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Abstract

Multi-View Representation Learning (MVRL) aims to discover a shared representa-
tion of observations from different views with the complex underlying correlation.
In this paper, we propose a variational approach which casts MVRL as maximizing
the amount of total correlation reduced by the representation, aiming to learn a
shared latent representation that is informative yet succinct to capture the correla-
tion among multiple views. To this end, we introduce a tractable surrogate objective
function under the proposed framework, which allows our method to fuse and cali-
brate the observations in the representation space. From the information theoretic
perspective, we show that our framework subsumes existing multi-view generative
models. Lastly, we show that our approach straightforwardly extends to the Partial
MVRL (PMVRL) setting, where the observations are missing without any regu-
lar pattern. We demonstrate the effectiveness of our approach in the multi-view
translation and classification tasks, outperforming strong baseline methods.

1 Introduction

Multi-View Representation Learning (MVRL) aims to learn a shared representation of multiple
observations from different types of views. In MVRL, it is important to encourage the shared
representation to be complete enough to capture the correlation across views without losing view-
specific information so that the learned representation can be readily applied to rich set of downstream
tasks. For example, in sensor fusion for the multi-sensor system [51]] and in clinical diagnosis
based on patients’ various types of medical records [47, 49], one would like to aggregate all the
information from various observations in order to uncover the true underlying factors under the
correlation. Although using views as many as possible seems to be always beneficial for the task of
learning a good representation, it can make the problem itself harder depending on the complexity of
correlations across all views and the scalability of handling a number of views.

MVRL becomes even more challenging when the model does not always have access to complete
observations from all views for every data instance during training, which we call Partial Multi-View
Representation Learning (PMVRL). PMVRL is closer to the practical setting since it is unrealistic
to expect that observations from all different kinds of views are always available. For example, it
is unlikely for all the sensors in a sensor-based system to have the same frequency to update their
measurements or for all kinds of medical records to be available for any patient.

Considering those difficulties, any desirable MVRL methods are encouraged to satisfy three desiderata.
The first one is scalability to the number of input views. The method should handle multiple
observations in a way computationally scalable to arbitrary many views in both training and testing
time. In addition, the method needs to be robust to partial observability. The method should be
able to combine any combination of available observations in the representation space in test time.
This is important for PMVRL because we have to handle observations arbitrarily missing not only
in testing data but also in training data. Lastly, the method should discover cross-view association,
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which can be learned by identifying both shared and view-specific factors of variation of each view in
the representation space. Associating views correctly in the representation space allows the method
to utilize any additional observations from different views to improve identification of the shared
factors without determining any unobserved ones.

Combining multiple of Variational Auto-Encoder (VAE) [22] for each Viewﬂ several generative
models [30} 33134, 46| have been recently proposed to address MVRL. Since naive optimization of
the evidence lower bound (ELBO) on the joint likelihood of multiple views does not address any of the
desiderata, those methods impose different structural bias on the joint representation encoders whose
strengths and weaknesses are complementary (see Section [2.4). Although they showed encouraging
performance on multiple tasks such as predicting common attributes and inferring missing views,
they often fail to simultaneously capture both the shared and view-specific factors of variation and
turn out to poorly associate views in our experiments.

In this paper, we address the problem of MVRL with a principled approach grounded in information
theory. Specifically, we formulate the representation learning task as maximizing the reduction in
Total Correlation [[12} 138 [39]]. Based on our formulation, we derive a novel objective function that
not only offers tractable optimization but also introduces multiple types of variational information
bottlenecks which successfully associate views. We then show that our method naturally extends
to the PMVRL setting via inverse variance weighting, a classical approach used in sensor fusion.
We demonstrate the validity and effectiveness of our method in the multi-view translation and
classification downstream tasks. Our contributions are three-fold:

1. Measuring the informativeness of the multi-view representation by Total Correlation, we
propose a general information-theoretic framework to learn a complete representation, which
encompasses existing multi-view generative models.

2. Under the proposed framework, we identify drawbacks of optimizing ELBO and derive a
novel objective function that resolves them. Specifically, our method yields a representation
that correctly associates views by capturing not only the common factors of variation but
also the view-specific ones.

3. We conducted extensive evaluation with comparing methods and ours in translation and
classification tasks in both MVRL and PMVRL settings, showing that our method is the
most reliable method to obtain the latent representation agnostic to the downstream tasks.

2 Approach

Let 0 = {ov};/:1 be the observation of a data instance composed of V' different views, which
is sampled from an unknown joint distribution pp (0), where we emphasize that this is a data
distribution using the subscript D. Given these observations, MVRL is the task of learning a complete
representation z across the views 0. Following [S0], we define a complete representation as follows.

Definition 1 (Completeness for Multi-View Representation [50]) A multi-view representation z
is complete if each observation, i.e., 0, from 0, can be reconstructed from a mapping f,(-), ie.,

Oy = fv(z)

The definition directly indicates that a complete representation describes all factors of variations in
0, since every view can be reconstructed solely from the complete representation. While MVRL
considers complete observations for training data, PMVRL assumes otherwise, i.e. some views being
missing in the training data. This poses a unique challenge of (1) learning to produce the complete
representation with partial views (2) whose availability varies per instance in training and testing.

We first relate informativeness of the representation measured in terms of Total Correlation (TC)
and the goal of MVRL (Section [2.T)). We then show that the TC-based MVRL objective function
encompasses existing multimodal generative models and analyze its limits based on a straightforward
variational lower bound (Section [2.2). To resolve those limits, we derive an alternative variational
lower bound which suits better for MVRL (Section [2.3). Lastly, we finalize our formulation by
proposing the representation aggregation model that naturally extends to PMVRL (Section [2.4).

"We follow the conventional terminology in the related literature [11, |14} 24,411 44,147, 148.150.153], but any
choice among views, modalities [30} 13334} /46], and domains [19] can be suitable for our paper and our baseline
methods, as long as there is a common latent representation that explains different views / modalities / domains.



2.1 Multi-View Representation Learning with Total Correlation

A complete representation Z should be informative enough to explain the correlation among V'
different views. Total correlation (TC) [42]], defined as the Kullback-Leibler divergence of the joint
distribution from the factored marginals, measures the amount of information shared among a finite
set of random variables. In our MVRL context, TC is defined as
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We aim to find the encoder py (2|0) such that the knowledge of z would reduce TC as much as
possible. This can be formulated by maximizing the objective

TCy(0; Z) £ TC(0) = TCy(0 | Z), 2)
where the conditional TC in the last term is given by
v
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which is the expected Kullback-Leibler divergence of the joint conditional from the factored condi-
tionals The parameterized distributions in the above formula involve the encoder po (2|0) as follows:

= [po (2 (0) do, pg (0]z) = pe (210) pp (6)/pe (2), and py (04|2) = [ pe (0]2) dB\,.

Intultlvely, minimization of Eq. (3) (i.e., maximization of Eq. () suits well for MVRL, since (1)
any complete representation Z would minimize Eq. (3) (e.g., Z = 9), and (2) it accords with the
theoretical result that complete representation z should factorize the generative distribution [44] 50].

Further decomposition of (2) reveals that it encourages Z to encode the correlation across views [12],
a desirable property for MVRL:

TCy(0; Z) ZL‘) Oy; Z) — I4(0; Z). (4)

The first term in Eq. (@), Mutual Information (MI) between each observation and the representation,
enforces the representation to be informative for every observation. On the other hand, the second
term takes the role of Information Bottleneck (IB), which encourages the encoder to learn minimal
sufficient representation [37]]. Consequently, simultaneous optimization of both terms naturally
allows the representation Z to capture correlations among views while being minimally sufficient.
Note that when V=2, Eq. {@) coincides with Interaction Information [4} [T9] 25| [36]], which quantifies
the amount of information shared among two views and their joint representation (see Section[A.4).

2.2 Limitations of VAE models for multi-view data

Unfortunately, a direct optimization of Mls in Eq. (@) is intractable [2| [12]. A straightforward
approach would be employing approximate distributions g (0, |2) =~ pg (0,]2) and 7 (2) = pg (2),
and optimize a variational lower bound of Eq. ) as follows (see Section[A.T]in the supplementary
material for full derivation):

TCy(0; 2) Z 0) +Epyzlopn(e) (145 (00]2)]] = Epp ) [Drcr [po(210)[7(2)]], (5)

VIB

where the entropy terms can be dropped from optimization since they are determined by the true
data distribution pp (6). Without the entropy terms, we note that Eq. (B) is essentially identical
to evidence lower bound (ELBO) of the variational auto-encoder (VAE) models for multi-view
data [30, 133} 34} 146] by switching the notations, for p for encoder and ¢ for decoder. This notation
switch follows the convention in [2,[12].

