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Hierarchical Bayesian Inverse Reinforcement
Learning

Jaedeug Choi, Student Member, IEEE, and Kee-Eung Kim, Member, IEEE

Abstract—Inverse reinforcement learning (IRL) is the problem
of inferring the underlying reward function from the expert’s
behavior data. The difficulty in IRL mainly arises in choosing the
best reward function since there are typically an infinite number
of reward functions that yield the given behavior data as optimal.
Another difficulty comes from the noisy behavior data due to sub-
optimal experts. We propose a hierarchical Bayesian framework,
which subsumes most of the previous IRL algorithms as well
as models the sub-optimality of the expert’s behavior. Using a
number of experiments on a synthetic problem, we demonstrate
the effectiveness of our approach including the robustness of
our hierarchical Bayesian framework to the sub-optimal expert
behavior data. Using a real dataset from taxi GPS traces, we
additionally show that our approach predicts the driving behavior
with a high accuracy.

Index Terms—Decision theory, inverse problems, maximum a
posteriori estimation.

I. INTRODUCTION

INVERSE reinforcement learning (IRL) aims to determine
the expert’s underlying reward function from her behav-

ior data and the dynamics model of environment [1]. IRL
addresses the fundamental problem of finding the reward
function in building a computational model for sequential
decision making. It is a promising framework for exam-
ining animal and human behaviors [2] since the reward
function represents an objective or a preference of the deci-
sion maker. As such, IRL has been applied to problems
from various domains. Abbeel et al. [3] built controllers for
helicopters to perform difficult aerobatic maneuvers utiliz-
ing human experts’ demonstrations. Ziebart et al. [4] inferred
taxi drivers’ preferences from their GPS navigation data to
predict their routes. Erkin et al. [5] estimated patients’ prefer-
ences to determine the optimal timing of living-donor liver
transplants. Chandramohan et al. [6] developed simulated
users to assess the quality of dialogue management systems.
Lee and Popović [7] constructed motion controllers to generate
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computer animation from exemplar motions. Vogel et al. [8]
optimized the fuel efficiency of hybrid cars by implementing
an driving route prediction system based on IRL.

In IRL, it is generally assumed that the expert acts in an
environment modeled as a Markov decision process (MDP).
Under the MDP formalism, the IRL problem is defined as
finding the reward function that the expert is optimizing given
the behavior data of state-action histories and the environment
model of state transition probabilities. One of the inherent
challenges of IRL is its ill-posedness, due to the fact that
there are an infinite number of reward functions that arise
as a valid solution. Hence, most of the studies on IRL have
been devoted to defining an appropriate objective function that
is used to single out the most meaningful reward function.
Ng and Russell [9] searched for the reward function that max-
imizes the difference in the values of the expert’s policy and
the second best policy. Ratliff et al. [10] applied the struc-
tured max-margin optimization to find the reward function
that maximizes the margin between the expert’s policy and
all other policies. Neu and Szepesvári [11] provided an algo-
rithm for finding the policy that minimizes the deviation from
the behavior. Ziebart et al. [12] adopted the principle of the
maximum entropy for learning the policy whose feature expec-
tations are constrained to match those of the expert’s behavior.
Ramachandran and Amir [13] presented a Bayesian approach
formulating the reward preference as the prior and the behav-
ior compatibility as the likelihood, and find the posterior mean
of the reward function.

Although a remarkable progress has been made for the
last decade exemplified by the above studies, they generally
assume that the expert is a rational decision maker who can
deduce all possible outcomes of actions for choosing the best
decision. Under the MDP formalism, this assumption corre-
sponds to the expert who always executes optimal actions
derived from the optimal value function computed from the
underlying reward function [9], [10], [14]. However, it is
well known that human beings (and other animals) do not
always exhibit completely rational behaviors, yielding sub-
optimal action because of limitations in time, knowledge, and
computational capabilities [15]–[17].

The motivation of our work is to address the behavior
data with sub-optimal actions. Although there are a num-
ber of IRL algorithms capable of handling the sub-optimal
behavior data, they treat it implicitly or use a fixed parame-
ter value. Syed and Schapire [18] proposed a game-theoretic
apprenticeship learning algorithm that aims to improve on the
potentially sub-optimal expert. Ramachandran and Amir [13]
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and Neu and Szepesvári [11] used the softmax distribution
over actions with a fixed value for the temperature parameter
to represent the degree of sub-optimality. Ziebart et al. [12]
used the softmax distribution over trajectories with the
same parameterization. Rothkopf and Dimitrakakis [19] and
Ramachandran and Amir [13] took a similar approach. As
shown in the later section, the learning accuracy is sensitive
to the selection of parameter values. Hence, it is desirable for
IRL to be robust against a poor selection of parameter values.

The main contribution of this paper is to present a hierar-
chical Bayesian approach that:

1) explicitly learns the degree of sub-optimality in the
behavior data by imposing a prior on the corresponding
parameter;

2) makes the solution less affected by the prior on the
reward function by imposing a hyper-prior.

Our approach is a hierarchical extension of our own pre-
vious work on Bayesian IRL [20] in the above two aspects,
which allows the derivation of analytical formulas for com-
puting gradients that are used for finding the MAP estimate
of the reward function. We also report experimental results of
applying our technique to the route prediction problem using
a real dataset.

The rest of this paper is organized as follows. We start with
a brief background on IRL (Section II). Next, we provide a
detailed review on the Bayesian approach to IRL (Section III)
since our work presented in this paper heavily builds on it.
We then present the hierarchical Bayesian framework for IRL
(Section IV), which is the main part of the paper. We report
experimental results on a number of synthetic problems that are
used as standard benchmark problems in IRL, and on the route
prediction problem using a real dataset of GPS traces collected
from taxi drivers [21] (Section V). Finally, we conclude the paper
with discussions on our approach and directions for future work
(Section V). All detailed proofs are provided in the appendix.

II. PRELIMINARIES

A. Markov Decision Processes (MDPs)

A Markov decision process (MDP) [22] provides a mathe-
matical framework for modeling a sequential decision making
problem under uncertainty about the effect of an agent’s action
in an completely observable environment.

