) assume that the reward function is
a linear function of the pre-defined state and action
features. However, it is often difficult to manually
specify the set of features that can make the true
reward function representable as a linear function.
We propose a Bayesian nonparametric approach to
identifying useful composite features for learning
the reward function. The composite features are
assumed to be the logical conjunctions of the pre-
defined atomic features so that we can represent the
reward function as a linear function of the compos-
ite features. We empirically show that our approach
is able to learn composite features that capture im-
portant aspects of the reward function on synthetic
domains, and predict taxi drivers’ behaviour with
high accuracy on a real GPS trace dataset.

1 Introduction

Inverse reinforcement learning (IRL) aims to recover the ex2 Preliminaries
pert’s underlying reward function from her demonstrations, . . .
and the environment modiRussell, 1998 IRL is appliedto  ve use the following notations throughout the paperis
increasingly various research areas, such as robigtigell & column vector with elements; andx_; = a\z;. X is
et al, 2009, computer animatiofiLee and Popod, 2014, a matrix with elements; ;, X. ; is the j-th column of X,
preference learninfErkin et al., 2010; Ziebaret al., 20081 X_gij) = X\Xij, andX _;; = X, ;\X,5. .
and cognitive scienckBakeret al, 2009. We denote a discrete-state Markov decision pro-
In the last decade, a number of studies on IRL algo-€SS (MaDP) [Puterman, 1994 as a wple M =
rithms have appeared in the literat{iNg and Russell, 2000; (S»A: {T" o, 7,7) where S is the set of statesA
Abbeel and Ng, 2004; Ratlifét al, 2006; Syeckt al, 2008; 'S the iet of actlor)él“ is the state transition probability such
Ziebartet al, 20084. Most of them, especially when deal- that I3y = P(s'|s,a), r is the (state-dependent) reward
ing with large state spaces, assume that the reward furistion function, andy € [0, 1) is the discount factor.
a linear function of some pre-defined features. The problem A policy is defined as a mapping : S — A. The value
then reduces to learning the unknown weights of the lineaPf the policyr is defined as the expected discounted cumu-
function, but the result is highly dependent on the selectio lative rewards of executing, which satisfies the equation
of features. Hence, it is desirable to automatically cammstr v™ = 7 + YT v™ whereT[,, = P(s'[s,7(s)). Similarly,
the features that compactly describe the structure of the réhe@-function is defined by the equati@@”, = r +~T"v".
ward functionfAbbeel and Ng, 2004 Given an MDPM, an optimal policyr* maximizes the value
FIRL [Levineet al., 2014 is one of the few IRL algorithms  function for all the states. The value of an optimal pol-
that construct the features for the reward function. It is asicy should satisfy the Bellman optimality equatiom* =
sumed that the domain expert supplies the set of all potenmaxgea(r + 7T v*).
tially relevant features aatomic featuresand the algorithm The IRL refers to the problem of inferring the reward
constructs the logical conjunctions of these featurester t function of an expert given an MDf* and the expert's be-



haviour dataD. We assume thaD = {r,...,7n} IS As we have mentioned in the introduction, most of the
generated by executing an optimal policy with respect tdRL algorithms assume that the reward features are already
the unknown reward vector, where then-th trajectory  given, and just compute the weightdg and Russell, 2000;

T, IS an H-step sequence of state-action pairs,, 7, =  Abbeel and Ng, 2004; Ratli#t al., 2006; Syeckt al,, 2008;
{($n15an,1)s -5 (Sn,H,n 1)} Ziebartet al., 20084. In contrast, the goal of our work is to

) learn the reward features as well as to compute the weights.
2.1 BIRL: Bayesian Framework for IRL A small assumption made here is that a domain expert pro-

Ramachandran and An{i2007 proposed a Bayesian frame- vides a set of (binary) atomic features, which includestedl t
work for IRL by modeling the compatibility of the reward relevant indicators that may possibly influence deternginin
with the behaviour data as the likelihood and the preferencéhe rewards in some unknown way. Since the true reward
on the rewards as the prior. The likelihood is defined as aifiunction is hardly a linear function of the atomic featunes,

independent exponential, or softmax, distribution: should learn the reward features as (non-linear but hageful
P(D -1V p not too complex) functions of atomic feat_ures, SO th_at we can
(Dlr,m) = =y Pralr,m) Q" . )) still represent the reward function as a linear functionesf r
N exp(n s,a r H
== s ayen, SRR ) (1) ward features. We refer to the reward features@sposite