Although this lower bound contains the variational information bottleneck term that encourages the
representation to be minimally sufficient for generalizing well even with small training data [2]], it
has the following fundamental limitations:



1. Unbalanced representation: If a subset of views is overwhelmingly informative enough to
reconstruct the others, the encoder py (z|0) may learn to rely on those views while ignoring
the rest, yielding a degenerate solution of Eq. (@) that fails cross-view association. This is
problematic in MVRL since such views may not be available at test time.

2. Missing views: The encoder py (z|0) requires complete observations o not only in training
but also in testing phases, while MVRL requires the model to encode incomplete observa-
tions 60 C 0'in test time. Furthermore, PMVRL requires to handle incomplete observations
even in training.

In order to overcome these challenges, prior methods impose special structures (i.e. inductive
hypotheses) for py (z|0), such as Product of Experts (PoE) [17,46], Mixture of Experts (MoE) [30]],
or Mixture of Product of Experts (MoPoE) [34]. In our work, we present a more principled approach
to this problem by deriving an alternative lower bound, described in the next section.

2.3 Conditional Variational Information Bottleneck

To resolve the first issue raised in the previous section, we start from Eq. () and reformulating it as
follows:

Vv - 1 1. /4
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where the last equality is due to the chain rule of MI (see Section[A.5]in the supplementary material
for details). Interestingly, Eq. (6) transforms IB in Eq. (@) into multiple conditional MIs between
the latent representation and V' — 1 other views given every view, each of which penalizes the extra
information of the representation not inferable from the given view. Although Eq. (6) is essentially
equal to Eq. @), its conditional information constraints give us intuition to derive a new tractable

lower bound on T'Cy (6 ; Z) that regularizes unbalanced representation which we present below.

Since the conditional MIs in Eq. () involve py(z|o,) = [ pe(2|0)pp (|0, )da\, which requires to
compute intractable integration, we use the variational upper bound of those terms by introducing
approximate distributions 1 (z]0,) ~ pg (2[o,) as follows (see Section in the supplementary
material for the full derivation and analysis):

V-1
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Conditional VIB

This lower bound is equipped with conditional VIBs which provide a number of benefits over Eq. (3]
in handling challenges mentioned in the previous section. First, conditional VIBs, which upper
bounds condtional Mls in Eq. (6) by introducing the view-specific encoder Ty (z]oy) for each view,
regularize py (2|0) to encode representation inferable from ry, (z|o,) of every view. Consequently,
the joint representation is enforced to be balanced rather than to be prone to uneven dependency on
some subset of views. Second, each of them uses forward KL divergence D 1.[po (2(0) [|73), (2]0,)]
to calibrate each encoder 7, (2|0, ) to the joint encoder py (2|0), encouraging 7y, (z[o,) to cover all
the supports or modes of pg (z]0). As a consequence, one can extract the representation z even when
some views are missing in the observation. This property is critically important in (P)MVRL, where
one needs to infer the complete representation from the partially available views without being overly
confident on any unobserved factors. We remark that mmJSD [33]] adopts reverse KL divergence,
which is not ideal as we later demonstrate in the experiments.

Finally, although Eq. (7) has aforementioned desirable properties for MVRL, it is prone to overfitting
when the size of training data is limited. This is because r;, can optimize the conditional VIB by



simply memorizing instead of learning to infer the representation of py (z|0). In order to prevent
overfitting, we found that VIB in Eq. (3)) is an effective regularization as it favors the minimal
sufficient encoding of the representation, which will be demonstrated in Section 2.1} Therefore, we
formulate our objective function as a convex combination of Eq. (3) and Eq. (7) so that we regularize
the training via VIB (see Section[A.3]in the supplementary file for full derivation):
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Conditional VIB VIB
where « is the hyperparmeter that trades off learning minimal sufficient representation in favor of
calibrating 7. For simplicity, we model the encoder, decoder, and approximate marginal distributions
using the parameterized Gaussians with the diagonal covariance matrix, i.e. 7y, (zloy) = N ( oy 021 ),
qg (ov|2) = N (j1y, I), and r (z) = N(0,1I), respectively.

While the view-specific encoders r;, allow us to extract the representation from any available view
individually, combining any subset of these representations (fusion) still remains as a problem. In
addition, the use of joint-view encoder p(z|5) makes our method limited to complete observations o
during training, which needs to be addressed for PMVRL. In the next section, we show that these
issues can be effectively resolved by a simple model design for py (2]0).

2.4 Models for Joint Representation Encoder

We review the models adopted by prior methods that make the joint representation encoder py (z|0)
amenable to missing views and discuss their strengths and weaknesses.

PoE Product-of-Experts (PoE) [[17] combines multiple probability distributions by their product.
MVAE [46] models the joint representation encoder as a PoE, treating view-specific encoders as
experts. The PoE can produce a sharper distribution as we increase the number of input views, thus an
effective method for aggregating information across any subset of view-specific encoders. Assuming
each of view-specific encoders as Gaussian distributions such that ry, (z|o,) = N (10, 02I), the PoE
joint encoder is obtained with computation linearly scales to the number of views by

Vv 2
v 1
o Zuttl% g e L
2p=r 1} 2 v=1 1/03
Eq. () is also the formula of Inverse-Variance Weighted (IVW) method [6] [7], a classical method in
statistics for aggregating multiple random variables, such as sensor fusion.

po (20) & N (up,of)l) ,  where p,

Unfortunately, a naive application of the PoE to the ELBO formulation (Eq.(5)) may fail to optimize
the individual encoders, which is important in learning the balanced representation. MVAE [46], as
an example, randomly samples subsets of views among 2" combinations and jointly optimizes their
ELBOs in order to ensure that all the view-specific encoders are optimized under PoE. However, such
treatment may result in a precision miscalibration of view-specific encoders [30].

MoE The Mixture-of-Expert (MoE) takes an arithmetic mean of probability distributions, which is
computationally scalable to the number of views as well. MMVAE [30] and mmJSD [33]] adopt MoE
of r, (z|oy) as the model for the joint representation encoder. In MMVAE, the MoE is trained by
pair-wise optimization in such a way that the latent representation from a view-specific encoder can
reconstruct the observation in other views as well as its own view. However, this does not necessarily
imply that the latent representation successfully aggregates the information across views. mmJSD
addresses this issue by adopting a common learnable prior across views.

We remark that, in Eq. (8), modeling py (2|0) as MoE of ) (2|0, ) and setting & = 0 yields the ELBO
objective version of MMVAE. Assuming the same model for py (2|5) and o = 0, and modeling 7(z)
as the PoE of ) (z|oy) yields the objective function of mmJSD. For tractable optimization of the KL
term involving MoE, mmJSD derives a lower bound on the ELBO by decomposing it into multiple
KL terms. This bound can be also obtained from Eq. (8) by setting o = 1 and using the reverse KL
for the conditional VIB terms. However, we empirically show that minimization of the reverse KL is
not helpful with learning complete representation in Section 4]
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Figure 1: The architecture of Multi-View Total Correlation Auto-Encoder.
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MoPoE The Mixture-of-Product-of-Experts (MoPoE) is a mixture of 2V combination of PoE
experts, which is used as the model for joint encoder in MoPoE-VAE [34]. Since the MoPoE
joint encoder takes into account all possible combinations of views, it naturally learns to aggregate
information across any given views while optimizing every view-specific encoder. Similar to mmJSD,
MoPoE-VAE derives a lower bound on the objective to decompose the KL term into 2 KL terms
with analytic solutions. However, this would render the method intractable for tasks with many views.