An MDP is defined as a tuple 〈S,A,P0,T,R, γ 〉 where
S the finite set of states s = 1, . . . , |S|;
A the finite set of actions a = 1, . . . , |A|;
P0 the starting state probability where P0(s) denotes the

probability of starting in state s;
T the state transition function where T(s, a, s′) =

P(s′|s, a) denotes the probability of reaching state s′
by taking action a in state s;

R the reward function where R(s, a) denotes the imme-
diate reward of taking action a in state s, whose
absolute value is bounded by Rmax;

γ the discount factor whose value is in [0, 1).
We use matrix notations to denote the transition function

by an |S||A| × |S| matrix T, and the reward function by an
|S||A|-dimensional vector r.

A policy in MDP is defined as a mapping π : S → A,
where π(s) = a denotes the action to execute in state s is a.1

The value of policy π is the expected discounted cumulative
rewards obtained during following the policy and defined as:

Vπ = E

[ ∞∑
t=0

γ tR(st, at)|π
]

where action at is chosen by policy π in state st. The state-
value function of policy π for state s is computed by

Vπ (s) = R (s, π(s))+ γ
∑
s′∈S

T
(
s, π(s), s′) Vπ

(
s′) (1)

so that Vπ = ∑
s P0(s)Vπ (s). Similarly, the action-value

function (often called Q-function) is defined as

Qπ (s, a) = R(s, a)+ γ
∑
s′∈S

T
(
s, a, s′) Vπ

(
s′). (2)

We can rewrite the above equations using matrix notations

vπ = rπ + γTπvπ

qπ: ,a = ra + γTavπ

where
Tπ an |S| × |S| matrix with Tπs,s′ = T(s, π(s), s′);
Ta an |S| × |S| matrix with Ta

s,s′ = T(s, a, s′);
rπ an |S|-dimensional vector with rπs = R(s, π(s));
ra an |S|-dimensional vector with ra

s = R(s, a);
vπ an |S|-dimensional vector with vπs = Vπ (s);
qπ: ,a an |S|-dimensional vector with qπs,a = Qπ (s, a).
Additionally, we denote an |S||A|-dimensional vector qπ =

[(qπ: ,1)
ᵀ, . . . , (qπ: ,|A|)

ᵀ]ᵀ.
The agent’s objective is to find an optimal policy π∗ that

maximizes the value for all the states. In other words, π∗ is
an optimal policy if and only if for all s ∈ S

π(s) = argmax
a∈A

Qπ
∗
(s, a).

We denote V∗ = Vπ
∗

and Q∗ = Qπ
∗
.

The behavior data of policy π is defined to be the set � =
{ξ1, . . . , ξM} of M trajectories by executing the policy, where
the m-th trajectory ξm is an H-step sequence of state-action
pairs: ξm = {(sm,1, am,1), . . . , (sm,H, am,H)}.2 Given the set
of trajectories, the value of the policy π can be empirically
estimated by

V̂π = 1

M

M∑
m=1

H∑
h=1

γ h−1R(sm,h, am,h).

This formula will be used for estimating the value of the
expert’s policy πE in IRL, since its behavior data is given
instead of πE.

For the rest of the paper, when we refer to some function
f that is computed using the reward function r, we use the
notation f (r) or f (x; r) in order to be explicit. For example,
we use the notation Vπ (s; r) to denote the value of policy π
for state s using the reward function r.

1This kind of policies are called deterministic policies. In some places, we
slightly abuse the notation and use π(s, a) for the probability of executing
action a in state s for a stochastic policy π .

2Although we assume that all trajectories are of length H for notational
brevity, our formulation extends to different lengths without modification.
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B. IRL and Reward Optimality Condition

The IRL problem in MDP is formally stated as fol-
lows: given an MDP\R 〈S,A,P0,T, γ 〉 and the behavior data
� of the expert’s policy πE, find the reward function r that
makes πE an optimal policy for the given MDP.

Ng and Russell [9] presented a necessary and sufficient
condition for reward function r of an MDP to guarantee the
optimality of policy π

qπ: ,a(r) ≤ vπ (r), for ∀a ∈ A.
From the condition, we obtain the following corol-

lary, which is a succinct reformulation of the theorem by
Ng and Russell [9].

Corollary 1: Given an MDP\R 〈S,A,T, γ 〉, policy π is
optimal if and only if reward function r satisfies[

I −
(

IA − γT
) (

I − γTπ
)−1 Eπ

]
r ≤ 0 (3)

where Eπ is an |S|×|S||A| matrix with the (s, (s′, a′)) element
being 1 if s = s′ ∧ π(s′) = a′ and 0 otherwise, and IA is
an |S||A| × |S| matrix constructed by stacking the |S| × |S|
identity matrix |A| times.

We refer to (3) as the reward optimality condition with
respect to policy π . We also refer to the region bounded
by (3) as the reward optimality region with respect to pol-
icy π since the set of linear inequalities in (3) defines the
region of the reward functions that makes policy π optimal.
We note that there are infinitely many reward functions in the
reward optimality region even including constant reward func-
tions (e.g., r = c1 where c ∈ [− Rmax,Rmax]). In other words,
we have an infinite number of reward functions to choose
from, including the degenerate ones. In order to resolve this
nonuniqueness in solutions, IRL algorithms in the literature
use a number of different preferences on reward functions.

C. Linearly Parameterized Reward Functions

When the state space is large, the reward function is often
linearly parameterized as

R (s, a; r) = r1φ1(s, a)+ . . .+ rDφD(s, a) = rᵀφ(s, a) (4)

with predefined domain-dependent feature functions φ: S ×
A → R

D and the reward weight vector r = [r1, . . . , rD]ᵀ ∈
R

D. Note that if we use |S||A| indicator functions as fea-
tures, one for each state-action pair, the reward function is
represented as an |S||A|-dimensional vector as in the classi-
cal definition. We thus regard the reward function R equivalent
to the D-dimensional reward vector r for the remainder of this
paper since the classical definition is a special case of (4).
Linear parameterization of the reward function is a common
practice in IRL for large-scale MDPs [9], [14], [18].

III. REVIEW ON BAYESIAN IRL

Ramachandran and Amir [13] proposed a Bayesian frame-
work for IRL (BIRL), where the prior encodes the preference
on the reward function and the likelihood presents the com-
patibility of the reward function with the behavior data.

