
DPAIL: Training Diffusion Policy for Adversarial Imitation Learning without Policy Optimization

Yunseon Choi¹ Minchan Jeong¹ Soobin Um^{1,2} Kee-Eung Kim¹

¹Kim Jaechul Graduate School of AI, KAIST

²Department of AI, Kookmin University

{cys9506, keekim}@kaist.ac.kr

Abstract

Human experts employ diverse strategies to complete a task, producing to multi-modal demonstration data. Although traditional Adversarial Imitation Learning (AIL) methods have achieved notable success, they often collapse theses multi-modal behaviors into a single strategy, failing to replicate expert behaviors. To overcome this limitation, we propose **DPAIL**, an adversarial IL framework that leverages diffusion models as a policy class to enhance expressiveness. Building on the Adversarial Soft Advantage Fitting (ASAF) framework, which removes the need for policy optimization steps, DPAIL trains a diffusion policy using a binary cross-entropy objective to distinguish expert trajectories from generated ones. To enable optimization of the diffusion policy, we introduce a novel, tractable lower bound on the policy’s likelihood. Through comprehensive quantitative and qualitative evaluations against various baselines, we demonstrate that our method not only captures diverse behaviors but also remains robust as the number of behavior modes increases.

1 Introduction

Many sequential decision-making tasks involve multiple distinct expert behaviors to achieve the same goal, resulting in multi-modal demonstration data. For example, human demonstrations of robotic manipulation tasks often exhibit various grasping strategies, alternating between cautious and aggressive movements. Capturing such diversity is important in imitation learning (IL), as an agent should reproduce the range of expert strategies rather than collapse to an average behavior. Generative modeling approaches offer a potential solution by learning rich distributions over expert behavior. In particular, diffusion models, such as the Denoising Diffusion Probabilistic Model (DDPM) [15], have emerged as powerful generative models capable of capturing complex, multi-modal data distributions. Recent work [21] suggests that diffusion-based policies, trained to mimic expert actions via behavioral cloning, can more faithfully reproduce stochastic and multi-modal human demonstrations than conventional uni-modal policies. These successes motivate us to leverage diffusion models for IL, aiming to model diverse expert behaviors as a multi-modal distribution. However, a behavior cloned policy often struggles to generalize beyond the demonstrated data distribution, suffering from compounding errors when it encounters novel states [24].

While behavioral cloning directly learns a policy from state-action examples via supervised learning, inverse reinforcement learning (IRL) methods instead infer a reward function under which the expert is optimal and then train a policy to maximize this reward [1, 36]. By capturing the underlying objectives of expert behavior rather than specific actions, policies trained via IRL exhibit better generalization and adaptability to variations in the environment or task dynamics. However, classical IRL was often impractical, requiring repeatedly solving a full RL problem as an inner loop. Adversarial Imitation

Learning (AIL) reframes IRL as a distribution-matching problem, enabling more efficient learning. In particular, Generative Adversarial Imitation Learning (GAIL) [14] introduced a GAN-like framework in which a discriminator is trained to distinguish expert from agent behaviors, and a policy modeled as a generator is trained via policy gradient to produce trajectories that the discriminator cannot tell apart from expert trajectories. This formulation effectively matches the occupancy measure of the learned policy to that of the expert, and GAIL and its variants [35, 20] have demonstrated strong performance on complex control tasks. However, the alternating optimization between the discriminator and policy makes such adversarial methods computationally expensive and sometimes unstable.

Recent research has sought to simplify AIL by removing the costly policy optimization inner loop. Barde et al. [6] proposed Adversarial Soft Advantage Fitting (ASAF), which avoids policy gradient updates altogether. In ASAF, the discriminator is structured to output a parametric policy distribution directly, conditioned on both the previous generator policy and a new learnable policy. When optimized to equilibrium, this discriminator effectively solves for the optimal imitation policy, eliminating the need for a separate policy update step, i.e. the updated policy is obtained for free from the discriminator parameters. This elegant one-step formulation drastically simplifies training, cutting out the policy gradient updates. Crucially, however, ASAF assumes the policy class is one for which probabilities can be evaluated in closed form, e.g. policies modeled as Gaussian or normalizing flow. This is because the training objective of the discriminator involves computing policy densities, an operation that is tractable for simple parametric or flow-based policies. This assumption breaks down for diffusion models: diffusion policies generate samples via an iterative denoising process, and their exact likelihood are generally intractable to compute. This incompatibility prevents a naive approach to ASAF to diffusion-based policies.

In this paper, we bridge diffusion generative models with AIL without requiring any policy optimization step. Building on the insights of ASAF, we introduce a diffusion policy imitation framework that retains the ability to match expert distributions adversarially while harnessing the expressive power of diffusion models for multi-modal behavior. The key contribution is a novel training objective: we derive a tractable lower bound to the ASAF objective that enables us to train diffusion policies efficiently despite the intractability of their exact densities. By optimizing this lower bound, our method avoids explicit computation of marginal diffusion densities, yet still directs the diffusion policy to fit expert demonstration distribution. Notably, our approach also complements recent advances that integrate diffusion models into AIL. For example, diffusion models have been used to strengthen the discriminator in AIL by modeling state-action distributions [18, 33]; in contrast, our focus is on using diffusion as the policy model itself and devising a training algorithm that circumvents policy gradient updates.

We summarize our main contributions as follows:

1. **Diffusion Policies for AIL:** To the best of our knowledge, we propose the first AIL framework that employs diffusion policies to model a multi-modal expert behavior distributions.
2. **ASAF for Diffusion Policies:** We adapt the ASAF algorithm [6] to diffusion-based policies by deriving a new training objective that bypasses intractable computation of marginal diffusion densities. We show that this surrogate objective is a tight lower bound of the training objective in ASAF, making our algorithm an instance of minorization-maximization algorithm [16].
3. **Empirical Validation:** We evaluate the proposed diffusion policy imitation method on standard IL benchmarks, including continuous control tasks in the MuJoCo simulator [31] and maze navigation tasks in the Maze2D environment [11]. Without the policy optimization loop, our diffusion-based approach effectively learns to imitate the expert demonstrations on these tasks, demonstrating that diffusion policies can capture the breadth of expert behaviors while maintaining competitive performance with state-of-the-art imitation learning methods.

2 Related Works

2.1 Adversarial Imitation Learning (AIL)

AIL recasts imitation learning as occupancy-measure distribution matching, removing the expensive full RL inner loop required by classical IRL algorithms. GAIL [14] was one of the first to formulate this idea as a GAN-style minimax game between a policy generator and a discriminator, proving its effectiveness in high-dimensional continuous-control tasks. A series of extensions broadened its

expressiveness: InfoGAIL [20, 13] augments the adversarial objective with a mutual information regularizer that pushes the policy to embed diverse behavioral patterns in latent variables, enabling it to disentangle and reproduce multiple expert behavior modes. Building on this idea, Ess-InfoGAIL [10] introduces a semi-supervised learning approach that extracts more meaningful representations from a small amount of labeled demonstrations, thereby improving sample efficiency and stability. Although these variants enhance the ability to imitate diverse expert behaviors, they still depend on the policy update in the inner loop, inheriting the associated computational complexity and instability from alternating optimization.

To alleviate this burden, Adversarial Soft Advantage Fitting (ASAF) [6] reformulates the AIL objective so that the policy update occurs implicitly inside the discriminator, eliminating the need for separate policy optimization. While computationally attractive, ASAF has so far been restricted to policy classes with probabilities evaluable in closed form, e.g. Gaussians or normalizing flows, because its objective requires exact density evaluation.

2.2 Diffusion Models in Sequential Decision Making

Diffusion models [15, 29, 27, 30] have demonstrated remarkable success in generative modeling, particularly in the domains of images and audio [8, 22, 5], and are now increasingly being applied to sequential decision-making tasks. Diffusion-BC [21] showed that diffusion-based policies are more accurate in replicating diverse human demonstrations in robotic manipulation tasks under behavior cloning. Diffuser [17] uses diffusion model to generate trajectories guided by the reward function. Diffuser Decision [2] uses conditional diffusion model with classifier-free guidance to generate trajectories. Diffusion-QL [34] represents the policy as a diffusion model, and train it via Q-learning.

Diffusion models have been also adopted in the AIL setting. DiffAIL [33] replaces the standard binary discriminator in AIL with an unconditional diffusion model trained via diffusion loss, enabling more precise occupancy-measure matching of expert state-action pairs. DRAIL [18] instead incorporates a conditional diffusion model as the discriminator to improve its ability to distinguish between agent and expert state-action pairs.