Multi-View Total Correlation Auto-Encoder Since our model uses conditional VIBs that explic-
itly calibrate all the representations encoded by view-specific encoders, we can safely choose PoE as
the model for the joint representation encoder without suffering from the precision miscalibration.
We call our resulting model the Multi-View Total Correlation Auto-Encoder (MVTCAE), depicted
in Figure|l] Thanks to PoE joint representation encoder, MVTCAE linearly scales to the number
of input views. Furthermore, when training with partial observations, MVTCAE simply treats the
covariance matrix of g (0,|2) to be ool for any missing observation o, ¢ 6, so that it does not
contribute to the reconstruction loss for missing views, similar to [SO]. As a result, MVTCAE can be
naturally extended to PMVRL. We show that MVTCAE successfully associates views in Section 4]

3 Related Work

Information-Theoretic Representation Learning Information Bottleneck (IB) [37] was intro-
duced as a regularization method to obtain minimal sufficient encoding by constraining the amount of
information captured by the latent variable from the observed variable. Deep Variational IB (VIB) [2]]
extended IB by parameterizing it with a neural network, which results in a simple yet effective method
to achieve a representation that generalizes well. Furthermore, using VIB in unsupervised learning
has been revealed to have close relationships among VIB, VAE [22] and 8-VAE [16]. A number of
follow-up works [27, 31] propose encouraging the encoders to learn representation invariant to any
attribute given in advance. Similarly, a modified version of VIB was introduced [[L1]] for learning a
view-invariant representation across two views. While IB and VIB are concerned with computing
MI, two similar but distinct generalizations of MI have been applied to learning disentangled rep-
resentation, which are TC [42] and Interaction Information (II) [4, 25, 136]. The TC quantifies the
dependency among all dimensions of the single latent variable, which motivated many works that
learn disentangled representation in a single view [} 10,12} 20} 21]. II was used for disentangling
shared representation from view-specific representation in cross-views [[19].

Multi-View Representation Learning Canonical Correlation Analysis (CCA) [18] and its vari-
ants [[1, 13} 41] are classical approaches for unsupervised cross-view representation learning. CCA
projects two different views into one common latent space in a way that those two views are max-
imally correlated in the latent space. KCCA [1]] uses kernels and DCCA [3]] uses neural networks
to learn the common representation. Similarly, DCCAE [41] trains autoencoders to obtain common
representations. More recently, a number of notable MVRL methods have been proposed to support
more than 2 views. DMF-MVC [53] extracts a common representation of multiple views through
deep matrix factorization. MDcR [48] maps each view to a lower-dimensional space and applies the
kernel matching to regularize the dependence across multiple views. ITML [9] learns a Mahalanobis
distance function by Bregman optimization, whereas LMNN [43]] learns a Mahalanobis distance
metric to optimize the k-nearest neighbors classifier using labeled data. CPM-Nets [50] gives a formal
definition of complete representation in PMVRL and proposes to learn it without encoders.
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Figure 2: Performance evaluation on the Poly MNIST dataset.
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Multi-View Generative Models (VAEs) MVAE [46] and its variants [30, |33} 34]] are multi-view
generative models that learn shared representation by maximizing the log-likelihood of joint views
via latent variables. We compared these methods to ours in Section [2.2]and

4 Experiments

4.1 Multi-View Representation Learning

To verify that our method successfully learns complete representation capturing both common factors
and view-specific factors, we evaluate our method on the following two datasets used as evaluation
benchmarks in the MVRL literature.

4.1.1 Multi-View Classification / Translation on PolyMNIST

We employ PolyMNIST dataset [34]] composed of tuples with 5 different MNIST images, which
have different backgrounds and writing style but share the same digit label. The background of each
view is randomly cropped from one image which is not used by other views. Thus, the digit identity
is the common factor of variation while the background and writing style are view-specific factors.
There are 60K tuples of training samples and 10K of test samples. Although the digit ID should be
observable in any view, it is hard to identify in some images depending on the background and the
writing style. Therefore, aggregating information across views is essential for predicting the label.

Evaluation protocol To evaluate the learned representation, we follow the protocol in [34]. Specif-
ically, after training all the models in an unsupervised manner using complete observations, we
evaluate the learned representation with three different metrics, which are linear classification accu-
racy and conditional coherence accuracy. We also evaluate the quality of conditional generation with
FID score [15]. We compare our method with various state-of-the-art multi-view generative models
which are MVAE [46], MMVAE [30], mmJSD [33]], and MoPoE-VAE [34].

To apply our method to classification, we fix the encoders and train a linear classifier to predict labels
using the joint representation extracted from py(z|0) feeding complete observations in training set.
We then classify the representations of all subsets and compute the average classification accuracy
over all subsets with the same subset size.

To measure the conditional coherence accuracy, we extract the representation of every subset of views
using py and generate views that are absent in the subset using g,. Those generated views are fed
into the pretrained CNN-based classifier and see if the prediction from the classifier matches the label
of the given subset. The results are averaged over all subsets with the same size.

Finally, we evaluate the sample quality of the first view images generated from different combination
of input views ({2}, {2,3}, {2,3,4}, {2,3,4,5}) in terms of FID score. Since FID compares statistics
of two sets (one is the set of samples generated by the models and the other is the first view images in
the training set in our context), it takes into account not only the quality of generated samples but
also the diversity of them. Thus, unlike two previous evaluation metrics, marking a lower (better)
FID score requires the model to learn the representation that captures not only the common factors of
variation but also view-specific factors to express diversity within the view.

Results The left plot in Figure[2] shows the result of linear classification. Using the PoE as a joint
representation encoder same as MVAE, our method clearly outperforms all the baseline methods in
the classification task, reaching 94% and 99% accuracy even when only one view and two views are
given respectively. Comparing to MVAE, this result implies that conditional VIBs in our method
calibrate every view-specific encoders according to the information shared across views so that each
of them successfully captures the digit identity, resolving the issue of unbalanced representation.
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Flgure 3: Condmonally generated images of the view
images from the views 2 and 3 (bottom row).

On the other hand, while all the methods show monotonic improvement on its performance as the
number of given views increases, the accuracy of MMVAE does not show any noticeable change. It
is remarkable that our method even outperforms mmJSD and MoPoE-VAE with simpler aggregation
model for the joint encoder, although the two prior methods use both PoE and MoE.

The middle plot in Figure 2] summarizes the result of conditional coherence. Our method outperforms
all the baseline methods except when only one view is given. MMVAE and mmJSD fail to leverage
additional input views, showing the performance staying flat or even degrading, due to the incapability
of aggregating information inherent in MoE as we discussed in Section [2.4] In contrast, our method
monotonically improves the coherence accuracy with more input views, implying that the view-
specific encoders are well calibrated by conditional VIBs so that the joint representation aggregated
by PoE produces accurate encoding of the digit identity.

The right plot in Figure 2] shows the result of FID scores. Our method achieves the best performance
in any combination of input views, which indicates that our method generates more diverse samples
in better quality. Figure 3 presents qualitative results of conditional generation from baseline methods
and ours. In each row, images above the green line are input observations (views {2} and {2,3} for
top and bottom rows respectively) in the test set, whereas images below the line are generated images
in view 1. The result shows that our method is successful in cross-view association, especially being
much better than any comparing methods at (1) improving the identification of the shared factors
using any additional views and (2) expressing the view-specific factors in the target view. Providing
more views even improves the results of our method, which can be found in Section[B:2.1] Compared
to ours, MMVAE, mmJSD, and MoPoE hardly express view-specific diversity in the target view. We
hypothesize that their joint representation encoders such as MoE or MoPoE are not sharp enough
to discover all the view-specific factors of variation correctly. In contrast, although MVAE uses
PoE joint encoder, it poorly preserves the shared factors due to the miscalibration of view-specific
encoders. Considering that our method also uses PoE encoder, the performance gap between ours
and MVAE shows the effectiveness of conditional VIBs.

4.1.2 Multi-View Translation on Caltech-101

We also evaluate our method on the multi-view dataset used in where six visual features are
extracted from images in Caltech-101 dataset. In this dataset, each image is associated with six
features, which are of Gabor filter [29]], Wavelet Moments (WM) [26], CENTRIST [45]], Histogram of
Oriented Gradients (HOG) [8]], GIST [29], and Local Binary Pattern (LBP) [28]. We treat each feature
as a view, varying from 40 up to 1984 dimensions. We remark that each feature can be considered as
a lossy compression of the original image, where the extracted information from one view may not be
necessarily inferrable for other views, thus making it nontrivial to learn the correlation across views.