featuresin order to distinguish them from atomic features.
wheren is the parameter representing the confidence of ac- In the following sections, we describe our Bayesian non-
tions being optimal, and?*(r) is the optimalQ-function  parametric approach to the feature construction in IRL r&he
computed using:. Assuming that the reward entries are in- the composite features are constructed by taking the Ibgica
dependently distributed, the prior on the reward funct®n i conjunctions of the atomic features. We first define a non-
defined asP(r) = [[,.s P(rs). Various distributions such parametric prior over the logical conjunctions of the atomi
as the uniform, normal, or Laplace distribution can be usedeatures using the IBP. We then derive the posterior over
as the prior depending on the domain knowledge on the rethe composite features and the reward weights by extending
ward function. The reward function is then inferred from BIRL. Finally, we present an MCMC algorithm for the pos-
the posterior distribution, using Markov Chain Monte Carlo terior inference.

(MCMC) for estimating posterior medfRamachandran and . .

Amir, 2007 or gradient ascent for estimating the maximum-3.1  Prior for Feature Construction

a-posteriori (MAP) Choi and Kim, 2011 Given a matrix of atomic features, defined d =
. [y,...,%] where them-th column ,, is an |S|-
2.2 Indian Buffet Process dimensional binary vector representing theth atomic fea-

The Indian buffet process (IBRGhahramankt al, 2007 ture, we define the constructed composite feature matrix as
defines a distribution over binary matrices with infinitely ® = f(x, Z,U; ¥) with:

many columns. This process can be explained by a culi- ~(k)

nary metaphor: The customers enter an Indian buffet one P = /\;ﬁf“ ----- M) st Yo,

after another and choose dishes from an infinite number of -

dishes. The first customer chooses dishes whose numbgtherez is an M-dimensional binary vector indicating the
is distributed by Poissdn). Thereafter, the-th customer participation of them-th atomic feature in any of the com-
chooses the disfi with a probability of(; /i where(; is the  posite featuresg is anM x K binary matrix indicating the
number of customers who have previously chosen the disharticipation of then-th atomic feature in thg-th composite
j. In addition, thei-th customer chooses new dishes whosefeature, andJ is also anM x K binary matrix indicating
number is distributed by Poissa/i). Let Z be anM x K Whether then-th atomic feature is negated in the formula for
binary matrix whereM and K is the total number of cus- the k-th composite feature so thﬁ}v(:) =ap, (if Upp =1
tomers and dishes, whose elemefsts = 1 indicates that ~ (k) ) '

the i-th customer chooses the digh By taking the limit ~andy,,” = =, otherwise. _

K — oo, we obtain the probability distribution induced by ~ We define the prior o, U, andx as follows: first, we

the IBP: start with Z that indicates which atomic features are used
Pep(Z|a) = HK SD(Ckt+ )T (M —Ci+1) @) for each composite feature. Each composite feature géyeral
18P k=1 I(M+1+5) consists of more than one exchangeable atomic features. In

addition, we do not know a priori the numb&r of columns

in Z, which is the number of the composite features to be
constructed. Thus, analogous to the latent feature magelin
we use the IBP as the prior dfi;

where(;, = Z%:l Zmk- The parametet: controls the spar-
sity of the matrix.

3 BNP-FIRL: Bayesian Nonparametric

Feature Construction for IRL P(Z|a) = Pgp(Z|a). ®3)
We assume that the reward vector is linearly parameterized Note that, by using the IBP, we inherently assume that
thatr = ®w, where® = [¢,, ..., 0] is a reward feature is unbounded even though it is at ma@df. The rationale

matrix whosek-th columne,, is an|S|-dimensional binary behind our assumption is th&tcan have duplicated columns
vector representing thie-th reward feature, ane is an K-  as well as infinitely many zero columns. Second, we use the
dimensional weight vector. Bernoulli distribution for every entry of the binary matix,
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Figure 1: Graphical model of BNP-FIRL

so that the atomic features are negated with 0.5:
P(U) = Hm,k P(Um’k) = Hm,k PBer(Um,M 05) (4)

Finally, we define the prior on the binary vector Since
z,m = 0 implies that the atomic featurg,, is not used at
all for any composite feature, we use the prior that favers
being sparse. Specifically, we use the Bernoulli distrdouti
with p = k wherex is Beta distributed witt8 = [51, (2):

P(k|B) = Peetd(k; B = 1, 52])

P(zm|r) = Poel@m; k). (5)

This is analogous to controlling the row-wise sparsity ia th

IBP proposed by Rai and Dawntll [2009.