Our work departs from these prior works by extending ASAF to diffusion-based policies, whose exact densities are intractable to evaluate, via a tractable lower bound on the ASAF objective. This development combines the efficiency and stability of ASAF with the rich, multi-modal expressivity of diffusion models, achieving adversarial imitation learning without any explicit policy optimization loop.

3 Preliminaries

3.1 Reinforcement Learning and Diffusion Models

Markov Decision Process (MDP) We model the RL problem as an MDP, defined by the tuple $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r, P_0, \gamma)$, where \mathcal{S} is the state space, \mathcal{A} is the action space, $P(s'|s, a) \in [0, 1]$ is the state transition probability function, $r(s, a) \in \mathbb{R}$ is the reward function, $P_0(s) \in [0, 1]$ is the initial state distribution, and $\gamma \in [0, 1]$ is a discount factor. The objective is to learn a policy that maximizes the expected return, $\max \mathbb{E}[\sum_t \gamma^t r(s_t, a_t)]$.

Diffusion Models Diffusion models [15] have emerged as powerful tools for RL tasks [17, 19, 3]. Following [17], we utilize diffusion probabilistic models [15] for generating trajectories. These models are composed of two stochastic processes: forward noising process and reverse denoising process. The forward process, shown in Eq. (1), is a Markov chain with a predefined Gaussian transition, where data $\tau \in \mathcal{T}$ is iteratively corrupted according to a fixed variance schedule:

$$q(\tau^i | \tau^{i-1}) := \mathcal{N}(\tau^i; \sqrt{1 - \beta_i} \tau^{i-1}, \beta_i \mathbf{I}), \quad (1)$$

for $i \in \{1, \dots, N\}$ and $0 < \beta_i < 1$. The variance schedule β_i is chosen such that $q(\tau^N)$ approximates $\mathcal{N}(\mathbf{0}, \mathbf{I})$. The reverse (denoising) process, shown in Eq. (2), is another Markov chain with a parameterized Gaussian transition, used for the data sampling distribution $\tau^0 \sim p_\theta(\cdot)$:

$$p_\theta(\tau^{i-1} | \tau^i) := \mathcal{N}(\tau^{i-1}; \mu_\theta(\tau^i, i), \Sigma^i) \quad (2)$$

where $\mu_\theta(\tau^i, i)$ is typically parameterized by a neural network. A common way to train this reverse process is via the variational lower bound. However, rather than predicting the mean μ , DDPM [15] propose to predict the forward noise ϵ , leading to the simplified loss function:

$$\mathbb{E}_{\tau^0, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), i \sim \mathcal{U}(1, N)} [\|\epsilon - \epsilon_\theta(\tau^i, i)\|^2], \quad (3)$$

where $\tau^i := \sqrt{\alpha_i} \tau^0 + \sqrt{1 - \alpha_i} \epsilon$, and $\alpha_i := \prod_{j=1}^i (1 - \beta_j)$. Here, ϵ_θ is the noise prediction network that estimates the noise ϵ added to the clean sample τ^0 that leads to the noisy sample τ^i .

3.2 Adversarial Imitation Learning

GAIL [14] This algorithm employs a GAN-like training for AIL, where a policy π acts as a generator and an explicit discriminator $D : \mathcal{T} \rightarrow [0, 1]$ serves as a binary classifier to distinguish the trajectory $\tau \in \mathcal{T}$ between the demonstration distribution p_E induced by the expert policy π_E and the imitation policy distribution p_π . The policy and the discriminator are trained with the minimax optimization objective:

$$\min_{\pi} \max_D \mathcal{L}(D, p_\pi) \quad (4)$$

where $\mathcal{L}(D, p_\pi) := \mathbb{E}_{\tau \sim p_E} [\log D(\tau)] + \mathbb{E}_{\tau \sim p_\pi} [\log(1 - D(\tau))]$.

GAIL alternates between updating discriminator and the policy. The discriminator is updated using the binary cross-entropy loss to differentiate expert samples from generated ones. The policy is then updated through RL by using the discriminator output as the reward, e.g. $-\mathbb{E}_{\tau \sim p_\pi} [\log(1 - D(\tau))]$.

ASAF [6] This algorithm, while adopting the same GAIL objective in Eq. (4), introduces the *structured discriminator*, motivated by the analytical solution of the inner maximization [9]. Formally, for any pair of policies π and π' , define

$$D_{\pi, \pi'}(\tau) = \frac{p_{\pi'}(\tau)}{p_{\pi'}(\tau) + p_\pi(\tau)}. \quad (5)$$

Then, the solution to the inner maximization in Eq. (4) is equal to the expert distribution, $\pi^* = \operatorname{argmax}_{\pi'} \mathcal{L}(D_{\pi, \pi'}, \pi) = \pi_E$ for any policy π , and the solution to the outer minimization is also equal to the same solution, i.e. $\operatorname{argmin}_\pi \max_{\pi'} \mathcal{L}(D_{\pi, \pi'}, \pi) = \operatorname{argmin}_\pi \mathcal{L}(D_{\pi, \pi_E}, \pi) = \pi_E$.

Based on this result, a practical implementation of ASAF sets π as the policy from the previous iteration and updates the policy π' to maximize the discriminator objective \mathcal{L} .

4 Method

Our goal is to employ diffusion-based policy to capture multi-modal behaviors observed in expert demonstrations, while training the policy with ASAF for efficiency and stability. The fundamental bottleneck lies in the fact that ASAF requires efficient evaluations of $p_\pi(\tau)$, which is intractable for diffusion models. To address this issue, we derive a lower bound of the the discriminator training objective which is tight at the optimal solution. With this lower bound as the surrogate objective, our algorithm, **Diffusion Policy Adversarial Imitation Learning (DPAIL)**, becomes an instance of minorization-maximization (MM) algorithm [16].

DPAIL: Diffusion Policy for Adversarial Imitation Learning without Policy Optimization In line with Janner et al. [17], we assume trajectory-level diffusion models $p_\theta(\tau)$, instead of single-step models. Throughout this paper, we denote τ^0 as a trajectory to reuse notations from diffusion models.

First, we focus on the first term of Eq. (4) that involves expert demonstrations. Using the structured discriminator in Eq. (5), the maximization of the discriminator can be formulated as:

$$\max_{\theta} \mathbb{E}_{\tau^0 \sim p_E} [\log D_{\theta^{\text{old}}, \theta}(\tau^0)] = \max_{\theta} \mathbb{E}_{\tau^0 \sim p_E} \left[\log \sigma \left(\log \frac{p_\theta(\tau^0)}{p_{\theta^{\text{old}}}(\tau^0)} \right) \right]. \quad (6)$$

When $p_\theta(\tau^0)$ and $p_{\theta^{\text{old}}}(\tau^0)$ are modeled as diffusion processes, it is computationally expensive to directly calculate the marginal densities. We first leverage the fact that the perturbed transitions

$q(\tau^i | \tau^{i-1})$ of p_θ and $p_{\theta^{\text{old}}}$ are the same for all forward diffusion steps $i \in [1, N]$ since they have the same variance schedule. This allows us to rewrite the log density ratio as follows:

$$\log \frac{p_\theta(\tau^0)}{p_{\theta^{\text{old}}}(\tau^0)} = \log \frac{\prod_{i=1}^N q(\tau^i | \tau^{i-1}) p_\theta(\tau^0)}{\prod_{i=1}^N q(\tau^i | \tau^{i-1}) p_{\theta^{\text{old}}}(\tau^0)} = \log \frac{\prod_{i=1}^N p_\theta(\tau^{i-1} | \tau^i)}{\prod_{i=1}^N p_{\theta^{\text{old}}}(\tau^{i-1} | \tau^i)} \frac{q(\tau^N)}{q(\tau^N)}$$

The last equality comes from the fact that the reverse and forward processes coincide when the diffusion process reaches equilibrium, with $q(\tau^N)$ being Gaussian that will be canceled out. In addition, taking the expectation of this log density ratio over $\tau^{1:N} \sim q(\cdot | \tau^0)$ does not change anything since it is still ratio of marginal densities. Thus, we can rewrite Eq. (6) as

$$\max_{\theta} \mathbb{E}_{\tau^0 \sim p_E} \left[\log \sigma \left(\mathbb{E}_{\tau^{1:N} \sim q(\tau^{1:N} | \tau^0)} \log \frac{\prod_{i=1}^N p_\theta(\tau^{i-1} | \tau^i)}{\prod_{i=1}^N p_{\theta^{\text{old}}}(\tau^{i-1} | \tau^i)} \right) \right] = \max_{\theta} \mathbb{E}_{\tau^0 \sim p_E} [f_\theta(\tau^0)] . \quad (7)$$

Finally, applying Jensen's inequality to the concave function $\log \sigma(\cdot)$, we can derive a lower bound of f :

$$f_\theta(\tau^0) \geq \mathbb{E}_{i, \tau^i} \left[\log \sigma \left(N \cdot [\text{KL}(q(\tau^{i-1} | \tau^i, \tau^0) \| p_{\theta^{\text{old}}}(\tau^{i-1} | \tau^i)) - \text{KL}(q(\tau^{i-1} | \tau^i, \tau^0) \| p_\theta(\tau^{i-1} | \tau^i))] \right) \right] \quad (8)$$

where $i \sim \mathcal{U}(1, N)$, $\tau^i \sim q(\tau^i | \tau^0)$.