Evaluation protocol Given the partial observations o at test time, we extract the joint representation
z by Eq. (©), and reconstruct the missing view o, ¢ 0 using the output of the decoder g (0,|2)
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dedicated to view v. We then evaluate the L2 reconstruction error. We investigate the impact
of missing views on the completeness of the representation. We train our model with complete
observations, and apply the model to reconstruct the HOG featureE] missing in the test time using
partial observations 0 € 6\pog. The performance is averaged over the results of 10 independent runs.
We compare to the same baseline methods employed in Section

Results Figure fa] shows the impact of missing views at test time. We observe that our method
effectively decreases the reconstruction error as the input views accumulates in the observation,
only with slightly higher error in reconstruction with one view. Interestingly, we notice that the
reconstruction error reduces significantly at some point (i.e., when adding GIST feature to the
observation). It implies that some views contain more information than the others, and our method is
able to learn to utilize this property. On the other hand, MoPoE-VAE is less effective in utilizing GIST
or LBP features, while mmJSD and MMVAE hardly show monotonic performance improvement.
Remarkably, MVAE performs worst, although the joint encoder model is same as ours, i.e. POE. As
an ablation study, we explore the impact of weighting parameter «, which trades off between VIB
and conditional VIB (Eq. (8)) in Section[B.T.2]in the supplementary material.

4.2 Partial Multi-View Representation Learning

To verify that our method can be effectively generalized to the partial observation setting, we conduct
experiments on two tasks: multi-view franslation and classification. In both tasks, we aim to show
that the representation learned by our method is complete enough to infer the missing views given
the incomplete observations (translation task) and useful for downstream tasks (classification task).
To simulate the partial observations in both tasks, we follow the protocol of Zhang et al. [50] and
generate random view-missing patterns with missing rate = ZL/:1 U,/(Vx8)0<n<1,
where S is the number of entire samples and U, is the number of samples missing in the v-th view.

4.2.1 Partial Multi-View Translation on Caltech-101

In this experiment, we investigate if our model can infer complete representations from partial obser-
vations. To quantify the completeness of the representation, we employ the multi-view translation
task. The goal is to reconstruct a missing view using the representation extracted from other view(s).
In this case, the reconstruction error serves as a direct measurement of the completeness.

Evaluation protocol Following the same procedures of Section we repeat the same exper-
iments but using the model trained with incomplete observation (n = 0.5). This experiment can
demonstrate the robustness of our model to missing views in both inference and training time.

Results Figure [4b| summarizes the experimental results using the incomplete training data (n =
0.5). We observe that our method exhibits similar trends with complete observation training data,
exhibited by monotonic performance improvement in the number of available views, while other
methods get negatively affected by additional views when trained with incomplete data (MMVAE,
mmJSD, MoPoE-VAE). Interestingly, we observe that MVAE performs better when trained with
incomplete data. This is because the missing views in the training data serve as a regularization
similar to Dropout [32]] or sub-sampled training paradigm [46]. Although MVAE shows monotonic
improvement as ours, its performance is turned out to be not comparable to ours.

We also note that our method achieves the best performance with o = 0.8 when trained with
incomplete data, while the best is achieved at « = 0.9 when trained with complete data. We suspect

>We choose the HOG since it has the largest dimension thus the reconstruction is most nontrivial.
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Figure 5: The partial multi-view classification performance under various view missing rate.

that this is because optimizing conditional VIB with partial observation becomes more difficult than
with complete observation, and the model tends to solve it via memorization. In this case, the VIB can
be useful to improve the generalization. To summarize, our method achieves the best performance for
intermediate 0 < o < 1, which implies that simultaneous optimization of VIB and conditional VIBs
in Eq. () is effective to solve MVRL and PMVRL. Qualitative results can be found in Section [B.2.2]
in the supplementary material.

4.2.2 Partial Multi-View Classification on Six Datasets [S0]

The previous section suggests that our method is able to learn to calibrate representations across views,
even when the training data is composed of incomplete observations. In this section, we evaluate
the effectiveness of our approach as an unsupervised pre-training of the multi-view representation,
investigating if the learned representation is useful for downstream tasks such as classification.

Datasets We evaluate our method on six feature-based image classification datasets used in multi-
view learning [S0], which are ORL,PIE, YaleB, CUB, Animal and Handwritten. Each dataset is
associated with 2 and up to 6 visual features. Similar to the previous section, we treat each feature as
a view of data. For all datasets, we follow the same preprocessing and training/test splits used in [50].
See Section [D]in the supplementary material for a comprehensive description of the datasets.

Evaluation protocol We follow [50] to evaluate our model trained with partial observations with
various missing rates 7 = {0,0.1,0.2,0.3,0.4,0.5}. Similar to the experiment in Section we first
train our model in an unsupervised manner using the observable views. Then we fix the encoders, and
train the classifier with labels using the learned representation. To isolate the impact of the additional
classifier, we employ the simplest classifier, i.e. logistic regression with the learned representation as
input. We report the performance by averaging the results from 10 independent runs.

Result Figure [5|summarizes the results under varying 7 on datasets ORL, PIE, YaleB, and Hand-
written, which are with at least three views and thus in our primary interest. Due to the space
limit, we present the results on CUB and Animal in Section[B.1.3]in the supplementary material. In
addition to the baseline methods compared in previous sections, we include two strong baselines,
CPM-Nets(S) and CPM-Nets(U), which address the PMVRL with and without label information in
the representation learning stage, respectively. Compared to the supervised baseline (CPM-Nets(S)),
our method is clearly outperforming in all datasets, even though our model is trained in a purely
unsupervised manner. Compared to the unsupervised baseline methods (CPM-Nets(U), MVAE,
MMVAE, mmJSD, and MoPoE), our method achieves noticeable improvements, especially when
the missing rate is reasonably high (0.3 < 1 < 0.5). It shows that our method is robust in learning
the cross-view correlation under partial observations, and the learned representation is informative
enough to be useful in downstream tasks, even though we do not use label information in the data or
adopt a sophisticated aggregation model in the joint encoder.

5 Conclusion

We presented an information theoretic model for unsupervised partial multi-view representation
learning. Based on Total Correlation (TC), we derived a novel variational lower bound that allows us
to train the model that encodes complete latent representation from partial-view observations. Strictly
trained in an unsupervised manner, we also demonstrated that the learned representation is highly
effective in downstream tasks, such as multi-view classification and multi-view translation. Although
we demonstrated that our method can even learn from partial multi-view data, it still has room
for improvement such as learning from unaligned view data, and investigating more sophisticated
representation aggregation models for the joint encoder, which we leave as future work.
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A Theoretical Results

We begin with deriving Eq. (@) in detail since following subsections are based on it.
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Thus, we derive three different variational lower bounds on T'Cy(O; Z) introduced in Section

and Section 2.3 below.
A.1 Lower Bound that introduces VIB (Eq. @))
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where Eq. (TT) is the gap between T'Cy(O; Z) and Eq. (T2) (or Eq. ()). Since TCy(O; Z) is upper
bounded by TC/(O) which is a constant, maximization of Eq. (I2)) not only maximizes the original

objective T'Cy(O; Z) but also minimizes Eq. (), the gap between TCy(O; Z) and Eq. (T2). This
results in fitting g3 (0,|2) & po (0v]2) and r(2) ~ pe (ziﬂ
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*In practice, we fix r (z) = N(0, 1) for simplicity.
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A.2 Lower Bound that introduces Conditional VIBs (Eq. (]Z[))
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where py (z|o,) = [ pe(2|6)pp(6)da, is a distribution that requires intractable integration w.r.t. the
unknown density pp(6). Note that the equality in Eq. (I3) holds due to the chain rule for MI (see
Section[A3). Similar to Eq. (I2), maximization of Eq. (I3) minimizes Eq. (T4), the gap between
Eq. (13) and Eq. (T3). Thus, our variational optimization scheme fits not only g (0, |2) ~ pg (04 |2)
but also 7, (z]0,) ~ pe(z]oy).
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A.3 Convex Combination (Eq. (8))
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. ;
v Z po(@) [DxL [po(210) |7 (2l0v)]] = (1 = @) B, (6) [Dicr [po(210) [7(2)]], (16)
where 0 < o < 1.
A4 Interaction Information and its Equivalence to 7'Cy (6 ;Z)whenV =2

When there are 2 views, Interaction Information (II) among O1, O3, and Z is defined as follows
Iy (01;09;Z) = 19 (O1; Z) — Ig (O1; Z | O2)
= [9 (02; Z) — [9 (02; A | 01)
=1(01;02) — 15 (01;02 | Z)

Applying the chain rule of MI (see Section[A.3)) to the first equality,
we can easily show the equivalence between Iy (O1; O2; Z) and T'Cy(O; Z):
Ip(01;09;2) = Ig (015 Z) — I (O1; Z | Oo)
=13 (01;Z) — (—1Ip (02; Z) + Iy (01, 02; Z)) = TCy(O; Z) (17)