Fig. 1. Graphical representation of the BIRL model.

Assuming the rewards are i.i.d., the prior in BIRL is
defined as

P(r) =
D∏

i=1

P(ri). (5)

We can use various distributions as the prior. For example,
the uniform prior can be used if we have no knowledge about
the reward function other than its range, and the Gaussian or
Laplacian distributions can be used if we prefer rewards to be
close to some specific values. The Beta distribution can also
be used if we treat rewards as the parameter of the Bernoulli
distribution, i.e., P(χi = 1) = ri using an auxiliary binary
random variable χi [23].

The likelihood in BIRL is defined as an independent
exponential, or softmax, distribution over actions

P(�|r, η) =
M∏

m=1

P (ξm|r, η)

=
M∏

m=1

H∏
h=1

ψ
(
am,h|sm,h; r, η

)
(6)

where ψ(a|s; r, η) = exp(ηq∗
s,a(r))∑

a′∈A exp(ηq∗
s,a′ (r))

with η being the

parameter representing the confidence of choosing optimal
actions, and q∗(r) denotes the optimal Q-function computed
from the MDP with reward function r.

Using the Bayes theorem, we formulate the posterior over
the reward function by combining the prior and the likelihood

P(r|�, η) ∝ P (�|r, η)P(r). (7)

Fig. 1 shows the graphical model representing BIRL when
the rewards are normally distributed with mean μ and standard
deviation σ , that is

P(r|μ, σ) =
D∏

i=1

N (ri;μ, σ). (8)

Ramachandran and Amir [13] proposed a Markov chain
Monte Carlo (MCMC) algorithm to compute the posterior
mean of the reward function in BIRL, defined as

rMEAN =
∫

rP(r|�, η)dr. (9)



796 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 4, APRIL 2015

Fig. 2. 5-state chain MDP.

Fig. 3. Posterior distribution of the reward function in 5-state chain MDP.

A. MAP Inference in BIRL

In the general context of Bayesian inference, we can use
a number of estimates for determining the reward function,
such as the posterior mean, median, or maximum-a-posterior
(MAP). The posterior mean is commonly used for Bayesian
inference since it is the minimum mean square error estimate.
However, the posterior mean can be problematic in BIRL.
The posterior mean reward function minimizes the expected
error over the entire space of reward functions, even including
infinitely many reward functions outside the reward optimality
region, which induce policies inconsistent with the behavior
data. The posterior mean reward function can thus induce an
optimal policy inconsistent with the data. On the other hand,
the MAP is a point estimate that simply maximizes the pos-
terior probability, hence it is not affected by the inconsistent
reward functions outside the reward optimality region. Hence,
it is more robust to infinitely many inconsistent reward func-
tions. We present a simple example that compares the posterior
mean and the MAP reward function estimates, defined as (9)
and (11) (in Theorem 1) respectively.

Consider an MDP with five states arranged in a chain, two
actions, and the discount factor 0.9. As shown in Fig. 2, we
denote the leftmost state as s1 and the rightmost state as s5.
Action a1 moves to the state on the right with probability 0.6
and to the state on the left with probability 0.4. Action a2
always moves to state s1. The true reward of each state is
[0.1, 0, 0, 0, 1], hence the optimal policy chooses a1 in every

TABLE I
IRL ALGORITHMS AND THEIR EQUIVALENT f (�; r) AND PRIOR FOR THE

BAYESIAN FORMULATION

state. Suppose that we already know R(s2),R(s3), and R(s4)

which are all 0, and estimate R(s1) and R(s5) from the behavior
data � which contains optimal actions for all the states. We can
compute the posterior P(R(s1),R(s5)|�) using (5)–(7) under
the assumption that 0 ≤ r ≤ 1 and priors P(R(s1)) being
N (0.1, 1), and P(R(s5)) being N (1, 1). In addition, the reward
optimality region can be also computed using (3).

Fig. 3 presents the posterior distribution of reward functions.
The true reward, the MAP reward, and the posterior mean
reward are marked with star, circle, and cross, respectively.
The solid line is the boundary of the reward optimality region.
Although the prior mean is set to the true reward, the poste-
rior mean is outside the reward optimality region. An optimal
policy for the posterior mean reward function chooses action
a2 rather than action a1 in state s1, while an optimal policy
for the MAP reward function is identical to the true one. The
situation gets worse when using the uniform prior. An optimal
policy for the posterior mean reward function chooses action
a2 in states s1 and s2, while an optimal policy for the MAP
reward function is again identical to the true one.

An additional advantage of computing the MAP reward
function is in that we can view most of the previous IRL
algorithms as performing the MAP estimation in BIRL. The
main insight comes from the fact that these algorithms try to
optimize an objective function consisting of a regularization
term for the preference on the reward function and an assess-
ment term for the compatibility of the reward function with the
behavior data. We can then naturally reformulate the objective
function as the posterior in BIRL by encoding the regu-
larization into the prior and the data compatibility into the
likelihood. Thus, MAP inference in BIRL subsumes different
IRL approaches in the literature by generalizing the likelihood
in (6) to the following:

P(�|r, ζ ) ∝ exp(ζ f (�; r)) (10)

where ζ is a positive-valued parameter for scaling the likeli-
hood and f (�; r) is a function encoding the data compatibility
assessment used in the IRL algorithms. We thus arrive at the
following result.

Theorem 1: Finding the exact solutions of the IRL algorithms
listed in Table I is equivalent to computing the MAP estimates

rMAP = argmax
r

P(r|�,�)
= argmax

r

[
log P(�|r, ζ )+ log P(r|�)]

= argmax
r

[
f (�; r)+ log P(r|�)] (11)
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where � is the set of parameters used in the prior and the
likelihood, and f (�; r) is defined as follows:

fV(�; r) = V̂E(r)− V∗(r)
fG(�; r) = min

d∈{1,...,D}

[
Vπ(r)(φd)− V̂E(φd)

]
fJ(�; r) = −

∑
s,a

x̂E(s, a)
(
J(s, a; r)− π̂E(s, a)

)2

fE(�; r) = logPMaxEnt(�|r)
where

π(r) an optimal policy induced by r;
Vπ (φd) the value of π induced by feature function φd;
V̂E the estimated value of expert’s policy πE, i.e.,

V̂E = V̂πE ;
x̂E(s, a) the empirical estimate of state-action visitation

counts of expert’s policy πE;
J(s, a; r) a smooth mapping from r to a greedy policy;
PMaxEnt the distribution on the behavior data satisfying

the principle of maximum entropy.