Algorithm 1 MCMC algorithm for BNP-FIRL
Initialize z, Z, U, w.
fort =1toT do
for m =1to M do
Samplez,,, according to Eqn (8).
end for
for m =1to M do
for k =1to K do
SampleU,, . according to Eqn (9).
end for
end for
for m =1to M do
for k =1to K do
if >z Zik > 0 then
SampleZ,, , according to Eqgn (10).
end if
end for
Proposé = (K1, ZT, U", w"): KT ~ Poissolfa/M).
Accept¢ with probabilitymin{1, pz }.
end for
for k=1to K do
Proposew’ ~ N (w, A).
Acceptw’ with probabilitymin{1, p. }.
end for
end for

the construction. In other words,and3 are the parameters

By combining Eqns (3), (4), and (5), the prior is defined asthat control the column-wise and the row-wise sparsity ef th

P(®|a,B8,%) = P(z|B)P(Z|a)P(U)
whereP(z|8) = [[1,, P(zm|r)P(x|B)dk.
3.2 Posterior Inference

(6)

composite feature matri@, respectively.

We infer the composite features and the reward weights
from the posterior using an MCMC algorithm described as
follows (Algorithm 1): we first update:,,, by sampling from
the probability distribution conditioned on the rest of the-

BNP-FIRL extends BIRL by using the prior defined in the dom variables,

above and treating the behaviddr= {r,..., 75} as being
drawn from the generative process as follows:

k|8 ~ Beta3 = [B1, B2])
Zm|k ~ Bernoulli(k)
Z|a ~ IBP(«)
Up,.1 ~ Bernoulli(0.5)
wg ~ P(wk)
® = f(x, Z,U; )
r = dw

exp(nQ; (7))
Tn|”“7 n~ H(s,a)ETn Darcaexp(nQr ,(r))”

s,a

Fig 1 shows the graphical model of BNP-FIRL. Note that, as

P(-rm = 1|D7 T_m, 4,U,w, @)
x P(D|f(x, Z,U;¥),w,n)(B1 + ;4 Ti)
P(zpm =0D,x_n, Z, U, w,O)

x P(D|f(x, Z,U;¥),w,n) (B2 + M = 3, ., xi). (8)
Note in the above that, instead of drawing the Bernoullirdist
bution parametet from Beta3 = [3;, 82]) and then drawing
Zm, We have collapsed for an efficient inference.

Next, in order to sampl&,, , which indicates whether we
should negate the atomic featupe, in the composite feature
¢, we sample it from the likelihood

P(Um,k‘Dv x, Z, Uf(m,k:)a w, 9)

in BIRL, the reward weights;,'s are assumed to be indepen- since the prior oii/,,, . is uniformly random in{0, 1}.

dently distributed so thal(w) = [, P(w)-

We then sampl¢,,, ;, which indicates whether the atomic

The posterior over the composite features for the rewardieatures,, appears in the composite featysg. For the sake

function and the associated weights is then formulated as
P(®,w|D,0) x P(D|®,w,n)P(w)P(P|a, B,¥) (7)

where© = {n,«o,3, ¥}, P(D|®,w,n) is the BIRL likeli-
hood defined in Eqn (1) with = ®w, P(w) is the prior
on the weights, and®(®|«, 3, ¥) is the prior on the com-
posite features defined in Eqn (6). Note thatontrols the
number of composite features to be constructed @rmbn-

of exposition, we rephrase the IBP culinary metaphor into
our context, the atomic features being the customers and the
composite features being the dishes. The first atomic featur
chooses Poissda) composite features. Theu-th atomic
feature chooses theth composite feature (already chosen by
preceding atomic features) with probabiligy " " Z; . /m

and additionally chooses Poisgan/m new composite fea-
tures, whereZ, ,, = 1 indicates that theé-th atomic feature

trols the total number of the unique atomic features used inp,; have chosen the-th composite feature, .