A.5 Chain Rule for Mutual Information
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A.6 Connection to Multi-View Information Bottleneck (MIB)

MIB [[L1] is proposed for learning view-invariant representation between two views. Although one
can try to apply MIB to MVRL with more than 2 views by treating it as (‘2/) pair-wise representation
learning, it combinatorially scales to the number of given views, making it infeasible to run with
many views.
Interestingly, we observe that designing py(z, 6) as MoE of r,(z|o, ) relates conditional VIBs in
Eq. (7) to the regularization terms used in MIB for discarding any view-specific informatio

v
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where Dggr [rgp(z|oi)||r;(z|ov)} = 1Dy, [rfp(z\oi)ﬂrz(ﬂov)] + 1Dy, [7’172(2|0v)||rfp(z|oi)}.
Remarkably, each of Dgg, terms in Eq. (1) is a regularization term used in MIB to discard any
information not shared by two views, which encourages each of view-specific encoder to learn
view-invariant representation only. Although Eq. (I9) is a lower bound on Eq. (ZI)), the gap Eq. (20)
between Eq. (ZT)) and Eq. (T9) clearly shows that the optimal solutions of Eq. (ZI)) and Eq. (T9) have
to be equal to:

1

Ty (2]01) = ri(z|02) =..= 7"1‘;(2|0U)
Bearing in mind that our goal is to learn complete representation instead of view-invariant representa-
tion, Eq. (21)) shows that MoE is not a good choice for the conditional VIBs.

B Comprehensive Experimental Results

In this section, we provide all the evaluations including any quantitative and qualitative results we
possibly missed in the main text due to the space limit.

4view-specific information is called superfluous information in MIB [[T1].
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B.1 Quantitative Results

We explicitly specify all the quantitative results we presented in Section[d] Some of additional results
are included to make our overall experiments more comprehensive.

B.1.1 Results in multi-view classification / translation on PolyMNIST

Table [T|and 2] specify the numbers used to plot Figure

Models |
@ | 1 2 3 4 5 1 2 3 4

MVAE 0.70 0.84 0.91 0.93 0.95 0.29 0.42 0.48 0.52
MMVAE 0.82 0.82 0.82 0.82 0.82 0.71 0.71 0.71 0.71

Total input views (Linear Classification) Total input views (Coherence)

mmJSD 0.89 0.98 0.99 1.0 1.0 0.69 0.57 0.64 0.67
MoPoE 0.82 0.90 0.93 0.94 0.95 0.63 0.75 0.79 0.81
Ours (5/6) | 0.94 0.99 1.0 1.0 L0 | 059 0.77 0.83 0.86

Table 1: Comparisons on linaer classification and coherence accuracy. All the results are averaged
over 5 independent runs. We omit the standard error which are less than 0.01 in most cases.

Models | Input view(s)
() \ View 2 Views 2,3 Views 2,3,4 Views 2,3,4,5

MVAE 94.06 £ 5.20 125.87 £5.97 138.46 £ 6.29 150.53 £ 6.58
MMVAE | 228.86 £ 13.68 22437 +14.28 220.76 £ 13.42 217.31 £ 11.89
mmJSD 194.96 £ 2.75 214.91 £ 3.69 218.44 £3.52 221.37 £ 3.64
MoPoE 169.70 £ 2.60 180.53 £ 2.11 188.92 + 3.00 197.33 £ 3.56

Ours (5/6) ‘ 90.32 £ 1.72 99.44 + 1.63 111.64 = 1.53 122.51 £ 1.56
Table 2: Comparisons on FID scores averaged over 5 independent runs.

B.1.2 Ablation study in partial multi-view translation

To investigate the effect of o, we compare the performance of our method applying various settings
of « = {0.0,0.7,0.8,0.9,1.0}. The result is summarized in Table [3| below. In both cases of
using complete (n = 0) and incomplete (0.5) observations, o > 0.7 yields significant performance
improvement comparing to o = 0.0. It clearly shows that the conditional VIB (o = 1) is very
effective on calibrating the representation across views compared to VIB counterpart without cross-
view calibration (a = 0). Setting o = 0.9 and o = 0.8 shows the best performance in each case of
n = 0 and n = 0.5 respectively, which implies that regularization using VIB can be also effective
when observations are sparse.

Models \ Views used to reconstruct HOG (n = 0.0) Views used to reconstruct HOG (n = 0.5)
(@) | Gabor +WM +CENT. +GIST +LBP | Gabor +WM +CENT. +GIST +LBP

MVAE 45.78  44.58 42.61 3641 3376 | 40.61 39.21 38.51 3447 3373
MMVAE | 37.57 3844 38.49 37.54 3696 | 38.79 39.79 40.55 39.54  38.93
mmJSD 37.37 3798 37.21 36.08 3524 | 38.30 38.84 38.07 36.65 35.71
MoPoE 38.13  36.52 36.20 33.08  32.10 | 39.08 37.93 38.93 35.16  33.76

Ours (0.0) | 51.27  45.68 42.95 36.05 3341 | 4051 39.22 38.52 3449  33.79
Ours (0.7) | 38.56 37.17 36.48 31.53 3043 | 39.16 37.85 37.56 3329  32.58
Ours (0.8) | 3850 37.11 36.42 3141 3032 | 39.13  37.79 37.55 33.24 3251
Ours (0.9) | 38.42  37.03 36.34 3131 30.21 | 39.15 37.82 37.64 3327 3257
Ours (1.0) | 3838  37.04 36.36 31.33 3022 | 3925 37.95 37.92 33.58  33.07

Table 3: The translation performance trained with the complete dataset (n = 0, from the second to the
sixth columns) and incomplete dataset (7 = 0.5, from the seventh to the last columns). We measure
the reconstruction error of the HOG by incrementally adding features, accumulated from the feature
in the second and seventh columns. The results are the average performance of 10 independent runs.
We omit the standard errors which are around 0.06 in most cases.
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B.1.3 Results in partial multi-view classification on 6 datasets including CUB and Animal

In addition to ORL, PIE, YaleB, and Handwritten, Figure |§| shows the partial multi-view classification
results on CUB and Animal which are datatsets composed of 2 views. The result shows that our
method achieves performance competitive to the strong baseline methods on those 2-view datasets.
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Figure 6: Classification performance on 6 datasets under various view missing rate.

B.1.4 Results in partial multi-view classification with additional baseline methods

We compare our method using incomplete dataset (n = 0.5) with additional state-of-the-art MVRL
methods such as CCA [18]], KCCA [1], DCCA [3], DCCAE [41]], DMF-MVC [53]], MDcR [48]],
ITML [9], LMNN [43]], and CPM-Nets [S0], as well as a naive baseline of concatenating all views

(FeatCon). Table

[ summarizes the result. Please note that « is chosen in Figure [3]

and Figure [6]

according to the result in Tableand fixed across all settings of n = {0,0.1,0.2,0.3,0.4,0.5} for

each dataset.

Datasets (# of views)

Models S/U  ORL(3) PIE(3)  YaleB(3) CUB(2) Animal(2) HW (6)
CCA U 38.1 37.4 66.2 57.1 24.1 55.3
KCCA U 04 33.8 67.8 57.6 234 56.7
DCCA U 38.3 35.8 67.1 40.8 9.4 54.4
DCCAE U 35.6 36.3 67.6 475 104 54.4
DMF U 60.1 34.3 57.5 30.3 47.0 55.8
MDcR U 65.1 23.1 58.0 70.0 61.7 55.4
FeatCon U 66.3 36.3 59.8 70.8 61.9 87.1
ITML S 76.3 36.6 81.2 70.2 56.0 73.1
LMNN S 70.0 56.4 76.6 73.8 59.6 86.1
CPM (w/class) S 88.9 61.8 91.0 76.3 67.3 91.0
CPM(w/oclass)y U  83.84+09 549410 828+13 638413 583402 865409
MVAE U 839+15 5384+09 848+06 788+08 692+03 90.6=+0.5
MMVAE U 901409 480+07 922408 794+09 69.0+04 80.6+04
mmJSD U 9254103 552409 938+07 783+1.0 692+04 93.6+0.3
MoPoE U 915406 624+10 944405 793+06 69.0+03 933402
Ous(@=0.8) U 926+07 617409 942405 792+06 692+03 932403
Ous(@=0.9 U 93.0+£07 649+09 940+06 790+£06 692+03 93.6+03
Ous(@=1.00 U 928+09 605+1.1 947407 786+07 692+03 943+04

Table 4: Comparisons on classification accuracy (%) with missing rate = 0.5. Each dataset is
specified with the number of views inside of the parentheses in the second row. S stands for supervised
learning and U stands for unsupervised learning in the second column. All the results are averaged

over 10 independent runs.
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The results when observations are complete (1 = 0) are presented in Table [5] below.