In summary, the MAP inference in BIRL provides a rich
framework for explaining previous non-Bayesian IRL algo-
rithms in a unified manner, as well as encoding various
types of a-priori knowledge into the prior distribution. Note
that this framework can exploit insights behind other class
of algorithms even though they do not have an explicit
reward learning mechanism (e.g., the apprenticeship learning
algorithm MWAL [18]).

B. Gradient Method for Finding the MAP Reward Function

In order to develop a gradient ascent method for the
posterior optimization problem in (11), we need to show
that the generalized likelihood P(�|r, ζ ) defined in (10) is
differentiable almost everywhere.

The likelihood is defined for measuring the compatibility
of the reward function r with the behavior data �. This is
generally accomplished by using the optimal state-value func-
tion v∗ or the optimal action-value function q∗ with respect
to r. For example, the empirical value of � can be compared
with v∗ [9], [10], � can be directly compared to the greedy
policy from q∗ [11], or we can compute the probability of
following the trajectories in � using q∗ [13]. We thus rewrite
P(�|r) = g(�, v∗(r)) or g(�, q∗(r)) where g is differentiable
with respect to v∗ or q∗. The remaining question is the differ-
entiability of v∗ and q∗ with respect to r, which we address
in the following two theorems:

Theorem 2: v∗(r) and q∗(r) are convex with respect to r.
Theorem 3: v∗(r) and q∗(r) are differentiable almost every-

where with respect to r.
From Theorems 2 and 3, we acquire the following

results: for any reward function r in the reward optimality
region C(π) with respect to π

∇rv∗(r) = (I − γTπ )−1Eπ

∇rq∗(r) = (I − γTEπ )−1. (13)

∇rv∗(r) and ∇rq∗(r) are gradients when r is strictly inside
C(π) and sub-gradients on the boundary of C(π).

Our results in Theorems 2 and 3 are related to the previous
work on gradient methods for IRL. Neu and Szepesvári [11]
showed that q∗(r) is Lipschitz continuous, and it is Fréchet
differentiable except on a set of measure zero (almost every-
where) by Rademacher’s theorem. We have obtained the same
result based on the reward optimality region, and additionally
identified the condition for which v∗(r) and q∗(r) are non-
differentiable. Ratliff et al. [10] used a sub-gradient of their
objective function because it involves differentiating v∗(r).
Computing the sub-gradient of their objective function yields
an identical result using (13).

With a differentiable prior, we can compute the (sub) gradi-
ent of the posterior using (13) and the chain rule. If the prior
and g are convex, then the posterior will be convex and we
will find the MAP reward function. Otherwise, we will obtain
a locally optimal solution as in Neu and Szepesvári [11].

As an example, we show how we can calculate the gra-
dient of the posterior in BIRL when the likelihood in (6)
and the independent normal prior in (8) are used. The log
unnormalized posterior is computed as

log P(r|�, η,μ, σ )
∝ log P(�|r, η)+ log P(r|μ, σ)
=

∑
m,h

logψ(am,h|sm,h; r, η)+
∑
s,a

logN (rs,a|μ, σ).

We then use (13) to obtain the gradient which is shown
in Table II. We also note that, when using a normal prior
with zero mean, maximizing the posterior is equivalent to
optimizing the compatibility of the reward function with L2
regularization.

IV. HIERARCHICAL BIRL

In this section, we present a hierarchical Bayesian approach
to IRL (HBIRL), which extends BIRL in two ways: imposing
a prior on the confidence parameter and a hyper-prior on the
prior of the reward function.3

Although most of the previous IRL algorithms assume that
the expert behaves optimally, she can choose sub-optimal
actions in reality: since human beings (and animals in general)
have limited time, knowledge, and computational capabilities,
they cannot consider all the possible future consequences of
actions and may behave sub-optimally. This is referred to as
bounded rationality [15]–[17]. They also occasionally fail to
choose the best action simply by mistake. There is a wealth of
literature on human sub-optimal behavior in psychology and
economics [24], [25].

BIRL implicitly handled the sub-optimal actions by using
the softmax distribution in the likelihood (6), which yields
the probability of selecting an optimal action. In the soft-
max distribution, the parameter η represents the confidence of
choosing optimal actions. The probability mass is concentrated
on the optimal actions with the maximum Q∗’s for large η, and
is spread over all actions with small η. Hence, it is convenient

3Our hierarchical model currently assumes a specific prior for the reward
function so that we can choose a conjugate hyper-prior and obtain analytical
formulas of marginalized gradients.
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TABLE II
GRADIENT OF THE POSTERIOR IN THE BIRL MODEL

to use the softmax distribution to assign a nonzero probabil-
ity to the expert’s sub-optimal action selection. However, it is
nontrivial to manually choose an appropriate value for η that
adequately represents the degree of the expert’s sub-optimality.

HBIRL imposes a prior on η to explicitly estimate the
expert’s sub-optimality from the behavior data. Specifically,
we used a gamma distribution as the prior on η since it is
sufficiently flexible to exhibit various shapes of distributions
on a nonnegative real-valued random variable using only two
parameters

P(η|τ ) = G(η; τ1, τ2) (14)

where τ1 is the shape parameter, τ2 is the inverse scale
parameter, and τ = [τ1, τ2].4

Revisiting BIRL, we remind that it is capable of incorpo-
rating a-priori domain knowledge into the model by choosing
a suitable prior distribution on reward functions. However, a
number of issues still remain to be resolved. For example, it
is often nontrivial to encode the domain knowledge into the
prior. When specifying the prior, we need to choose a spe-
cific distribution along with its parameter values. Even after
all the effort, we may choose the parameter values far from the
true ones as well as the distribution itself. This is particularly
harmful when the data is sparse. It is thus desirable to learn
the prior distribution from the behavior data for robust IRL.