Since $q(\tau^{i-1} | \tau^i, \tau^0)$ is Gaussian by Bayes' rule, and both $p_\theta(\tau^{i-1} | \tau^i)$ and $p_{\theta^{\text{old}}}(\tau^{i-1} | \tau^i)$ are parameterized as Gaussians, all KL divergences in Eq. (8) admit closed-form expressions. Following [15], we do not predict the mean μ_θ of p_θ directly. Instead, we train a noise prediction network ϵ_θ , under which the mean is given by: $\mu_\theta(\tau^i, i) = \frac{1}{\sqrt{1-\beta_i}} \left(\tau^i - \frac{\beta_i}{\sqrt{1-\alpha_i}} \epsilon_\theta(\tau^i, i) \right)$. Substituting this into Eq. (8) yields the first term of the $\mathcal{L}_{\text{DPAIL}}^{(1)}$ objective as:

$$\mathcal{L}_{\text{DPAIL}}^{(1)}(\theta, \theta^{\text{old}}, \tau^0) := \mathbb{E}_{i, \epsilon} \left[\log \sigma \left(N \cdot (\|\epsilon - \epsilon_{\theta^{\text{old}}}(\tau^i, i)\|^2 - \|\epsilon - \epsilon_\theta(\tau^i, i)\|^2) \right) \right] . \quad (9)$$

Here, $\epsilon_{\theta^{\text{old}}}$ is the noise prediction network for $p_{\theta^{\text{old}}}$, $\epsilon \sim \mathcal{N}(0, I)$, $i \sim \mathcal{U}(1, N)$, and $\tau^i = \sqrt{\alpha_i} \tau^0 + (1 - \alpha_i) \epsilon$.

For the second term of Eq. (4) that involves generative sample $\bar{\tau}^0$ from $p_{\theta^{\text{old}}}$, the lower bound of the objective is derived similarly due to the symmetry of the sigmoid function $1 - \sigma(\log \frac{p_\theta}{p_{\theta^{\text{old}}}}) = \sigma(\log \frac{p_{\theta^{\text{old}}}}{p_\theta})$:

$$\mathcal{L}_{\text{DPAIL}}^{(2)}(\theta, \theta^{\text{old}}, \bar{\tau}^0) := \mathbb{E}_{i, \epsilon} \left[\log \sigma \left(N \cdot (\|\epsilon - \epsilon_\theta(\bar{\tau}^i, i)\|^2 - \|\epsilon - \epsilon_{\theta^{\text{old}}}(\bar{\tau}^i, i)\|^2) \right) \right] . \quad (10)$$

Eq. (9) encourages accurate noise prediction for noised expert data by maximizing the gap in prediction errors between ϵ_θ and $\epsilon_{\theta^{\text{old}}}$. In contrast, Eq. (10) discourages accurate noise prediction for noised generative data in ϵ_θ . Detailed derivations are provided in Appendix A.

Monotonic improvement We employ the lower bound of Eq. (8),

$$\mathbb{E}_{\tau^0 \sim p_E} [\mathcal{L}_{\text{DPAIL}}^{(1)}(\theta, \theta^{\text{old}}, \tau^0)] + \mathbb{E}_{\bar{\tau}^0 \sim p_{\theta^{\text{old}}}} [\mathcal{L}_{\text{DPAIL}}^{(2)}(\theta, \theta^{\text{old}}, \bar{\tau}^0)] ,$$

as a surrogate objective. Importantly, our algorithm becomes an instance of minorization-maximization algorithm since (1) we optimize with a surrogate objective which is a lower bound of the original objective (2) the lower bound is tight at the convergence $\theta^{\text{old}} = \theta$. This guarantees monotonic improvement of the original training objective. Further explanations are provided in Appendix A.

Practical implementation In our approach, the diffusion policy generates fixed-horizon sub-trajectories of length H , instead of producing full trajectories. We then execute the resulting H actions sequentially in the environment. To condition on the current state at the start of the sampling process, we overwrite the corresponding state variable at every diffusion step with the current observed state. The detailed procedures for action execution and sampling appear in Algorithm 2 and 3 in Appendix. Since there is a discrepancy between the trajectories sampled entirely from the generator p_π and those obtained from the environment, we clip the denoising error $\|\epsilon - \epsilon_{\theta^{\text{old}}}(\bar{\tau}^i, i)\|^2$ to prevent it from being too large. The complete DPAIL algorithm is summarized in Algorithm 1. Additional implementation details can be found in Appendix D.

Algorithm 1 DPAIL

Input: expert trajectories $\mathcal{D}_E = \{\tau_n\}_{n=1}^{N_E}$
Randomly initialize p_{θ_0} and set $p_{\theta_{\text{old}}} \leftarrow p_{\theta_0}$
for $k \in [0, \dots, K]$ **do**
 Collect trajectories $\mathcal{D}_{\theta_{\text{old}}} = \{\bar{\tau}_n\}_{n=1}^{N_{\theta_{\text{old}}}}$ using $p_{\theta_{\text{old}}}$ by interacting with environment
 Update θ_{k+1} by optimizing the following loss in Eq. (9) and Eq. (10):

$$\theta_{k+1} = \arg \max_{\theta} \mathbb{E}_{\tau^0 \sim \mathcal{D}_E} [\mathcal{L}_{\text{DPAIL}}^{(1)}(\theta, \theta^{\text{old}}, \tau^0)] + \mathbb{E}_{\bar{\tau}^0 \sim \mathcal{D}_{\theta_{\text{old}}}} [\mathcal{L}_{\text{DPAIL}}^{(2)}(\theta, \theta^{\text{old}}, \bar{\tau}^0)].$$

$$p_{\theta_{\text{old}}} \leftarrow p_{\theta_{k+1}}$$

end for

Comparison with DRAIL DRAIL [18] was introduced to incorporate diffusion models into the discriminator in GAIL. It employs conditional diffusion models for the discriminator, with the loss function given by:

$$\mathcal{L}_{\text{diff}}(\tau^0, c) := \mathbb{E}_{i, \epsilon} [\|\epsilon_{\phi}(\tau^0, i|c) - \epsilon\|^2] \quad (11)$$

where $c \in \{c^+, c^-\}$ denotes real or fake labels. This loss function forms the basis of the diffusion-based discriminator $D_{\phi} : \mathcal{T} \rightarrow [0, 1]$,

$$D_{\phi}(\tau^0) := \sigma(\mathcal{L}_{\text{diff}}(\tau^0, c^-) - \mathcal{L}_{\text{diff}}(\tau^0, c^+)),$$

which is trained using a binary cross-entropy loss to predict 1 for expert samples and 0 for generated samples. The overall diffusion training objective of DRAIL is:

$$\mathbb{E}_{\tau^0 \sim p_E} [\log \sigma(\mathcal{L}_{\text{diff}}(\tau^0, c^-) - \mathcal{L}_{\text{diff}}(\tau^0, c^+))] + \mathbb{E}_{\bar{\tau}^0 \sim p_{\pi}} [\log \sigma(\mathcal{L}_{\text{diff}}(\bar{\tau}^0, c^+) - \mathcal{L}_{\text{diff}}(\bar{\tau}^0, c^-))]. \quad (12)$$

Both DRAIL (Eq. (12)) and DPAIL (Eq. (9)) rely on differences in noise predictions errors within a sigmoid function. In DRAIL, this difference arise from comparing predictions conditioned on two different class labels c^+ and c^- , using the same noise prediction network ϵ_{ϕ} . In contrast, DPAIL computes the difference using two distinct noise prediction networks, ϵ_{θ} and $\epsilon_{\theta_{\text{old}}}$. Despite this similarity in formulation, the two approaches differ fundamentally in how the diffusion model is used. DRAIL trains a unimodal Gaussian policy via RL, using the diffusion models purely as a reward signal, which limits its ability to represent multi-modal distributions. DPAIL, on the other hand, directly leverages the generative capacity of diffusion models to reproduce the diverse behavior in the expert demonstrations.