Datasets (# of views)
Models ORL (3) PIE (3) YaleB (3) CUB (2) Animal (2) HW (6)

CPM (w/class) 984+£04 920+07 974+05 90.1£0.7 87701 940+04
CPM (w/oclass) 983+£03 873+£17 954+07 882+11 81.0£02 912+04

MVAE 98.8+03 939+£03 995+£03 908+06 86.7£03 963+0.3
MMVAE 975+04 524+10 979+04 788+12 702+£04 81.1+0.6
mmJSD 989+02 836+£06 99.6+£0.1 909+08 848+£04 97.6+02
MoPoE 98.8+03 919+04 998+0.1 91.2+07 856=£04 965+03

Ours (¢ =0.8) 989+03 949+06 997+01 915+£0.7 864+03 96.7+03

Ours (« =0.9) 988+03 93704 998+02 915+£07 864+03 97.0+03

Ours (¢ =1.00 989+03 90.1+05 998+02 91.7+£0.7 863+03 96.6+03
Table 5: Comparisons on classification accuracy (%) with missing rate = 0. All the results are
averaged over 10 independent runs.
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B.2 Qualitative Results

We provide comprehensive qualitative results on PolyMNIST along with some examples in the
dataset.

B.2.1 Translation results on PolyMNIST [34] dataset

" oNlZBE GaBUHREX
- EENBEDEHECEE B
- BEEEEGELRHEE
 AHMBEEEGHANAEG
EHEFEEFEDE 9

Table 6: Examples of samples in PolyMNIST.

Table[6]shows examples of PolyMNIST dataset, where each row is 0 ~ 9 images in each view. Note
that many images in view 1 are remarkably blurry as follows:

0 1 2 3 4 5 6 7 8 9
- " 3 t_ t, - = -
# 3 J
Figures 8] and[TT] summarize the qualitative results of conditional generations of each model,
where images above the green line are input observations from different view(s) ({2}, {2,3}, {2,3,4},

{2,3,4,5}) in the test set and images below the line are images in view 1 generated by models. Unlike
our method, all the baseline methods expose at least one of following three issues:

Mode collapse in MMVAE, mmJSD, MoPoE Generated images in view 1 fail to show diversities
in styles of backgrounds and digits, which can be observed by comparing rows in any figures.

Entangled representations in MMVAE, mmJSD, MoPoE Although styles of backgrounds and
digits are view-specific factors of variation, comparison among the same columns in Figures 8] [0} [T0}
[[T]shows that those styles get affected by additional observations from new views.

Discarded shared information in MVAE Comparing images above and below the green line
in every figure clearly shows the failure in generating coherent samples whose digit identities are
supposed to match to conditioned images. Furthermore, it is not obvious that the coherence is
improved according to the increased number of given views.

On the other hand, our method expresses view-specific style variations independent of conditioned
views while showing better preservation of the digit identities as the number of given views increases.

o2 3 y HEEE ’ 219 A ;m0/33ulsi._'m
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2]7]Z]2 2(2[9
o123 27 E
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MVAE MMVAE mmJSD MoPoE MVTCAE

Figure 8: Conditionally generated images of the view 1 given images from the view 2.

23



O
G0 LY
1>

S EEEEERe ¥

€
6
.
e
©
&
o
%
e
e

[s[efelele]e]e]e]2] 2]

39|18
3|91S
3|4|S
3|88
3@ S
3|@ls
3|&(s
319|8
3|9|S
3|%(s

MVAE MMVAE mmJSD MoPoE MVTCAE
Figure 9: Conditionally generated images of the view 1 given images from the views 2 and 3.
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Figure 10: Conditionally generated images of the view 1 given images from the views 2, 3, and 4.

MoPoE MVTCAE
Figure 11: Conditionally generated images of the view 1 given images from the rest of views.

We present additional qualitative results in Figures[T2} [T3] [T4] and [T5] where images above the green
line are conditioned observations from different view(s) ({1}, {1,3}, {1,3,4}, {1,3,4,5}) in the test
set and images below the line are images in view 2 generated by models. Three issues we already
identified in Figures|[8] 0} [T0} [TT] are similarly observed.
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Figure 12: Conditionally generated images of the view 2 given images from the view 1.
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Figure 13: Conditionally generated images of the view 2 given images from the views 1 and 3.
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Figure 14: Conditionally generated images of the view 2 given images from the views 1, 3, and 4.
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Figure 15: Conditionally generated images of the view 2 given images from the rest of views.
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B.2.2 Translation results in Caltech-101 dataset trained with complete (7 = 0) and
incomplete observations (17 = 0.5)

We present qualitative results in Caltech-101 dataset using complete and incomplete training data
(n = 0,0.5). In Figure [I6 and Figure HOG features reconstructed by our model trained with
incomplete data (n = 0.5) show the comparable quality to the ones reconstructed by ours with
complete data (n = 0), demonstrating the robustness of our method to partial observations. In
Figure@ and Figure E the labels of features are lamp, starfish, stop sign, motorbike, umbrella,
scissors, airplane, butterfly, kangaroo, and watch.

N g ey

Real Image  Ground Gabor +CENT. +GIST +LBP
Truth

Figure 16: Qualitative results in multi-view translation using complete training data (7 = 0.0). The
HOG feature is reconstructed by incrementally adding features, accumulated from the left-most
feature (i.e. Gabor).
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Figure 17: Qualitative results in multi-view translation using incomplete training data (n = 0.5).

Real Image

The HOG feature is reconstructed by incrementally adding features, accumulated from the left-most

feature (i.e. Gabor).
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C New Experimental Results on Additional Datasets

To see in depth if our method generalizes well when views are only composed of raw observations,
we conducted additional experiment with new datasets, which are Multi-PIE [13] and MNIST-
SVHN [30]. Evaluating on those two datasets, we fixed o = 0.9 for our method which was found to
be reasonable in the previous experiments. Please note that Multi-PIE is the source from which PIE
in Section[#.2.2) composed of 3 hand-crafted features are extracted, and thus they are different.

C.1 Additional Experimental Results on Multi-PIE in Pixels

To evaluate our method in multiple aspects, we follow the protocol similar to the one used in
Section d.1.1] Specifically, after training all the models in an unsupervised manner using complete
observations, we evaluate the learned representation with 4 different metrics, which are linear
classification accuracy, conditional coherence accuracy, sample generation quality, and sample
diversity. We compare our method with MVAE [46], MMVAE [30], mmJSD [33]], and MoPoE-
VAE [34]] same as Sectionm For every method, we searched KL coefficient () optimal across
all metrics among {1, 2.5, 5,10, 20}. Unlike ours and other baseline methods, we were not able to
find the optimal 8 for mmJSD that makes the model work commonly well across all tasks. Thus, we
report performance of mmJSD with two different settings of 5 = 1, 20. Other than 3, we applied
same hyperparameters such as epochs, dimensions of latent variable, and batch size to be 300, 128,
and 16 respectively/ All the quantitative results below are averaged over 5 seeds (0~4), where as the
qualitative results are from the single seed 0.

Dataset configuration Multi-PIE [[13] is a dataset composed of 750K bust shot images of 337
human subjects with various facial expressions collected under the circumstance with 15 view points
and 19 illumination conditions. Following [35], we extract 250 subjects with 9 poses (within +60°),
19 illuminations, and 2 facial expressions and assign the first 200 subjects to training set and the rest
50 for testing set. We group 9 poses into 3 views, where the first view is composed of images with 4
poses within —60°, the second view of images in 0°, and the third view of images in +-60°. We call
first, second, and third views as L (Left), F (Frontal), and R (Right) respectively. For example:

L (Left) F (Frontal) R (Right)
| m m ‘ | 3 \
\\ “ ‘ ! . s I | | ; o —

Without applying any view-specific variation in view F, we choose variation in 19 illumination
conditions and 2 facial expressions as two shared factors of variation across views while variation in
4 poses in each of views L and R is chosen as a view-specific factor. As a result, each subject owns 38
tuples of 3 images of L,FR views sharing the illumiation conditions and facial expressions, where the
image from each of views L and R is randomly chosen among 4 poses whenever the tuple is sampled.