HBIRL addresses this issue by defining a hyper-prior on
the prior of reward function. We first assume that the rewards
are independently and normally distributed since the normal
distribution is widely used to model a real-valued random vari-
able when no information other than its mean and variance
are available [26]. The prior of the reward function is thus
defined as

P (r|μ,λ) =
D∏

d=1

P (rd|μd, λd) =
D∏

d=1

N
(

rd;μd, λ
−1
d

)
where μ = [μ1, . . . , μD]ᵀ and λ = [λ1, . . . , λD]ᵀ, where μd

and λd are the mean and precision of rd, respectively. We then
use the normal-gamma distribution as the hyper-prior on the
prior of reward function, since it is the conjugate prior for the
mean and precision of the normal distribution

P (μd, λd|β, γ ) = N
(
μd; 0, (βλd)

−1
)
G (λd; γ1, γ2)

where β, γ1, and γ2 are the parameters for the normal-gamma
distribution5 and γ = [γ1, γ2]. We thus have

P(rd|β, γ ) =
∫

P (rd|μd, λd) dP (μd, λd|β, γ ). (15)

4We used a vague prior with τ1 = τ2 = 1 throughout the experiments.
5We again used a vague prior by specifying β = γ1 = γ2 = 1 throughout

the experiments.

Fig. 4. Graphical representation of the HBIRL model.

The prior on the confidence parameter η and the reward
function r is now ready to be defined, combining (14) and
(15) as follows:

P(r, η|β, γ , τ ) = P(η|τ )P(r|β, γ )

= P(η|τ )
D∏

d=1

P(rd|β, γ ).

The posterior on r and η is then formulated by combining
the likelihood in (6) with the prior

P(r, η|�,β, γ , τ ) ∝ P(�|r, η)P(r, η|β, γ , τ ). (16)

Fig. 4 depicts a graphical representation of the HBIRL
model.

We then find the MAP estimate of reward function rMAP
and confidence parameter ηMAP by reformulating the IRL
problem as an optimization problem with the objective being
maximization of the (log unnormalized) posterior

〈rMAP, ηMAP〉 = argmax
r,η

log P(r, η|�,�)

where � = {β, γ , τ }. The log unnormalized posterior can be
computed as

log P(r, η|�,�) ∝ log P(�|r, η)+ log P(r, η|β, γ , τ )
=

∑
m,h

logψ(am,h|sm,h; r, η)

+ log P(η|τ )+
∑

d

log P(rd|β, γ ).

Since the gradient of q∗(r) with respect to r can be com-
puted using Theorem 3, we can compute the gradient of the
posterior with respect to r and η as shown in Table III. We
then find the approximate MAP estimate of rMAP and ηMAP
by using a gradient ascent method, as shown in Table IV.

V. EXPERIMENT RESULTS

We empirically compared the performance of our gradient
methods in BIRL and HBIRL to those of other IRL algorithms
in the literature: Abbeel and Ng’s projection algorithm [14],
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TABLE III
GRADIENT OF THE POSTERIOR FROM THE HBIRL MODEL

TABLE IV
GRADIENT ASCENT FOR MAP INFERENCE IN HBIRL

Maximum Margin Planning (MMP) [10], Maximum Entropy
(MaxEnt) IRL [12], and an MCMC method in BIRL [13].
However, we omit the results of Abbeel and Ng’s projec-
tion and MMP algorithms since they performed significantly
worse than the other algorithms. The methods in BIRL used
the standard normal distribution as the prior and we set the
confidence parameter η = 1. We stopped the gradient methods
when the parameter values converged and the MCMC meth-
ods when the number of iterations reached 20000. All the
algorithms were implemented in MATLAB, and the gradient
ascent method used fmincon which automatically selects the
stepsize δt.

To evaluate the performance of the IRL algorithms, we
could directly measure the distance between the expert’s
reward function and the one found by the algorithms. However,
this can yield meaningless results since the reward repre-
sents the relative importance of executing an action in a
state. Two reward functions having a small difference may
yield completely different policies, and two reward func-
tions having a large difference may yield an identical policy.
For example, the degenerate reward function r = c1 where
c ∈ [− Rmax,Rmax] makes any policy optimal. Hence, we
evaluated the performance of the algorithms by comparing
the optimal policies induced by the expert’s and the learned
reward functions. We define the measure as the expected value
difference (EVD)

1

|S|
∣∣∣∣∣∣vπ(rE)(rE) − vπ(rL)(rE)

∣∣∣∣∣∣
1

where rE is the expert’s reward functions (i.e., the ground
truth), rL is the learned reward function, and π(r) is an opti-
mal policy induced by reward function r. The EVD measures
the loss in the optimality incurred by using the policy from
the learned reward function instead of the expert’s reward

function. We also define the miss prediction rate of π(rL) in
the expert’s optimal behavior �′ as

1

M′H′
M′∑

m=1

H′∑
h=1

1
(
am,h �= π

(
sm,h; rL

))
where 1(x) is the indicator function (1 if x is true and 0 other-
wise), and �′ = {ξ ′

1, . . . , ξ
′
M′ } is a held-out test dataset of M′

trajectories of length H′ generated from π(rE). The miss pre-
diction rate measures the loss in the incorrect action prediction
via the zero-one loss function.

A. Gridworld Problem

We performed experiments on the gridworld problem, a syn-
thetic problem domain widely used in the IRL literature [11],
[14], [27], [28]. In this problem, the agent can move in one of
the four directions or stay in the current location on a n×n grid.
Each action fails with a probability of 0.3 and moves the agent
in a random direction. The grid is partitioned into nonover-
lapping regions of size 2 × 2, resulting in (n/2)2 regions. The
feature functions are defined as the binary indicator functions
for each region. 30% of the regions were randomly sampled
and the rewards for those regions were sampled i.i.d from the
standard normal distribution.

The first set of experiments concerns with learning from
optimal experts: we prepared training data consisting of 10n
trajectories with 2n time steps, which was collected from the
simulated runs of optimal policies. Fig. 5 shows the average
performance including the standard error on 20 experimental
runs. The panels in the top row represent the performance by
varying the number of trajectories in the 24 × 24 gridworld,
and the panels in the bottom row represent the performance
in varying sizes of gridworlds. We can make the following
observations from the results.