5 Experiments

In this section, we evaluate our method across navigation and control tasks, including Maze2d and MuJoCo environments. We begin with quantitative results that demonstrate its effectiveness at modeling multi-modal expert demonstrations. Next, we provide qualitative trajectory visualization to illustrate its ability to reproduce diverse behaviors. We then investigate how performance varies with the size of the expert dataset and the number of behavior modes. Finally, we wrap up with the analysis on the effects of the trajectory horizon H and the number of diffusion sampling steps N .

5.1 Experimental Setup

Environment We conduct experiments in six environments: **(1) HalfCheetah-v3** and **(2) Walker2d-v3**: The goal of these environments is to control a robot to move in the desired direction, including running forward and backward. **(3) Ant-v3**: In this setup, a quadruped ant robot is tasked with moving in one of four directions, including forward, backward, left, or right. **(4) AntGoal-v3**: This environment requires a quadruped ant robot to navigate to a target position. We define eight target locations, evenly distributed along a circle with a radius of 20. The target position is not observable in the state representation. **(5) maze2d-medium-v1**: A point robot is tasked with navigating to one of three goal positions in a medium-sized maze. **(6) maze2d-large-v1**: Similar to the medium-sized maze task, but in a larger maze with five goal positions.

Multi-modal demonstration dataset For MuJoCo environments, we pre-train M expert policies using SAC, where each policy corresponds to one of M behavior modes. We then sample K sets

Table 1: Normalized score (*Score*) and entropy (*Entropy*) for MuJoCo and Maze2d tasks. Each experiments is conducted using 5 different random seeds, and we collect 50 episodes for each seed. We report the scores as mean \pm standard error.

Environment	Metrics (\uparrow)	BC	Diffusion	GAIL	DiffAIL	DRAIL	InfoGAIL	ASAF	DPAIL
HalfCheetah-v3	Score	0.61 \pm 0.18	1.01 \pm 0.00	0.96 \pm 0.03	0.99 \pm 0.01	0.89 \pm 0.04	0.65 \pm 0.05	0.62 \pm 0.08	1.02 \pm 0.01
	Entropy	0.23 \pm 0.12	0.58 \pm 0.05	0.00 \pm 0.00	0.00 \pm 0.00	0.02 \pm 0.01	0.33 \pm 0.14	0.33 \pm 0.11	0.61 \pm 0.06
Walker2d-v3	Score	0.03 \pm 0.00	0.58 \pm 0.03	0.72 \pm 0.01	0.53 \pm 0.10	0.33 \pm 0.04	0.55 \pm 0.12	0.03 \pm 0.00	0.78 \pm 0.04
	Entropy	0.26 \pm 0.12	0.41 \pm 0.10	0.00 \pm 0.00	0.06 \pm 0.06	0.21 \pm 0.11	0.44 \pm 0.11	0.40 \pm 0.02	0.41 \pm 0.13
Ant-v3	Score	0.18 \pm 0.09	0.48 \pm 0.04	0.01 \pm 0.00	0.02 \pm 0.00	0.02 \pm 0.00	0.03 \pm 0.02	0.01 \pm 0.00	0.56 \pm 0.02
	Entropy	0.28 \pm 0.11	1.22 \pm 0.05	1.19 \pm 0.04	1.22 \pm 0.04	1.26 \pm 0.04	1.04 \pm 0.03	1.07 \pm 0.08	1.21 \pm 0.02
AntGoal-v3	Score	0.04 \pm 0.01	0.22 \pm 0.03	0.57 \pm 0.02	0.35 \pm 0.07	0.41 \pm 0.06	0.48 \pm 0.03	0.02 \pm 0.00	0.67 \pm 0.01
	Entropy	1.46 \pm 0.26	1.52 \pm 0.13	1.51 \pm 0.07	1.75 \pm 0.04	1.72 \pm 0.03	1.78 \pm 0.05	1.52 \pm 0.12	1.73 \pm 0.10
maze2d-medium-v1	Score	0.58 \pm 0.17	0.93 \pm 0.03	0.76 \pm 0.19	0.92 \pm 0.05	0.98 \pm 0.01	0.76 \pm 0.10	0.64 \pm 0.09	0.99 \pm 0.00
	Entropy	0.66 \pm 0.18	0.93 \pm 0.08	0.12 \pm 0.12	0.00 \pm 0.00	0.00 \pm 0.00	0.81 \pm 0.05	0.75 \pm 0.10	0.91 \pm 0.02
maze2d-large-v1	Score	0.61 \pm 0.18	0.94 \pm 0.04	0.94 \pm 0.01	0.96 \pm 0.02	0.95 \pm 0.03	0.74 \pm 0.08	0.79 \pm 0.10	1.00 \pm 0.00
	Entropy	0.61 \pm 0.26	0.95 \pm 0.20	0.10 \pm 0.11	0.00 \pm 0.00	0.45 \pm 0.13	1.05 \pm 0.06	0.54 \pm 0.14	1.04 \pm 0.11
Average	Score	0.34 \pm 0.11	0.69 \pm 0.11	0.66 \pm 0.13	0.63 \pm 0.14	0.59 \pm 0.14	0.53 \pm 0.10	0.35 \pm 0.13	0.83 \pm 0.06
	Entropy	0.58 \pm 0.19	0.93 \pm 0.15	0.63 \pm 0.25	0.50 \pm 0.28	0.61 \pm 0.26	0.98 \pm 0.20	0.76 \pm 0.16	0.90 \pm 0.19

of expert demonstrations using these pre-trained policies, with each set consisting of 10 trajectories in MuJoCo. For Maze2d environments, we utilize the D4RL [11] dataset to collect demonstrations consisting of trajectories from initial positions to goal positions. Specifically, we use 15 episodes for maze2d-medium-v1 and 30 episodes for maze2d-large-v1.

Baselines We compare our method against the following baselines:

- **BC** [4, 23] learns a Gaussian policy via supervised learning, a mapping from observed states to the corresponding expert actions.
- **Diffusion** [17, 7] trains diffusion policy models to predict action sequence conditioned on the state via supervised learning.
- **GAIL** [14] learns a Gaussian policy by jointly training a generator and a discriminator. The discriminator tries to distinguish trajectories produced by the policy from expert demonstrations, while the policy is optimized to fool the discriminator.
- **DiffAIL** [33] integrates diffusion models into AIL by using the diffusion model loss as a reward. It employs an unconditional diffusion model in the state-action reconstruction loss. Unlike GAIL, the reward does not come from the estimated value of (5).
- **DRAIL** [18] combines diffusion models with GAIL by using conditional diffusion models as a discriminator that performs binary classification.
- **InfoGAIL** [20, 13] is an extension of GAIL that trains Gaussian Mixture Models (GMM) to capture multi-modal behaviors by incorporating an unsupervised representation. It uses a uniform categorical distribution as the prior for the GMM.
- **ASAF** [6] is an alternative approach to train a Gaussian policy without policy optimization in AIL.

5.2 Experimental Results

To compare the performances of methods, we use normalized scores for MuJoCo tasks and success rates for Maze2d tasks. For MuJoCo tasks, we compute returns across all modes, select the maximum value, and normalize it relative to the corresponding expert performance, following [10, 7]. This score is high even if the agent captures only a single mode of the expert behavior. In Maze2d tasks, success is defined by whether the agent reaches one of the goals. We also evaluate behavioral diversity by measuring the entropy of the mode index that yields the maximum return during evaluation. In Maze2d, the goal index closest to the agent’s final state is used for entropy calculation. Table 1 summarizes the results.

In HalfCheetah-v3, all methods demonstrate strong performance except for BC. Specifically, GAIL, DiffAIL, and DRAIL reach expert-level performance, but, yield zero or near-zero entropy, suggesting they collapse to a single mode. While InfoGAIL attains higher entropy, it shows relatively lower performance, which indicate the challenges of unsupervised representation learning. In contrast, Diffusion and DPAIL achieve high performance and high entropy.