Linear Classification To apply our method to classification, we fix the encoders and train two
linear classifier to predict illumination condition and facial expression using the joint representation
extracted from py(z|0) feeding complete observations in training set. We count as positive prediction
only the case two classifiers simultaneously yields correct predictions on both illumination condition
and facial expression. We compute the average classification accuracy over all subsets with the same
subset size.

Model (3) Given 1 Given 2 Given 3 (All)

MVAE (1) 57.52+0.83 63.22+0.53 65.62£0.65
MMVAE (1) 70.5+033 70.61 £047 71.14+£0.44
mmJSD (1) 75.01 £0.56 77.61 £0.75 78.86 £0.74
mmJSD (20) 79.34 £ 0.66 8218+0.76 83.45+0.93
MoPoE (1) 72.55+0.89 74.03 £0.61 7423 +043

MVTCAE (10) 80.48 £0.67 81.87+0.79 82.07 £ 0.81

Table 7: Joint classification accuracy of 19 illumination conditions and 2 facial expressions using the
learned latent representation.

Table[7]summarizes the result of linear classification accuracy according to the number of input views.
The result shows that mmJSD (20) and ours show the best performances whose error bars overlap,
which implies that both methods can successfully extract the information shared across views.
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Conditional coherence To measure the conditional coherence accuracy, we extract the representa-
tion of every subset of views using py and generate views that are absent in the subset using g,. Those
generated views are fed into the pretrained CNN-based classifier. We count as a correct prediction
if the prediction on both the illumination condition and the facial expression from the classifier
simultaneously matches two labels of the input view images. The results are averaged over all subsets
with the same size.

Target View # of Input Views
Model (3) L F R Given 1 Given 2

MVAE (1) 8.84 £ 0.69 39.7 £2.86 9.08+£0.29 18.09+1.15 2144%1.15
MMVAE (1) 74.66 £ 0.68 851+£025 7295+0.89 7754+£041 77.62£044
mmJSD (1) 69.12+ 197 8345+£0.61 6565+£2.07 73.7+1.07 70.82+1.03
mmJSD (20) 60.08 £ 047 7522+£034 558+139 68.77+£0.62 53.55+0.55
MoPoE (1) 76.17 £ 032 8537+£045 73.04+08 7736£045 79.85+£0.52

MVTCAE (10) 8258 +0.6 85.81+0.15 82.77+05 83.02+0.28 851+026

Table 8: Joint coherence accuracy in the conditionally generated samples with respect to illumination
conditions and facial expressions.

Table [§] summarizes the results of conditional coherence accuracy in two ways according to the
target view and the number of input views. The result shows that our method outperforms all the
comparing methods across all aspects. The results indicates that conditional VIBs in our method
are very effective to identifying the shared factors of variation and improving preservation of them
using additional input views. On the other hand, MVAE shows poor performance incomparable to
any comparing methods, which implies that augmenting ELBO of each view to the ELBO of the joint
views harms the preservation of shared factors of variation.

Sample quality To evaluate the sample quality of conditional generation, we reuse images gener-
ated for evaluating the conditional coherence by comparing them to the ground truth images in the
target view paired with their input view images. We quantify similarities between those generated
images and corresponding target images using LPIPS [52]], which measures perceptual distance
between two images. Considering that each of generated images in view L and R can have any of
4 different poses, we compute LPIPS distance between the generated images and each of 4 target
images and count the minimum distance. The results are averaged over all subsets of input views
with the same size.

Target View # of Input Views
Model (3) L F R Given1 Given 2

MVAE (1) 0.3262 0.1807 0.3180 0.2785  0.2679
MMVAE (1) 0.2953 0.1812 0.2931 0.2565  0.2566
mmJSD (1) 0.3207 0.1992 0.3180 0.2758  0.2863
mmJSD (20) 0.3595 0.2346 0.3564 0.3048  0.3409
MoPoE (1) 0.2868 0.1741 0.2855 0.2499  0.2466

MVTCAE (10) 0.2202 0.1673 0.2211  0.2046  0.1995
Table 9: LPIPS distance between generated samples and target images. Since views L and R have
variation of 4 different poses as their own factors of variation, there are four candidate target images

per generated sample if its target view is L or R. Thus, we count the minimum distance out of 4.
Standard errors are omitted since they are negligibly small.

Table 0] summarizes the results of the sample quality evaluation in two ways according to the target
view and the number of input views. The results shows that our method outperforms all the comparing
methods across all aspects. Compared to MMVAE, mmJSD, and MoPoE-VAE, our method shows
significant performance gap in the case target view is L or R while the gap is relatively small in the
case the target view is F. This is because those methods are using MoE as their joint representation
encoder that hardly expresses view-specific factors of variation, which results in generating blurry
images collapsing to one pose in views L and R (see Figure[I9). Although MVAE generates samples
with variation in poses, those samples are not consistent to the given subject.
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Sample diversity We measure the view-specific diversity in the generated samples by entropy. We
extract the representation of subset of views {L, F, R, LF, FR} using py and generate 10 samples (per
instance) in any of views L,R that are absent in the input subset using q4. Those 10 generated images
are fed into another pretrained CNN-based classifier which predicts the pose among 4 candidates in
the target view. To compute entropy, we first apply one-hot encoding to 10 predicted labels. Then we
normalize those 10 encodings to make their sum to be 1 and compute entropy which stands for the
diversity with respect to the pose. The results are averaged over all subsets with the same size.

Target View # of Input Views
Model (3) L R Given 1 Given 2

MVAE (1) 1.65+£0.01 159+0.01 1.68+£0.01 1.48+0.02
MMVAE (1) 005+00 0.06£0.01 005+00 0.05+0.0
mmJSD (1) 0.15+£0.02 0.16+0.01 0.14+£0.01 0.19+0.01
mmJSD (20) 042+0.03 042+0.02 037+£0.01 0.52=+0.01
MoPoE (1) 0.07£0.01 0.07+0.01 0.08+£0.01 0.05=£00

MVTCAE (10) 1.70 £0.01 1.66 =0.01 1.72+0.0 1.6 +0.01
Table 10: Diversity of poses in the generated samples.

Table [10] summarizes the result of measuring diversity in the generated samples by their entropy.
The result shows that our method significantly outperforms all the MoE-based methods (MMVAE,
mmJSD, MoPoE-VAE) due to their issues on preserving view-specific factors as we discussed in
Sectionf.T.1} Our method even outperforms MVAE, which implies that conditional VIBs in our
method are greatly effective to the cross-view association without introducing any side effects.

Qualitative results Lastly, Figure [I9] presents 4 samples of conditionally generated samples in
each of target views L and R feeding an image of the first subject in view F in the test set. The results
show that our method (bottom row) generates samples in the finest quality with the best preservation
of the subject’s identity and the highest diverisity in pose, which is consistent with what we observed
in the quantitative results above.

GTinF | Generated samples in LL

Generated samples in R

Figure 19: Examples of conditional generation. The first 5 rows are results from MVAE, MMVAE,
mmJSD(1), mmJSD(20), and MoPoE. The bottom row is the result of our method.

Summary Showing state-of-the-art performance in the task of classification using the learned
representation, our algorithm absolutely outperforms all the baseline methods in the translation tasks.
It is remarkable that (1) even successfully preserving the information shared across views (observed
in Table[7} [B), our method generate samples not only in the best quality (observed in Table [9]and
Figure but also in the highest diversity (observed in Table [I0]and Figure[19).
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C.2 Additional Experimental Results on MNIST-SVHN

The table below summarizes the result of the experiment in MNIST-SVHN (MS) dataset averaged
over 5 runs with seeds 0 ~ 4. The evaluation protocol, codebase, and hyperparameter settings follow
the experiments in the MoPoE-VAE [34] on MNIST-SVHN-Text (MST) dataset, which augments to
the original MS the text of digit IDs as the third modality. Please note that all the results below are
from the baseline implementations in the MoPoE-VAE codebase whose VAE architectures dedicated
to MNIST and SVHN are the same as the ones used by MMVAE. Lastly, we simply discarded the
third modality.