1) Top Left and Top Right: As more trajectories are gath-
ered for the training data, we naturally expect that the
algorithms will produce better results, i.e., lower EVDs
and miss prediction rates. Note that the EVD curve is
more stable than the miss prediction rate curve for every
algorithm.

2) Bottom Left and Bottom Right: As the state space is
enlarged, we naturally expect that the algorithms will
produce worse results due to a number of problems
including data sparsity. Again, note that the EVD curve
is more stable than the miss prediction rate curve for
every algorithm. These results show that the EVD is a
better choice for measuring performance than the miss
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Fig. 5. Results with optimal experts in the gridworld problems.

prediction rate, since the latter simply counts the number
of incorrect actions whereas the former additionally
measures how bad the incorrect actions are.

3) Top Left and Bottom Left: Two gradient ascent meth-
ods (BIRL with GA and HBIRL) performed better than
BIRL with MCMC, which demonstrates that MAP esti-
mate is more effective than the posterior mean estimate.

4) Top Left and Bottom Left: HBIRL significantly out-
performed BIRL, which was achieved by adapting the
confidence parameter and the reward function prior to
the data (e.g., η was properly estimated to be much
higher than its default value of 1 since the data does
not contain any sub-optimal action).

5) Top Left and Bottom Left: HBIRL achieved almost the
same level of performance as that of MaxEnt IRL, which
is one of the best performing algorithms in the IRL
literature.

In the second set of experiments, we measured the perfor-
mance of the IRL algorithms on sub-optimal behavior data.
We prepared training data consisting of 240 trajectories with
48 time steps in the 24×24 gridworld using two types of sub-
optimal experts using the models of bounded rationality. First,
the ε-optimized policy model π̃ε samples actions uniformly
whose values are within ε of the optimum

π̃ε(s, a) =
{

1
|A∗

ε | if a ∈ A∗
ε

0 otherwise

where A∗
ε = {a ∈ A|Q∗(s, a) ≥ maxa′∈A Q∗(s, a′) − ε}. This

is a model used in economics for decision makers who behave
according to some heuristic capable of being reasonably close
to the optimum [29]. Second, the h-step look-ahead policy
model π̃h reflects that the decision maker cannot plan opti-
mally for the full horizon because of limited computational
capabilities. This models the human decision restricted by a

finite amount of resource for reasoning [17]. Fig. 6 shows the
average performance with the standard error over 20 training
data for various values of ε and h. We can make the following
observations from the results on sub-optimal behavior data.

1) Top Left: The EVD of BIRL under ε-optimized policy
shows a U-shaped curve, which is a naturally expected
result since BIRL achieves minimum EVD when ε is
set to the equivalent value of the default setting η = 1.

2) Top Right: On the other hand, the trend in the miss
prediction rate is less evident. The reason for the appar-
ent inconsistency once again comes from the crude
performance measurement made by miss prediction rate.

3) Top Left: All the algorithms achieved lower EVDs com-
pared to the policy π̃ε (Expert) when ε is large. This
result shows that all the algorithms have the basic capa-
bility of handling sub-optimal behavior data for inferring
the true optimal policy.

4) Top Left: BIRL is outperformed by MaxEnt IRL for
small ε, but it performs better for large ε. This is due
to the fact that the default value for η used in BIRL is
not suited for small ε, but the softmax distribution used
in BIRL is a more robust model for the data generated
from ε-optimized policies with large ε.

5) Top Left: HBIRL performed the best among the three
algorithms for all ε. This result shows that HBIRL suc-
cessfully adapted the confidence parameter η to reflect
the sub-optimality in the behavior data.

6) Top Right: Once again, the miss prediction rate yields
less reliable results compared to the EVD.

7) Bottom Left: When the h-step look-ahead policy π̃h

is used to generate the behavior data, all the algo-
rithms tend to produce better results as the horizon h is
increased since the policy becomes closer to the optimal
policy.
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Fig. 6. Results with sub-optimal experts using ε-optimized policies (top row) and h-step look-ahead policies (bottom row) in the gridworld problems.

8) Bottom Right: we observe a similar trend in the miss
prediction rate, although less stable than in the EVD
case.

9) Bottom Left: The policies found by the algorithms are
no better than π̃h (Expert), in contrast to the results with
π̃ε . This is because π̃h, which always executes optimal
actions up to horizon h and then behaves randomly, can-
not be properly represented by the IRL algorithms which
assume a constant level of sub-optimality for an infinite
horizon.

10) Bottom Left: HBIRL performs significantly better than
BIRL, and achieves almost the same level of perfor-
mance as that of MaxEnt IRL, which is one of the best
performing algorithms in the IRL literature.

In summary, HBIRL significantly outperformed BIRL, and
performed on par with MaxEnt IRL, which employs max-
imum entropy principle to deal with action uncertainty.
Furthermore, HBIRL outperformed MaxEnt IRL when the
behavior data was gathered from ε-optimized policy, in which
case the action probability model (i.e., softmax distribu-
tion) provides a suitable approximation of the sub-optimal
behavior.

As a final note, it may be seen that we should always prefer
the EVD to the miss prediction rate, since the former measures
the performance in a finer detail. Although this is true, we
shall remind that the EVD uses the MDP model to compute
the value function. When we construct the MDP model from
data (as done in the next section), the inevitable modeling
bias can render EVD misleading. Hence, the miss prediction
rate can be preferable to the EVD when we want to measure
the performance purely based on the data. However, as shown
in the sub-figures on the right in Fig. 6, it is not evident that
HBIRL performs significantly better than BIRL or MaxEntIRL
due to the increase in standard error.

B. Taxi Driver Behavior Prediction

In this section, we infer taxi drivers’ route preference
using the GPS trace data collected in the San Francisco
area [30]. We retrieved the road network information from
the OPENSTREETMAP,6 and represented it as a graph con-
sisting of 13723 intersections and 20518 road segments. As in
Ziebart et al. [4], we assumed that taxi drivers try to reach
a destination in a trip by taking a sequence of road seg-
ments according to their preferences. Among the traces of
500 taxis in the original data, we selected 1861 trips from
20 taxis, depicted in Fig. 7. The total distance of the trips was
4335 miles. We then segmented the GPS traces and mapped
them to the road segments using a hidden Markov model [31].