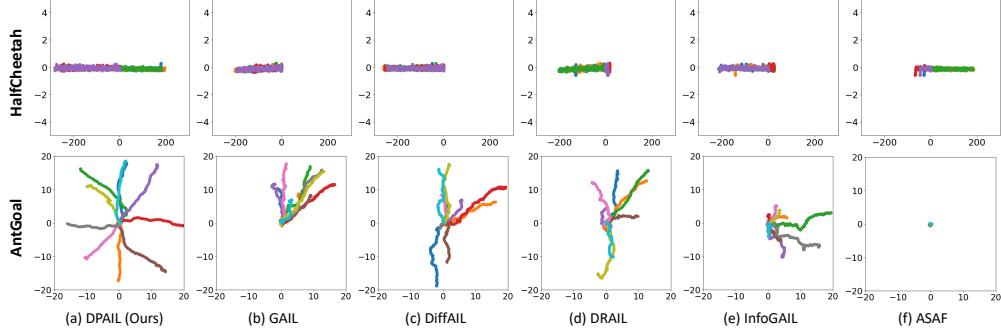


Figure 1: Learned behaviors of baseline methods and DPAIL (ours) in MuJoCo tasks. The first row shows HalfCheetah-v3, where the task is to move forward and backward ($\pm x$ -axis) from a randomly initialized position around $(0, 0)$. Each plot illustrates five different trajectories generated from the same policy. The second row shows AntGoal-v3, where the task is to reach one of eight target positions distributed around a circle from a randomly initialized position near $(0, 0)$. Each plot illustrates ten different trajectories generated by the same policy.

For more complex tasks with numerous behavior modes, such as Ant-v3 and AntGoal-v3, most baseline methods (including Diffusion) perform poorly. GAIL, DiffAIL, DRAIL, and ASAF fail to train, resulting in low returns and high entropy. These observations suggest instability when learning from multiple modes—agents frequently oscillate among modes and fail to learn a stable policy. Notably, training failures frequently yield nearly random behaviors, which lead to high entropy. For example, most baseline methods fail on Ant-v3, culminating in low performance but high entropy. Although InfoGAIL leverages the GMM to model diverse behaviors, it also exhibits low performance. This suggests that combining RL policy training with unsupervised representation learning remains as a challenging problem.

Meanwhile, Diffusion, a naive offline approach, sometimes outperforms several online methods in terms of returns and entropy (e.g., in Ant-v3 and Maze2d), likely due to the stability of its training process to effectively handle multiple modes. However, it struggles to perfectly imitate expert behaviors with limited datasets. In contrast, DPAIL consistently achieves strong performance alongside high entropy across all tasks. Even in environments with many behavior modes, DPAIL successfully avoids mode-collapse due to the capability of diffusion models, and successfully learn expert behaviors through the adversarial training. This demonstrates the effectiveness of our approach.

To qualitatively analyze the learned behaviors of our algorithm and baselines, we visualize trajectories sampled from policies in Figure 1. In MuJoCo tasks, DPAIL demonstrates diverse and successful behaviors across tasks. In contrast, most algorithms exhibit mode-collapse, where their learned behaviors concentrated in only a few modes. Although InfoGAIL has high entropy, it struggles to imitate even a single mode. We present additional qualitative results of the learned behaviors in the Maze tasks in Appendix E.

Impact of the number of demonstrations and modes To further assess DPAIL, we analyze its performance across different demonstration dataset sizes ($\{3, 5, 10, 20\}$ trajectories) and the number of modes, ($\{1, 2, 3, 4\}$) in Ant-v3 environment, where most baseline methods fail to learn policies. The results are presented in Figure 2.

In single-mode settings, all methods achieve stronger performance than in four-mode settings. However, as the number of modes increases, most algorithms (excluding Diffusion and DPAIL) experience significant performance degradation, ultimately failing to train. These findings highlight the limitations of traditional AIL methods in handling multi-modal expert demonstrations.

While both Diffusion and DPAIL exhibit performance declines as the number of modes increases, they do not fail to train policies. They maintain minimum normalized scores of 0.2 (Diffusion) and 0.4 (DPAIL) in the 3 trajectories demonstration and 4-modes setting. Notably, DPAIL consistently outperforms Diffusion when the number of demonstrations is limited. However, once the number of demonstrations becomes sufficiently large (e.g. 20 trajectories), Diffusion performs comparably to DPAIL. These results demonstrates the effectiveness of DPAIL for scenarios requiring imitation from limited, multi-modal demonstrations. Extended quantitative analyses supporting Figure 2 are provided Table 5 in Appendix.

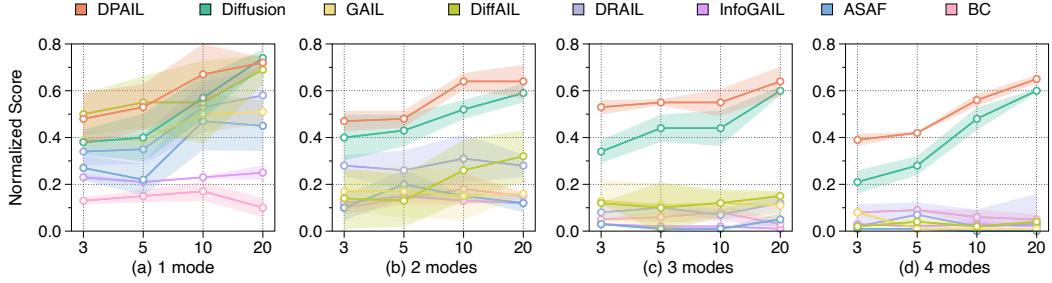


Figure 2: Performance with respect to the number of demonstrations and modes. The x-axis denotes the number of expert trajectories. The graph depicts the average score across 5 seeds with standard error in Ant-v3 environment.

Inference compute versus planning horizon H DPAIL incurs higher inference cost due to N -step diffusion sampling for action generation. To reduce this cost, we generate H -step sub-trajectories and execute the resulting H actions sequentially, requiring diffusion sampling only every H time-steps.

However, longer H introduces the compounding errors between predicted and the true state transitions. Figure 3 presents the trade-off between inference time per action (Time Cost) and performance (Score) across different values of H . As shown, shorter horizon yield better performance at higher time cost, while longer horizons reduce inference overhead but degrade performance due to the accumulated prediction errors.

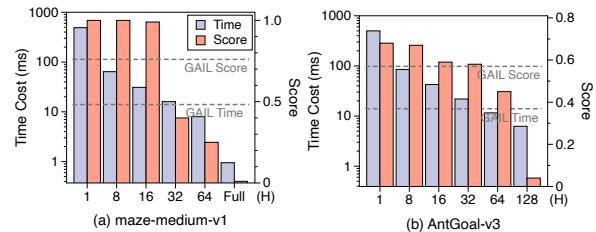


Figure 3: Inference compute versus planning horizon H

Diversity versus diffusion sampling step N The number of diffusion steps N directly influences the model’s ability to approximate the expert’s multi-modal distribution. To evaluate this effect, we vary N and report both entropy and task performance in Figure 4. As N increases, entropy rises, indicating richer behavioral diversity, while performance remains nearly unchanged. This findings indicate that at low N , the policy captures only a few dominated modes, whereas higher N values allow it to represent a broader spectrum of behaviors.

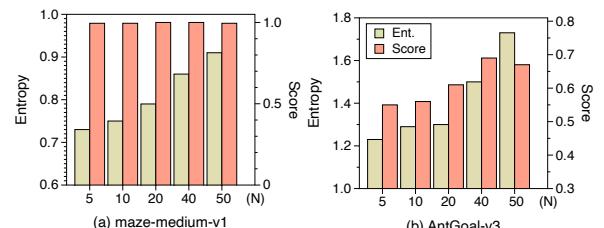


Figure 4: Diversity versus diffusion sampling step N

6 Conclusion and Discussion

We presented Diffusion Policy for Adversarial Imitation Learning (DPAIL), a framework integrates diffusion models into Adversarial Imitation Learning (AIL) to effectively capture multi-modal expert behaviors. DPAIL avoids the mode-collapse and instability issues faced by many existing methods when learning from multi-modal demonstrations. Extensive experiments on MuJoCo and Maze2d tasks demonstrate that DPAIL consistently achieves high returns and maintains high diversity, even in challenging environments with numerous expert modes.

7 Limitation and Future Work

While our approach effectively models multi-modal behaviors using diffusion models, it requires more computation costs for action decision compared to other baselines. This overhead arise from the iterative sampling process used by diffusion models. Several works [25, 12] have proposed methods to accelerate sampling in diffusion process. Incorporating these techniques into DPAIL is a promising direction to enhance its efficiency. Furthermore, unlike InfoGAIL, our method does not

learn latent representations, making it difficult to guide the behavior toward specific modes. Recent research [28] has explored guiding models that steer the reverse diffusion process toward desired outcomes. Extending our framework with such guidance mechanisms could improve controllability in multi-modal settings.