Models \ Representation Classification (RC) Coherent Generation (CG)
\ M (MNIST) S (SVHN) MS \ Joint M—S S—M
MVAE 87.38 58.23 87.37 42.98 56.65 35.63
MMVAE 72.83 60.89 66.89 42.45 26.76 74.94
mmJSD 88.58 81.44 93.81 12.73 22.33 65.44
MoPoE 82.48 70.62 87.96 4495 21.23 72.38
MVTCAE \ 93.48 77.99 94.97 \ 46.71 81.09 59.91

where representation classification (RC) is measured by the accuracy of the single linear classifier
trained on the latent representation as input (z from M only, z from S only, and z from jointly M and
S), and coherent generation (CG) is measured by the accuracy of the pretrained CNN classifier whose
input is the image generated by each model (e.g. Joint is measured from MNIST and SVHN images
generated from the same z sampled from the prior distribution, and M->S is measured by SVHN
images generated from MNIST images).

Among 6 different evaluation results, our method outperforms baseline methods in 4 tasks (RC /
MNIST and MS, CG / Joint and M->S) and performs competitive to the baselines in 1 task, RC /
SVHN. Our method performs relatively poor only in CG / S->M (ranked 4th), the advantage of our
method in M->S is much more noticeable. Comparing to strong baseline methods such as MMVAE,
mmJSD, and MoPoE-VAE, our method shows more balanced performance in two different directions
of CG, as measured in Joint, achieving the best average performance.
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D Dataset Statistics

We present information on all the datasets we used in Sectiond]in detail. Each feature is treated as
one view in every dataset.

D.1 In Section 4.1.1]
* PolyMNIST [34] is an image dataset composed of 5 views each of which is created by

fusing each of MNIST images with a background, a 28x28x3 sized patch randomly cropped
from one of five different images chosen by [34]. Each MNIST images is binarized, and
colors of its background image is inverted at the locations where the digit of the MNIST is
inserted. Some examples are showcased in Section[B.2.1} License information of those 5
images used for backgrounds can be found in [34].

D.2 In Sectiond.1.2land 4.2.1]

» Caltech-101 [23] is a image dataset collected for object recognition task. Images in Caltech-

101 are categorized as 101 different classes. From Caltech 101, six visual features are
extracted and compiled as a multiview dataset by Li et al. [24], which are are 48 di-
mensional Gabor feature [29]], 40 dimensional wavelet moments (WM), 254 dimensional
CENTRIST [45]] feature, 1984 dimensional HOG [8]] feature, 512 dimensional GIST [29]
feature, and 928 dimensional LBP [28]] feature.

D.3 In Sectiond.2.2]

1.

ORI_E]is a dataset composed of 400 facial images of 40 subjects. 4096 dimensional Intensity
feature, 3304 dimensional LBP feature, and 6750 dimensional Gabor feature are extracted.

. PIEﬂ consists of 750K bust shot of 337 human subjects. A subset which contains 10 images

for each of 68 people is collected, 680 images in total. We use 484 dimensional Intensity
feature, 256 dimensional LBP feature, and 279 dimensional Gabor feature extracted from
the subset.

. Yale Face Database B[Z] (YaleB) is a database which contains 5850 images of 10 subjects

captured with 585 different illumination conditions (65 illumination conditions for 9 different
poses). A subset which contains 650 images of 10 subjects is collected. We use 2500
dimensional Intensity feature, 3304 dimensional LBP feature, and 6750 dimensional Gabor
feature extracted from the subset.

. CUB [40] is a dataset consists of 11788 images of birds that belong to 200 different classes.

A subset of 600 images that covers 10 categories are collected. 1024 dimensional GoogLeNet
visual feature and 300 dimensional doc2vec feature are are extracted from the subset.

. Animal is a dataset composed of 10158 images of animals distributed across 50 classes.

Two different deep visual features are extracted, which are 4096 dimensional DECAF feature
and 4096 dimensional VGG19 feature.

. Handwritterﬁ is a dataset that contains 2k handwritten digits of 0 to 9. Six features are

generated, which are 76 dimensional Fourier coefficients of the character shapes feature,
216 dimensional profile correlations feature, 64 dimensional Karhunen-love coefficients
feature, 240 dimensional (2 x 3) pixel averages feature, 47 dimensional Zernike moment
feature, and 6 dimensional morphological feature.

Note that subsamples and features of ORL, PIE, YaleB, CUB, and Animal datasets are collected by
Zhang et al. [50]. As a result, there are 3 features in ORL, PIE, YaleB and 2 features in CUB, Animal,
whereas 6 features in Handwritten. Lastly, we followed the same preprocessing and training/test
splits used in Zhang et al. [50] for all six datasets employed in Section[4.2.7]

*https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
Shttp://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
"http://vision.ucsd.edu/~leekc/ExtYaleDatabase/Yale%20Face%20Database. htm
$https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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E Implementation Details

We report implementation details in each experiment including the hyperparameters and the structures
of encoders and decoders. We used two codebases, one is implemented in PyTorch by MoPoE-VAEﬂ
and the other is written in TensorFlow by CPM-NetsETl Except the joint representation encoder
uniquely determined by each model, MVAE, MMVAE, mmJSD, MoPoE-VAE, and our method share
the same network architectures and hyperparameter settings including the batch size, the size of
encdoer/decoder and latent variables, coefficient of reconstruction (w) and KL regularizations (5)
terms, and epochs. In the test phase, the representation fusion in each model is conducted using its
own joint representation encoder (as identified in Section [2.4)), except mmJSD which learns to fuse
representations using its dynamic prior. For dimensionalities of inputs of encoders and outputs of
decoders, please read Section |D| Further information can be found in our official implementatio

E.1 In Sectiond.1.1]

Following MoPoE-VAE, we fixed w = 1 and § = 2.5 and ran for 300 epochs with 5 seeds (0 ~ 4).
We also set network structures and dimension size of the latent variable (512) same as MoPoE-VAE.
We fixed «, the only hyperparameter our method uniquely has, to be % that equally weights the VIB
and conditional VIBs.

E.2 1In Sectiond.1.2]and 4.2.1]

Fixing w = 200 and 8 = 1.0, we ran each model with 10 seeds (0 ~ 9) for 10,000 epochs to ensure
that all the methods are converged. As an ablation study, we evaluated our method with various
settings of « = {0.0,0.7,0.8,0.9, 1.0} as we reported in Section which results in « = 0.9 and
a = 0.8 showing the best performance when 1 = 0.0 and 0.5 resepectively. We adopted following
network architectures with 100-dimensional latent variables for all methods.

Dataset Caltech 101

Network Encoder 1 (2]oy,)
Input Oy

Layer 1 FC. 200. ReLU

Layer2 | 2x FC. 100 (1, log %)

Network Decoder g (0,]2)
Input z ~ py(z]0)

Layer 1 FC. 200. ReLU

Layer 2 FC. dim(o,)

E.3 1In Section

We ensured that structures and sizes of our decoders are same as the ones used in the official
implementation of CPM-Nets. The only difference is the activation function being used. We used
ReLU in the middle of two fully connected (FC) layers. We chose the structures of our view-specific
encoders as the reverse of decoders, ensuring that the sizes of the latent variables we use are same as
the ones used in CPM-Nets as well. We described how « is chosen in Section[B.1.4] For MVAE,
MMVAE, mmJSD, MoPoE, and ours, we applied the same encoder/decoder structures and ran for
the same number of epochs with 10 seeds (0 ~ 9) per dataset to make fair comparison. We chose
w = 100 and 8 = 1.0 for all datasets. Dimensions of the latent variable and the epoch per dataset are
specified below.

| Datasets
Hyperparamters ‘ ORL PIE  YaleB CUB Animal Handwritten
Dimensions of z 256 150 128 128 512 128
Epochs 1,000 5,000 5,000 2,000 100 5,000

Table 11: Hyperparameters used in ORL, PIE, YaleB, CUB, Animal, and Handwritten datasets.

“https://github. com/thomassutter/MoPoE
Uhttps://github.com/hanmenghan/CPM_Nets
"https://github.com/gr8joo/MVTCAE
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F Computation Resources

We used 10 systems equipped with following devices.
CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
Memory: 32 Gb.
GPU: TITAN Xp

G Societal Impact

Positively, our method could be used to reduce the number of sensors in multi-sensor system without
losing sensor fusion accuracy, reducing carbon footprint and environmental waste due to redundant
sensors. Negatively, we see the possibility that our method could be exploited in wrongful manner,
such as Deepfake. Specifically, one might adopt our method to synthesize someone’s image in the
representation space and generate fake samples for fraudulent purposes. Similarly, our method can be
utilized in synthesizing voice for impostors.
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