We used the goal-oriented MDP Mg [32] to model the
problem, where the objective of the decision maker is to
reach the goal state g while minimizing the expected total
cost (or equivalently, maximizing the expected total reward
which is negative of the cost). The rewards are assumed to
be negative everywhere except at the goal state, which is an
absorbing state with a zero reward. The states in Mg are road
segments (20518 states) and the state transitions correspond
to taking one of the road segments at intersections. For each
trip, the road segment corresponding to the destination was
designated as the goal state g (1861 goal states).

We prepared two kinds of features. The state-dependent
features represent the properties of the road segments, such
as the type, the speed limit, the number of lanes, one-way,
tunnel, and bridge, by the length of road segments.7 The
action-dependent features represent the angle of the turn by

6http://www.openstreetmap.org
7Type ∈ {highway, primary street, secondary street, living street}, speed

limit ∈ {below 20 mph, 20-30 mph, 30-40 mph, above 40 mph}, # lanes
∈ {1, 2, 3+}. These features were obtained using the OPENSTREETMAP.
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Fig. 7. Road network (gray lines) and chosen GPS traces (black dots) in
San Francisco.

TABLE V
DRIVER BEHAVIOR PREDICTION RESULTS

binary indicator functions.8 Given the destination g, the reward
function was calculated as rg = Fg · w where Fg denotes an
|S||A| × D feature matrix and w denotes a D-dimensional
reward weight vector. Fg is defined as the set of predefined
features {φ1, . . . , φD} conditioned on the destination g as

Fg(〈g, a〉, d) = 0

Fg(〈s, a〉, d) = φd(s, a), for ∀s ∈ S\{g}.
The reward weight vector is constrained to be negative

(wd < 0) to be consistent with the definition of goal-oriented
MDPs. This leads to a slight modification to the likelihood so
that

P(�|r, η) =
∏
m

P(ξm|rgm , η;Mgm)

where gm is the destination in the trajectory ξm. Note that,
although we have different MDPs Mgm for each trajectory
due to different destination, they are assumed to share the
same reward weight vector w.

We evaluated the prediction accuracies in terms of the turn
and the route predictions. The turn prediction accuracy mea-
sures the ratio of the correct actions taken at the intersections
in the route. The route prediction accuracy measures the ratio
of the total distance of the correct road segments in the route.

We compared the BIRL and HBIRL to four other meth-
ods including MaxEntIRL. We used a random policy as for
the first baseline and the shortest path to the destination as
for the second baseline. The third baseline method was the
optimal policy from an MDP with heuristically chosen reward
rH . A simple heuristic would be counting the feature visi-
tations in the training data, and set the reward accordingly.

8Turn angle ∈ {hard left, soft left, straight, soft right, hard right, u-turn}.

Since we restrict the reward to be negative, we used the nor-
malized counts of feature visitations offset by the maximum
count value.

We evaluated the algorithms via fourfold cross validation.
Table V shows the average prediction accuracies and their
standard errors. Since we modeled the problem as the deter-
ministic MDP and used a small number of features, the MDP
optimal policy from the heuristically chosen reward rH recov-
ered the drivers’ preference fairly well, even performing better
than MaxEntIRL. In contrast, BIRL and HBIRL outperformed
other methods, HBIRL achieving the best performance.

VI. CONCLUSION

In this paper, we presented HBIRL, a hierarchical Beysian
model of IRL. HBIRL extends BIRL by imposing a prior on
the parameter of policies to infer the expert’s sub-optimality,
and a hyper-prior on the reward function to mitigate the
difficulty of specifying an appropriate prior for the reward
function. We also provided a gradient method to find the MAP
estimate of the reward function of the hierarchical model,
based on the derivation of analytical formulas for computing
the gradients.

Through experiments on synthetic datasets, we showed the
effectiveness of the MAP estimation over the posterior mean
estimation, and demonstrated the robustness of HBIRL to the
expert’s sub-optimal behavior. Additionally, we demonstrated
that this approach can be used for real-world data, predicting
taxi drivers’ route selection using a real GPS trace dataset, and
showed that the proposed methods achieve higher accuracies
than previous methods.

There are a number of promising directions for future work
on extending our approach. First, we presented the analytical
formulas of gradients for a specific choice of reward func-
tion prior and likelihood in BIRL. Extending our derivation
results to other priors and likelihoods with an appropriate
choice of hyper-priors will strengthen the applicability of
HBIRL. Second, although we only covered reward function
learning, extending HBIRL to policy learning can provide a
new set of tools for apprenticeship learning. Third, it would
be interesting to extend the approach to hierarchical repre-
sentation of policies motivated by hierarchical reinforcement
learning [33]–[35].

APPENDIX

A. Proof of Corollary 1

Proof: Policy π is optimal

⇔ qπ(r),a ≤ vπ (r)

⇔ ra + γTavπ (r) ≤ rπ + γTπvπ (r)

⇔ ra + γTa(I − γTπ )−1rπ

≤ rπ + γTπ (I − γTπ )−1rπ

⇔ ra − (I − γTa)(I − γTπ )−1rπ

≤ rπ − (I − γTπ )(I − γTπ )−1rπ

⇔ ra − (I − γTa)(I − γTπ )−1Eπ r ≤ 0. (17)

The third equivalence comes from vπ (r) = (I − γTπ )−1rπ .
The fifth equivalence holds because rπ − (I − γTπ )
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(I − γTπ )−1rπ = 0 and rπ = Eπ r. Stacking (17) for all
a ∈ A, we obtain (3).

B. Proof of Theorem 1

We prove Theorem 1 by the following lemmas.
Lemma 1: The reward function sought by Ng and Russell’s

IRL algorithm from sampled trajectories [9] is equivalent to
the MAP estimate with the uniform prior and the likelihood
using fV(�; r) = V̂E(r)− V∗(r).

Proof: This IRL algorithm seeks the reward function defined
by

rN&R = argmax
r

[
V̂E(r)− V∗(r)

]
.

The MAP estimate with the uniform prior and the likelihood
using fV is computed as

rMAP = argmax
r

P(r|�) = argmax
r

log P(r|�)
= argmax

r

[
log P(�|r)+ log P(r)

]
= argmax

r
fV(�; r)

= argmax
r

[
V̂E(r)− V∗(r)

]
.