Acknowledgments

This work was supported by Institute for Information & Communications Technology Promotion (IITP) - Information Technology Research Center (ITRC) grant funded by MSIT (No.RS-2024-00397310, Development of an AI Simulator for Creating Transparent Compounds that Can Be Altered for Tactile Sensation; No.RS-2024-00457882, AI Research Hub Project; No.RS-2022-II220311, Development of Goal-Oriented Reinforcement Learning Techniques for Contact-Rich Robotic Manipulation of Everyday Objects; No.RS-2020-II200940, Foundations of Safe Reinforcement Learning and Its Applications to Natural Language Processing; No.RS-2019-II190075, Artificial Intelligence Graduate School Program (KAIST); IITP-2025-RS-2024-00436857).

Broader Impacts

The potential applications of our method extend across various fields, particularly in robotics and industrial automation where learning from demonstrations is crucial. In robotics, our approach can enhance autonomous decision-making in complex environments. By improving imitation learning from multi-modal expert demonstrations where conventional algorithms often fail to learn, our work contributes to the advancement of AI for real-world deployment.

References

- [1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In *Machine Learning, Proceedings of the Twenty-first International Conference ICML*, volume 69 of *ACM International Conference Proceeding Series*. ACM, 2004.
- [2] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is conditional generative modeling all you need for decision-making? In *The Eleventh International Conference on Learning Representations (ICLR)*, 2023.
- [3] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal. Is conditional generative modeling all you need for decision making? In *The Eleventh International Conference on Learning Representations*, 2023.
- [4] Michael Bain and Claude Sammut. A framework for behavioural cloning. In *Machine Intelligence 15, Intelligent Agents [St. Catherine's College, Oxford, July 1995]*. Oxford University, 1999.
- [5] Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat, Junhwa Hur, Guanghui Liu, Amit Raj, Yuanzhen Li, Michael Rubinstein, Tomer Michaeli, Oliver Wang, Deqing Sun, Tali Dekel, and Inbar Mosseri. Lumiere: A space-time diffusion model for video generation. In *SIGGRAPH Asia 2024 Conference Papers*, 2024.
- [6] Paul Barde, Julien Roy, Wonseok Jeon, Joelle Pineau, Chris Pal, and Derek Nowrouzezahrai. Adversarial soft advantage fitting: Imitation learning without policy optimization. In *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems*, 2020.
- [7] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. In *Robotics: Science and Systems XIX*, 2023.
- [8] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In *Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems*, 2021.
- [9] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection between generative adversarial networks, inverse reinforcement learning, and energy-based models, 2016. URL <https://arxiv.org/abs/1611.03852>.

[10] Huiqiao Fu, Kaiqiang Tang, Yuanyang Lu, Yiming Qi, Guizhou Deng, Flood Sung, and Chunlin Chen. Ess-infogail: Semi-supervised imitation learning from imbalanced demonstrations. In *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems*, 2023.

[11] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep data-driven reinforcement learning. *CoRR*, 2020.

[12] Zhengyang Geng, Ashwini Pokle, and J. Zico Kolter. One-step diffusion distillation via deep equilibrium models. In *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems*, 2023.

[13] Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav S. Sukhatme, and Joseph J. Lim. Multi-modal imitation learning from unstructured demonstrations using generative adversarial nets. In *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems*, 2017.

[14] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In *Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems*, 2016.

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in Neural Information Processing Systems*, 2020.

[16] David R Hunter and Kenneth Lange. A tutorial on mm algorithms. *The American Statistician*, 2004.

[17] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for flexible behavior synthesis. In *Proceedings of the 39th International Conference on Machine Learning*, Proceedings of Machine Learning Research. PMLR, 2022.

[18] Chun-Mao Lai, Hsiang-Chun Wang, Ping-Chun Hsieh, Yu-Chiang Frank Wang, Min-Hung Chen, and Shao-Hua Sun. Diffusion-reward adversarial imitation learning. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

[19] Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline decision making. In *Proceedings of the 40th International Conference on Machine Learning*, 2023.

[20] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual demonstrations. In *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems*, 2017.

[21] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, and Sam Devlin. Imitating human behaviour with diffusion models. In *The Eleventh International Conference on Learning Representations*, 2023.

[22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR*, 2022.

[23] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In *Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, AISTATS*, 2010.

[24] Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning and structured prediction to no-regret online learning. In *Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS*, 2011.

[25] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In *The Tenth International Conference on Learning Representations, ICLR*, 2022.

[26] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms, 2017.

[27] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv preprint arXiv:2010.02502*, 2020.

[28] Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation. In *Proceedings of the 40th International Conference on Machine Learning*, Proceedings of Machine Learning Research. PMLR, 2023.

- [29] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In *Advances in Neural Information Processing Systems*, 2019.
- [30] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations*, 2021.
- [31] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In *2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS*. IEEE, 2012.
- [32] Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam, Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using direct preference optimization. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR*. IEEE, 2024.
- [33] Bingzheng Wang, Guoqiang Wu, Teng Pang, Yan Zhang, and Yilong Yin. Diffail: Diffusion adversarial imitation learning. *Proceedings of the AAAI Conference on Artificial Intelligence*, 2024.
- [34] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy class for offline reinforcement learning. In *The Eleventh International Conference on Learning Representations*, 2023.
- [35] Xin Zhang, Yanhua Li, Ziming Zhang, and Zhi-Li Zhang. f-gail: Learning f-divergence for generative adversarial imitation learning. In *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems*, 2020.
- [36] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse reinforcement learning. In *Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI*, 2008.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer **[Yes]** , **[No]** , or **[NA]** .
- **[NA]** means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "**[Yes]**" is generally preferable to "**[No]**", it is perfectly acceptable to answer "**[No]**" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "**[No]**" or "**[NA]**" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer **[Yes]** to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- **Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”**,
- **Keep the checklist subsection headings, questions/answers and guidelines below.**
- **Do not modify the questions and only use the provided macros for your answers.**

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope?

Answer: **[Yes]**

Justification: The abstract and introduction should clearly state the main claims.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: **[Yes]**

Justification: Section 7

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: Appendix A.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix D

Guidelines:

- The answer NA means that the paper does not include experiments.

- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: Appendix D

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: Appendix D

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: Standard Err is used

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: Experiments

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.

- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: **[Yes]**

Justification: We preserve anonymity.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: **[Yes]**

Justification: Broader Impacts

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: **[NA]**

Justification: NA

Guidelines:

- The answer NA means that the paper poses no such risks.

- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: No License Problem

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [No]

Justification:

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [No]

Justification:

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: N/A

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: NA

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

A Details of the Derivation

A.1 Derivations of Eq. (9) and Eq. (10)

In this section, we provide detailed derivations of Eq. (9) and Eq. (10). Given the expert sample $\tau^0 \sim p_E$, the reverse process $p_\theta(\tau^{i-1}|\tau^i)$, and the corresponding forward process $q(\tau^{1:N}|\tau^0)$,

$$\begin{aligned}
& \mathbb{E}_{\tau^0 \sim p_E} \left[\log \sigma \left(\mathbb{E}_{\tau^{1:N} \sim q(\tau^{1:N}|\tau^0)} \log \frac{\prod_{i=1}^N p_\theta(\tau^{i-1}|\tau^i)}{\prod_{i=1}^N p_{\theta^{\text{old}}}(\tau^{i-1}|\tau^i)} \right) \right] \\
&= \mathbb{E}_{\tau^0 \sim p_E} \left[\log \sigma \left(\mathbb{E}_{\tau^{1:N} \sim q(\tau^{1:N}|\tau^0)} \sum_{i=1}^N \log \frac{p_\theta(\tau^{i-1}|\tau^i)}{p_{\theta^{\text{old}}}(\tau^{i-1}|\tau^i)} \right) \right] \\
&= \mathbb{E}_{\tau^0 \sim p_E} \left[\log \sigma \left(\sum_{i=1}^N \mathbb{E}_{\tau^{1:N} \sim q(\tau^{1:N}|\tau^0)} \log \frac{p_\theta(\tau^{i-1}|\tau^i)}{p_{\theta^{\text{old}}}(\tau^{i-1}|\tau^i)} \right) \right] \\
&= \mathbb{E}_{\tau^0 \sim p_E} \left[\log \sigma \left(\sum_{i=1}^N \mathbb{E}_{\tau^{i-1}, \tau^i \sim q(\tau^i|\tau^0)q(\tau^{i-1}|\tau^i, \tau^0)} \log \frac{p_\theta(\tau^{i-1}|\tau^i)}{p_{\theta^{\text{old}}}(\tau^{i-1}|\tau^i)} \right) \right] \\
&\geq \mathbb{E}_{\tau^0 \sim p_E} \left[\mathbb{E}_{i \sim \mathcal{U}(1, N), \tau^i \sim q(\tau_i|\tau_0)} \log \sigma \left(N \mathbb{E}_{\tau^{i-1} \sim q(\tau^{i-1}|\tau^i, \tau^0)} \log \frac{p_\theta(\tau^{i-1}|\tau^i)}{p_{\theta^{\text{old}}}(\tau^{i-1}|\tau^i)} \right) \right] \quad (\text{concavity}) \\
&= \mathbb{E}_{\tau^0 \sim p_E} \left[\mathbb{E}_{i \sim \mathcal{U}(1, N), \tau^i \sim q(\tau_i|\tau_0)} \log \sigma \left(N \mathbb{E}_{\tau^{i-1} \sim q(\tau^{i-1}|\tau^i, \tau^0)} \log \frac{q(\tau^{i-1}|\tau^i, \tau^0)}{p_{\theta^{\text{old}}}(\tau^{i-1}|\tau^i)} - \log \frac{q(\tau^{i-1}|\tau^i, \tau^0)}{p_\theta(\tau^{i-1}|\tau^i)} \right) \right] \tag{13}
\end{aligned}$$