This metaphor and the exchangeab”ity of the atomic fea_Tab|e 1: Learned features 82 x 32 objectworld domain.

tures leads to the update method £y, . [Rai and Daurg Weights  Reward features
11, 2008] as foII(_)ws: first, for the composite features that are b, 8.61 d(s,c1) < 3Ad(s,ca) < 2
alrea}dy choseni.g,, ”Z#m Zik > Q), we updatez,, . ac- $, 1153 d(s,c1) < 3A—(d(s,c2) < 2)
cording to the conditional distribution b4 -7.29 d(s,c1) < 3A(d(s,e2) <2)Ad(s,e3) <9
0.51 —(d(s, <9
P(Zm,k' = 1|D7 Z, Z—m,ka U7 w, @) ¢4 ( (S 63) )
x P(D|f(z,Z,U; ¥),w,n) Zi#m Zik training problem instance) where the expert’'s behaviota da
P(Zyr=0D,x,Z_, 1, U, w,0) was generated, and on additional random problem instances

x P(D|f(x, Z,U; ®),w,n) (M — Z#m Zix). (10) (i.e. transfer problem instances) as well.

Second, for choosing the new composite features, we sanftl Objectworld Domain
ple Z,, » using the Metropolis-Hastings (MH) update: we The first set of experiments was performed on the objectworld
first sample ¢ (K+,ZT, UT,w") where Kt ~  domain[Levineetal, 2011, where the agent can move north,
Poissofia/m), Z" is them x K+ binary matrix whose en- south, east, west, or stay in the current location ilar N
tries in them-th row are set to 1 and others are set to 0, andJrid. Each action has a failure probability of 0.3 which make
them x K binary matrixU ™" and K *-dimensional vector the agent move in a random direction. There are a number of
w™ are drawn from the corresponding priors. We then accepgolored objects randomly placed in the grid, each of them
¢ with probabilitymin{1, p~ } where with one of theC' > 2 colors.

We prepared a total of' N atomic features of the form
_ P(D|f(x,[2,Z7),[U, U], ®), [w;w*],n) (11)  “d(s,ci) < j" indicating that the distance between the agent's
B PD|f(x,Z,U;®),w,n) ' locations and the nearest colérobject is less thari, where

. . 1€ {1,...,C}andj € {1,...,N}. The true reward func-
In the above equationX, Y| denotes horizontal concatena- 4o, évas set tc}) A }
tion, and[x; y] denotes vertical concatenation.

Pz

Finally, we sample the weights;,, again using the MH 1 ifd(s,c1) <3 Ad(s,c2) <2,
update. We first sample’ ~ A (wg, \) and then accept it rs =< —2 ifd(s,c1) <3A—(d(s,c2) <2),
with probabilitymin{1, p,, } where 0  otherwise
_ P(D|f(x, Z,U;¥),w"",n)P(w') (12) We generated 10 random training problem instances by sam-

pling the locations of objects and their colors, and gatthere
) e e , e trajectories of length 20. In order to measure how well the
with w"* formed by takinguop®* = w’ andw™3” = w_r.  |earned reward function generalizes to novel yet similabpr
The posterior mean is commonly used for inferring the reqem instances, we measured EVD on additional 10 transfer
ward function since it is known to minimize the square er-proplem instances for each training problem instance, igene
ror Lsg(r, 7) = ||r — 72 [Ramachandran and Amir, 20D7_ ated in the same way we prepared training problem instances.
We thus estimate the posterior mean of the reward function. e top row in Fig 2 shows the EVD performances when
On the other hand, when we show the learned composite fegne trajectories are generated by the optimal policy. BNP-
tures, we choose the sample with the maximum postemar,  F|RL outperformed FIRL in the experiments. This is mainly
(Puap, map) = argmax g 4,0y P(@Y, w®[D,0)  due to the fact that BNP-FIRL is allowed to have multiple
and7yap = Puaptwmap. This is because the sample mean iscomposite features for each state, whereas FIRL can only
. ) (), . . have one because of the way the algorithm constructs the
ill-defined for@" s with different dimensions. composite features. Thl 1 shows the 4 reward features and
. the corresponding weights found by BNP-FIRL. In compari-
4 Experimental Results son, FIRL produced a total of 21 features. On the other hand,
In this section, we show the performance of BNP-FIRL in aBNP-FIRL was on par in performance with GPIRL. Nonethe-
number of problem domains and compare it to FlRevine  less, one of the advantages of using BNP-FIRL is that the
et al, 2014 and GPIRL[Levine et al, 2011].> The per- learned features are explicitly represented and thuslygaeli
formance was evaluated using the expected value differenderpretable. o
(EVD) Fll"v*(r) — ™) (r)||, wherer is the expert's re- The bottom row in Fig 2 shows the EVD performances
when the trajectories are generated frona-gmeedy policy. It
is interesting to observe that BNP-FIRL outperforms GPIRL
and FIRL. We conjecture that this is due to the likelihood in
P-FIRL being particularly robust to noisy behaviour data