The MAP estimate is thus equivalent to rN&R.
Lemma 2: The reward function sought by the MMP algo-

rithm [10] without the loss function is equivalent to the MAP
estimate with a Gaussian prior and the likelihood using (fV)q

where q ∈ {1, 2}.
Proof: Without the loss function, the MMP algorithm seeks

the reward function defined by

rMMP = argmin
r

[(
V∗(r)− V̂E(r)

)q + λ

2
||r||22

]

where q ∈ {1, 2} denotes L1 or L2 slack penalties. The MAP
estimate with a Gaussian prior N (0, σ 2) and the likelihood
using (fV)q is computed as

rMAP = argmax
r

P(r|�) = argmax
r

[
log P(�|r)+ log P(r)

]

= argmax
r

[
ζ (fV(�; r))q − 1

2σ 2

∑
s,a

r(s, a)2
]

= argmax
r

[
(fV(�; r))q − 1

2ζσ 2
||r||22

]

= argmin
r

[(
V∗(r)− V̂E(r)

)q + 1

2ζσ 2
||r||22

]
.

If we set λ = 1/(ζσ 2), the MAP estimate is equivalent to
RMMP.

Lemma 3: When the reward function is linearly parameter-
ized using the reward weight vector r such that

∑
d rd = 1

and rd ≥ 0, the policy sought by the MWAL algorithm [18] is
equivalent to an optimal policy on the reward function which
is the MAP estimate with the uniform prior and the likelihood
using fG(�; r) = mind [Vπ(r)(φd)− V̂E(φd)] where π(r) is an
optimal policy induced by r.

Proof: The MWAL algorithm seeks the policy πMWAL
defined by

πMWAL = argmax
π

min
d

[
Vπ (φd)− V̂E(φd)

]
with an implicitly computed reward function rMWAL that
induces πMWAL as an optimal policy. Hence, we can rewrite
πMWAL = π(rMWAL) where

rMWAL = argmax
r

min
d

[
Vπ(r)(φd)− V̂E(φd)

]
.

The MAP estimate of the reward function with the uniform
prior and the likelihood using fG is computed as

rMAP = argmax
r

P(r|�)
= argmax

r
fG(�; r)

= argmax
r

min
d

[
Vπ(r)(φd)− V̂E(φd)

]
.

Hence, the optimal policy induced by rMAP is equivalent to
πMWAL since rMAP = rMWAL.

Lemma 4: The policy sought by the policy matching algo-
rithm [11] is equivalent to an optimal policy on the reward
function which is the MAP estimate with the uniform prior and
the likelihood using fJ(�; r) = −∑

s,a x̂E(s, a)(J(s, a; r) −
π̂E(s, a))2, where x̂E(s, a) is the empirical estimate of state-
action visitation counts of expert’s policy πE and J(s, a; r) is
a smooth mapping from reward function r to a greedy policy,
such as the soft-max function.

Proof: The policy matching algorithm seeks the policy
πPM = J(rPM) such that

rPM = argmin
r

∑
s,a

x̂E(s, a)(J(s, a; r)− π̂E(s, a))2.

The MAP estimate of the reward function with the uniform
prior and the likelihood using fJ is computed as

rMAP = argmax
r

P(r|�)
= argmax

r
fJ(�; r)

= argmin
r

∑
s,a

x̂E(s, a)(J(s, a; r)− π̂E(s, a))2.

Hence, rMAP = rPM and the optimal policy induced by rMAP
is equivalent to πPM.

Lemma 5: The reward function sought by the MaxEnt algo-
rithm [12] is equivalent to the MAP estimate with the uniform
prior and the likelihood using fE(�; r) = logPMaxEnt(�|r)
where PMaxEnt is the distribution for the behavior data
(trajectory or path) satisfying the principle of maximum
entropy.

Proof: The MaxEnt algorithm seeks the reward function
defined by

rMaxEnt = argmax
r

logPMaxEnt(�|r)
= argmax

r

∑
ξ∈�

logPMaxEnt(ξ |r)

where PMaxEnt(ξ |r) = 1
Z(r) exp(rᵀμ(ξ)), μ(ξ) is the empiri-

cal estimate of the feature expectation from trajectory ξ , and
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Z(r) is a normalization constant. The MAP estimate with the
uniform prior and the likelihood using fE is computed as

rMAP = argmax
r

P(r|�)
= argmax

r
fE(�; r)

= argmax
r

logPMaxEnt(�|r).
The MAP estimate is thus equivalent to rMaxEnt.

C. Proof of Theorem 2

Proof: Let C(π) be the reward optimality region with
respect to π

v∗(r) = vπ (r) = (I − γTπ )−1Eπ r

for any r ∈ C(π), so v∗(r) is linear with respect to r. For each
and every r1, r2, and 0 ≤ μ ≤ 1

v∗(μr1 + (1 − μ)r2) = Hπ (μr1 + (1 − μ)r2)

= μHπ r1 + (1 − μ)Hπ r2

= μvπ (r1)+ (1 − μ)vπ (r2)

≤ μv∗(r1)+ (1 − μ)v∗(r2)

where Hπ = (I − γTπ )−1Eπ and π is an optimal policy for
μr1 + (1 − μ)r2. Thus, v∗(r) is convex. In the same manner,
we can also show that q∗(r) is convex using the definition
qπ (r) = r + γTEπqπ (r).

D. Proof of Theorem 3

Proof: Let C(π) be the reward optimality region with
respect to π . Since v∗(r) = vπ (r) = (I − γTπ )−1Eπ r is lin-
ear for any r ∈ C(π), v∗(r) is differentiable and ∇rv∗(r) =
(I − γTπ )−1Eπ when r is strictly inside the region. On the
boundary, ∇rvπ (r) is a sub-gradient of v∗(r) since the function
is convex from Theorem 2 and thus

∇rvπ (r)(r − r′) ≤ v∗(r)− v∗(r′)

for any r′. In the same manner, we can also show that q∗(r)
is differentiable with ∇rq∗(r) = (I − γTEπ )−1 strictly inside
reward optimality regions and ∇rqπ (r) is a sub-gradient on
the boundaries.
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