The posterior $q(\tau^{i-1}|\tau^i, \tau^0)$ is tractable via Bayes' rule, since both $q(\tau^{i-1}|\tau^0)$ and $q(\tau^i|\tau^{i-1}, \tau^0) = q(\tau^i|\tau^{i-1})$ are Gaussian distributions. The posterior $q(\tau^{i-1}|\tau^i, \tau^0)$ can be written as the following:

$$q(\tau^{i-1}|\tau^i, \tau_0) = \mathcal{N}(\tilde{\mu}_i(\tau^i, \tau^0), \tilde{\beta}_i I)$$

where $\tilde{\mu}_i(\tau^i, \tau^0) := \frac{1}{\sqrt{1-\beta_i}} \left(\tau^i - \frac{\beta_i}{\sqrt{1-\alpha_i}} z(\tau^i, \tau^0) \right)$, $z(\tau^i, \tau^0) := \frac{\tau^i - \sqrt{\alpha_i} \tau^0}{\sqrt{1-\alpha_i}} = \epsilon$. If we parameterize the model p_θ as $\mathcal{N}(\mu_\theta(\tau^i, i), \sigma_i^2 I)$, then the KL divergence between these isotropic Gaussians reduces to the squared error between the means: $\|\tilde{\mu}_i(\tau^i, \tau^0) - \mu_\theta(\tau^i, i)\|^2$. Ho et al. [15] proposes to parameterize μ_θ using a predicted noise ϵ_θ , such as:

$$\mu_\theta(\tau^i, i) = \frac{1}{\sqrt{1-\beta_i}} \left(\tau^i - \frac{\beta_i}{\sqrt{1-\alpha_i}} \epsilon_\theta(\tau^i, i) \right)$$

Substituting this into the squared error gives:

$$\begin{aligned}
\|\tilde{\mu}_i(\tau^i, \tau^0) - \mu_\theta(\tau^i, i)\|^2 &= \left\| \frac{1}{\sqrt{1-\beta_i}} \left(\tau^i - \frac{\beta_i}{\sqrt{1-\alpha_i}} z(\tau^i, \tau^0) \right) - \mu_\theta(\tau^i, i) \right\|^2 \\
&= \left\| \frac{1}{\sqrt{1-\beta_i}} \left(\tau^i - \frac{\beta_i}{\sqrt{1-\alpha_i}} \epsilon \right) - \frac{1}{\sqrt{1-\beta_i}} \left(\tau^i - \frac{\beta_i}{\sqrt{1-\alpha_i}} \epsilon_\theta(\tau^i, i) \right) \right\|^2 \\
&= \frac{\beta_i}{(1-\beta_i)(1-\alpha_i)} \|\epsilon - \epsilon_\theta(\tau^i, i)\|^2
\end{aligned}$$

Therefore, minimizing the KL divergence is equivalent to minimizing $\|\epsilon - \epsilon_\theta(\tau^i, i)\|^2$. Substituting this into Eq. 13 leads to the following equation:

$$\therefore \mathbb{E}_{\tau^0, i, \epsilon} \left[\log \sigma \left(N \cdot C_i (\|\epsilon - \epsilon_{\theta^{\text{old}}}(\tau^i, i)\|^2 - \|\epsilon - \epsilon_\theta(\tau^i, i)\|^2) \right) \right].$$

Here, $C_i = \frac{\beta_i}{(1-\beta_i)(1-\alpha_i)}$, $\epsilon \sim \mathcal{N}(0, I)$, and $\tau^i \sim q(\tau^i|\tau^0)$, thus $\tau^i = \sqrt{\alpha_i} \tau^0 + (1-\alpha_i) \epsilon$. Following Wallace et al. [32], we consider the weight $N \cdot C_i$ as a fixed constant value over i in practical implementation. Similarly, given the generative sample $\bar{\tau}^0 \sim p_{\theta^{\text{old}}}$, the reverse process $p_{\theta^{\text{old}}}(\bar{\tau}^{i-1}|\bar{\tau}^i)$, and the corresponding forward process $q_{\theta^{\text{old}}}(\bar{\tau}^{1:N}|\bar{\tau}^0) = q(\bar{\tau}^{1:N}|\bar{\tau}^0)$ (since they have the same

variance schedule),

$$\begin{aligned}
& \mathbb{E}_{\bar{\tau}^0 \sim p_{\theta^{\text{old}}}} \left[\log \sigma \left(\mathbb{E}_{\bar{\tau}^{1:N} \sim q(\bar{\tau}^{1:N} | \bar{\tau}^0)} \log \frac{\prod_{i=1}^N p_{\theta^{\text{old}}}(\bar{\tau}^{i-1} | \bar{\tau}^i)}{\prod_{i=1}^N p_{\theta}(\bar{\tau}^{i-1} | \bar{\tau}^i)} \right) \right] \\
&= \mathbb{E}_{\bar{\tau}^0 \sim p_{\theta^{\text{old}}}} \left[\log \sigma \left(\mathbb{E}_{\bar{\tau}^{1:N} \sim q(\bar{\tau}^{1:N} | \bar{\tau}^0)} \sum_{i=1}^N \log \frac{p_{\theta^{\text{old}}}(\bar{\tau}^{i-1} | \bar{\tau}^i)}{p_{\theta}(\bar{\tau}^{i-1} | \bar{\tau}^i)} \right) \right] \\
&= \mathbb{E}_{\bar{\tau}^0 \sim p_{\theta^{\text{old}}}} \left[\log \sigma \left(\sum_{i=1}^N \mathbb{E}_{\bar{\tau}^{1:N} \sim q(\bar{\tau}^{1:N} | \bar{\tau}^0)} \log \frac{p_{\theta^{\text{old}}}(\bar{\tau}^{i-1} | \bar{\tau}^i)}{p_{\theta}(\bar{\tau}^{i-1} | \bar{\tau}^i)} \right) \right] \\
&= \mathbb{E}_{\bar{\tau}^0 \sim p_{\theta^{\text{old}}}} \left[\log \sigma \left(\sum_{i=1}^N \mathbb{E}_{\bar{\tau}^{i-1}, \bar{\tau}^i \sim q(\bar{\tau}^i | \bar{\tau}^0)} q(\bar{\tau}^{i-1} | \bar{\tau}^i, \bar{\tau}^0) \log \frac{p_{\theta^{\text{old}}}(\bar{\tau}^{i-1} | \bar{\tau}^i)}{p_{\theta}(\bar{\tau}^{i-1} | \bar{\tau}^i)} \right) \right] \\
&\geq \mathbb{E}_{\bar{\tau}^0 \sim p_{\theta^{\text{old}}}} \left[\mathbb{E}_{i \sim \mathcal{U}(1, N), \bar{\tau}^i \sim q(\bar{\tau}_i | \bar{\tau}_0)} \log \sigma \left(N \mathbb{E}_{\bar{\tau}^{i-1} \sim q(\bar{\tau}^{i-1} | \bar{\tau}^i, \bar{\tau}^0)} \log \frac{p_{\theta^{\text{old}}}(\bar{\tau}^{i-1} | \bar{\tau}^i)}{p_{\theta}(\bar{\tau}^{i-1} | \bar{\tau}^i)} \right) \right] \quad (\text{concavity}) \\
&= \mathbb{E}_{\bar{\tau}^0 \sim p_{\theta^{\text{old}}}} \left[\mathbb{E}_{i \sim \mathcal{U}(1, N), \bar{\tau}^i \sim q(\bar{\tau}_i | \bar{\tau}_0)} \log \sigma \left(N \mathbb{E}_{\bar{\tau}^{i-1} \sim q(\bar{\tau}^{i-1} | \bar{\tau}^i, \bar{\tau}^0)} \log \frac{q(\bar{\tau}^{i-1} | \bar{\tau}^i, \bar{\tau}^0)}{p_{\theta}(\bar{\tau}^{i-1} | \bar{\tau}^i)} - \log \frac{q(\bar{\tau}^{i-1} | \bar{\tau}^i, \bar{\tau}^0)}{p_{\theta^{\text{old}}}(\bar{\tau}^{i-1} | \bar{\tau}^i)} \right) \right] \\
&\quad \therefore \mathbb{E}_{\bar{\tau}^0, i, \epsilon} \left[\log \sigma \left(N \cdot C_i (\|\epsilon - \epsilon_{\theta}(\bar{\tau}^i, i)\|^2 - \|\epsilon - \epsilon_{\theta^{\text{old}}}(\bar{\tau}^i, i)\|^2) \right) \right].
\end{aligned}$$

$C_i = \frac{\beta_i}{(1-\beta_i)(1-\alpha_i)}$, $\epsilon \sim \mathcal{N}(0, I)$ and $\bar{\tau}^i \sim q(\bar{\tau}^i | \bar{\tau}^0)$, thus, $\bar{\tau}^i = \sqrt{\alpha_i} \bar{\tau}^0 + (1-\alpha_i)\epsilon$.