Pv = "P(D|f(x, Z,U; ®), w, 1) P(wy)

ward function {.e., the ground truth)’ is the learned reward
function, andr (') is the optimal policy computed using.
The EVD thus can be seen as a measurement of the loss
the optimality incurred by using the policy from the learned
reward function instead of the expert's reward functionotn 4 5 Simulated-highway Domain
der to evaluate how well the composite features are learned

we computed the EVD on the same problem instanee the The second set of experiments was done on the simulated-
highway domairiLevineet al, 2011, where the agent drives

code available at http://graphics.stanford.edu/projects/gpirl  a vehicle by moving one lane left or right at speétls2, 3,4}
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Figure 2: Averages and standard errors of the EVD on 10 randstances of th&2 x 32 objectworld domain, withTop
row: trajectories generated by the optimal policy, &attom row trajectories generated kygreedy policy § = 0.2). Left
two columnsfix C' = 4 (the number of colors) and vai| (the number of trajectoriesRight two columnsvary C' and fix
|D| = 50.

15 Training problems a5 Transfer problems road network as a graph, which consists of 20531 road
o BNPFIRL(MAP) , segments obtained from theP@NSTREETMAP.Z' As in
| B L (Vean Ziebartet al. [20084, we assumed that the taxi drivers try
e T GPIRL g” to reach a destination in a trip by taking the road segments
05 ! according to their preferences. Note that each trip tyfical
05 has a different destination. We used the goal-oriented MDP
%5 40 15 20 25 30 35 40 U5 10 15 20 25 30 35 40 M, to define the environment model, where the states are
# of trajectories # of rajectories road segments, and the state transitions correspond tataki
Figure 3: Averages and standard errors of the performanc@ne of the road segments at intersections. The rewards were
results over 10 instances of the highway domain. assumed to be negative everywhere except at the destipation

which was represented as an absorbing goal gtatéith a

on a three-lane highway. The actions that change the langero reward.
or speed fail with probability 0.3. There are other vehicles The composite features, ., and the weightsu, were
driving at speed 1, each of them being either a civilian or assumed to be independent of the destination. In other
police vehicle and either a car or a motorcycle (a total comwords, given the destinatiog, the reward was calculated
bination of 4 categories). We prepared an expert that meferas r, = F(g) - w wherew, < 0, Fq1(9) = 0
to drive as fast as possible but avoids driving at speeds 3 @nd Fi; o) x(9) = &(s,a)x for all s € S\{g}. This
4 within a distance of 2 from a police vehicle. We also pre-change leads to a slight modification to the likelihood so
pared 3 types of atomic features: The first indicate the curthat P(D|®,w,n) = [],, P(ta|ry,,n: Mg, ) Whereg,, is
rent speed (4 features) and the second indicate the curretite destination in the trajectory,. Note that, although we
lane (3 features). The third indicate the distance to the-neahave different MDPs\M for each trajectory due to differ-
est car from each category, of the for@($,c) < j” where  entdestination, they all share the same reward featbrasd
¢ € {police, civilian} x {car, motorcycl¢ andj € {0,...,5}  weightsw.
(24 features). We generated the trajectory data by exerutin We prepared state-dependent atomic features representing
the optimal policy for 200 time steps. the properties of the road segments, such as the type, the

Fig 3 shows that BNP-FIRL again performs better thanspeed limit, the number of lanes, and one-WwayVe also
FIRL. On the other hand, BNP-FIRL performs slightly worse prepared action-dependent atomic features represerting t
than GPIRL although, as shown in Fig 4, the learned rewarengle of the turr.
functions from the two algorithms were very similar to the Among the traces of 500 taxis in the original data, we
true one. On the other hand, FIRL was not able to capturselected 500 trips from 10 taxis, visualized in Fig 5. The
good features for the reward function and as a result, the—————

learned reward function is very different from the true one. ?http:/www.openstreetmap.org
Stype € {highway, primary street, secondary street, living
4.3 Taxi Driver Behaviour Prediction stree}, speed limite {below 20 mph, 20-30 mph, 30-40 mph, above

] ) ] 40 mph, # lanesc {1, 2, 3+. These features were obtained using
The final set of experiments was done on learning the taxine CPENSTREETM AP

drivers’ preference using the GPS trace data collected in “turn anglec {hard left, soft left, straight, soft right, hard right,
San FranciscdPiorkowskiet al, 2009. We modeled the u-turn}.



BNP-FIRL

True reward

Figure 4: Rewards for the states at each speed for the higdaamain. The numbersFigure 5: GPS traces of 500
below the figures present the speed and the brightness obtielrepresents the rewaretips from 10 taxis collected in

(brighter=higher). San Francisco.
accumulated distance of the trips was 1137 miles. We Table 2: Driver behaviour prediction results.
then segmented the GPS traces and mapped them to the Turn prediction (%) Route prediction (%)
road segments using a preprocessing algorithm described gy, test path 77.06H0.14) 32.9140.21)
Lou et al.[2009. . MDP (w’) 83.79 (-0.21) 43.42 £0.23)

We compared BNP-FIRL to two baseline methods and two MaxEntIRL 80.27 40.67) 42.8041.07)
IRL algorithms in the literature. As for the first baseline, MAP-BIRL 84.97 -0.58) 46.87 £0.92)
we used the shortest path to the destination. As for the sec-BNP-FIRL (MAP)  86.22 (+0.24) 48.42 (£0.54)
ond baseline, we used the optimal policy from an MDP with BNP-FIRL (Mean)  86.28 (+0.18) 48.70 (+0.70)

heuristically set reward weight’. A simple heuristic would
be counting the feature visitations in the trace data, anhd se .
the reward weights accordingly. Since we enforce the reward  Weights Reward features

weights to be negative, we used the normalized counts of fea-¢, -2.40 hard left turn

ture visitations offset by the maximum count value. As for ¢, -1.98 highwaya—(secondary street)—(below 20 mph)
the two IRL algorithms, we chose the maximum entropy IRL A—(soft right turn)A—(straight)

(MaxEntIRL) [Ziebartet al, 20084 and the gradient ascent ¢; -1.38 above 40 mph

BIRL (MAP-BIRL) [Choi and Kim, 2011 Since both algo- ~ #4 -0.41 —(highway)A—(oneway)

rithms depend on a pre-defined set of features, we supplied®s 027 highway

the set of all atomic features. We do not report the results ®s :8'31' :Ef)g%gvh;)o mphyA—(2 lanesy\—(oneway)

from FIRL and GPIRL since it was not straightforward to ¢7 012 20-30 mph P Y
modify them to appropriately handle multiple MDPs sharing ¢8 011 primary street

the same reward features and weights. 2

Tbl 2 shows the average prediction accuracy and their staeard features as the logical conjunctions of the atone fe
dard errors. The prediction accuracy was measured in termges provided by the domain expert, and formulated a non-
of the turn and the route predictions. For each trip, we COMparametric prior over the reward features using the IBP. We
puted the path from the origin to the destination using the algeriyed an MCMC algorithm to carry out the posterior in-
gorithms. The correct actions taken at the intersectiom® We fgrence on the reward features and the corresponding reward
counted in the turn prediction accuracy, and the ratio of th‘?/veights.
total distance taking the correct road segments was calcu- \nie showed that BNP-FIRL outperforms or performs on
lated for the route prediction accuracy. All the resultsaver 5. \vith prior feature-learning IRL algorithms through exp
obtained by the 5-fold cross validation. Thl 3 presents thgyants on synthetic domains. In comparison to FIRL, BNP-
weights and composite features learned by BNP-FIRL, whiclk|r| produces more succinct sets of features with richer rep
are fairly intuitive. For example, making hard left turas§  resentations and learns better reward functions. In compar
is avoided with the highest penalty. Making turns on a high-son 1o GPIRL, BNP-FIRL produces the set of features that
way is also highly undesirable except making a soft right tur 5¢ explicitly represented and readily interpretable. We a
to take an exit rampdk,). It was also found that taxi drivers  resented reward feature learning results on a real GP& trac
prefer to take the primary streb() or the road with 20-30 4t collected from taxi drivers, predicting their behavio

mph limit (¢), rather than the highway) or the road with ith hiaher accuracy than prior IRL alaorithms.
speed limit higher than 40 mplg¢). This was because the with hig uracy pri gor

trips were generally short, the average distance being Z'ZZ\cknowledgments
miles.

Table 3: Learned features for driver behaviour prediction.
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