A.2 Monotonic Improvement

In this section, we show that maximizing the surrogate objective guarantees a monotonic improvement in the original training objective. Revisiting Eq. (8), we denote the lower bound by $g_{\theta_k, \theta}(\tau^0)$, where $\theta_k = \theta^{\text{old}}$:

$$\begin{aligned}
f_{\theta}(\tau^0) &= \log \sigma \left(\mathbb{E}_{\tau^{1:N} \sim q(\tau^{1:N} | \tau^0)} \log \frac{\prod_{i=1}^N p_{\theta}(\tau^{i-1} | \tau^i)}{\prod_{i=1}^N p_{\theta_k}(\tau^{i-1} | \tau^i)} \right) \\
&\geq \mathbb{E}_{i \sim \mathcal{U}(1, N), \tau^i \sim q(\tau_i | \tau_0)} \log \sigma \left(N \mathbb{E}_{\tau^{i-1} \sim q(\tau^{i-1} | \tau^i, \tau^0)} \log \frac{p_{\theta}(\tau^{i-1} | \tau^i)}{p_{\theta_k}(\tau^{i-1} | \tau^i)} \right) = g_{\theta_k, \theta}(\tau^0).
\end{aligned}$$

Since $\log \sigma(\cdot)$ is a concave function, the lower bound $g_{\theta_k, \theta}(\tau^0)$ is always less than or equal to the original $f_{\theta}(\tau^0)$ for all $\theta \in \Theta$: (1) $f_{\theta}(\tau^0) \geq g_{\theta_k, \theta}(\tau^0)$. Moreover, when $\theta = \theta_k$, the log term in both sides becomes zero, yielding (2) $f_{\theta_k}(\tau^0) = g_{\theta_k, \theta_k}(\tau^0) = \log 1/2$.

If we maximize $g_{\theta_k, \theta}(\tau^0)$ instead of $f_{\theta}(\tau^0)$:

$$\theta_{k+1} = \arg \max_{\theta \in \Theta} g_{\theta_k, \theta}(\tau^0),$$

then the following inequality holds:

$$f_{\theta_{k+1}}(\tau^0) \geq g_{\theta_k, \theta_{k+1}}(\tau^0) \geq g_{\theta_k, \theta_k}(\tau^0) = f_{\theta_k}(\tau^0).$$

Therefore, this procedure guarantees monotonic improvement of the original objective.

A.3 Comparison with DPO-Diffusion

DPO-Diffusion [32] is an algorithm for aligning diffusion models with human preferences by considering ranked pairs (τ_w^0, τ_l^0) that indicate a preference for τ_w^0 over τ_l^0 . Built upon the Bradley-Terry (BT) model and the bijectivity between reward and policy, DPO-Diffusion optimizes the diffusion model p_{θ} with a reference distribution p_{ref} via:

$$\mathbb{E}_{(\tau_w^0, \tau_l^0)} \log \sigma \left(\mathbb{E}_{(\tau_w^{1:N}, \tau_l^{1:N})} \left[\log \frac{p_{\theta}(\tau_w^{1:N})}{p_{\text{ref}}(\tau_w^{1:N})} - \log \frac{p_{\theta}(\tau_l^{1:N})}{p_{\text{ref}}(\tau_l^{1:N})} \right] \right), \quad (14)$$

where $\tau_w^{1:N} \sim q(\cdot | \tau_w^0)$ and $\tau_l^{1:N} \sim q(\cdot | \tau_l^0)$. This objective function can be reformulated in terms of noise prediction as:

$$\mathbb{E}_{(\tau_w^0, \tau_l^0, i)} \log \sigma \left(N(\|\epsilon_w - \epsilon_{\text{ref}}(\tau_w^i, i)\|^2 - \|\epsilon_w - \epsilon_\theta(\tau_w^i, i)\|^2 + \|\epsilon_l - \epsilon_\theta(\tau_l^i, i)\|^2 - \|\epsilon_l - \epsilon_{\text{ref}}(\tau_l^i, i)\|^2) \right), \quad (15)$$

where ϵ_w and ϵ_l correspond to τ_w^i and τ_l^i , ϵ_θ and ϵ_{ref} are the noise prediction network for p_θ and p_{ref} .

By comparing the training objective functions, we can draw an interesting observation: if we denote expert samples as τ_w and generative samples as τ_l , with the reference model corresponding to the generator, the sigmoid in Eq. (15) is applied to the sum of the error difference on expert and generative samples. In contrast, DPAIL evaluates these two error differences in individual sigmoid functions.

This distinction arises from DPO-Diffusion’s derivation via the BT model, whereas DPAIL is based on the binary discriminator. Moreover, although DPO-Diffusion also aims to handle multi-modal distributions, it targets offline RL and requires preference data, setting it apart from DPAIL’s focus on direct expert imitation without preference annotations.

B Action Execution and Diffusion Sampling in DPAIL

In DPAIL, the diffusion policy generates fixed-horizon sub-trajectories of length H . The resulting H actions are executed sequentially in the environment, so action sequence generation is performed once every H environment steps. The action execution procedure is detailed in Algorithm 2. To condition on the current state at the start of the sampling process, we overwrite the corresponding state variable at each diffusion step with the current observed state. The sampling procedure is detailed in Algorithm 3.

Algorithm 2 Action execution

```

1:  $s_0 = \text{env.reset()}$ 
2: for step  $t = 0, 1, 2, \dots$  do
3:   if  $t \% H == 0$  then
4:     Sample actions  $a_{0:H} \sim p_{\theta^{\text{old}}}(\cdot | s_t)$ 
5:   end if
6:    $a_t \leftarrow \text{Get}(t \% H)-\text{th action in } a_{0:H}$ .
7:    $r_t, s_{t+1} \leftarrow \text{env.step}(a_t)$ 
8: end for

```

Algorithm 3 Sampling

```

1: Observe the current state  $s_t, \tau^N \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ .
2: for diffusion step  $i = N, \dots, 1$  do
3:    $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 
4:    $\tau^{i-1} = \frac{1}{\sqrt{1-\beta_i}} \left( \tau^i - \frac{\beta_i}{\sqrt{1-\alpha_i}} \epsilon_{\theta^{\text{old}}}(\tau^i, i) \right) + \sigma_i z$ 
5:   Replace the initial state in  $\tau^i$  with  $s_t$ .
6: end for
7: Get action sequence  $a_{0:H}$  from  $\tau^0$ .

```

C Environment Details

HalfCheetah-v3 and Walker2d-v3 The goal of these tasks is to move the agent forward and backward along the x-axis as quickly as possible while maintaining balance. The state includes joint angles, angular velocities and the x-coordinate. Each expert is trained using a reward function based on the forward reward, $\pm x$ -coordinate velocity.

Ant-v3 and AntGoal-v3 The goal of these tasks is to control a four-legged ant robot to move forward, backward, left, or right as fast as possible while maintaining balance (Ant-v3), and to navigate to one of eight target positions evenly distributed around a circle with a radius of 20 (AntGoal-v3). The state includes joint angles, angular velocities, and the (x,y) coordinates. Each expert is trained using a reward function based on the forward reward, $\pm x$ -coordinate velocity or $\pm y$ -coordinate velocity in Ant-v3. In AntGoal-v3, each expert is trained using a reward function based on the distance between the goal and the current robot’s position. We use the 10 trajectories per mode as expert demonstrations, with each trajectory consisting of 1k transitions.

maze2d-medium-v1 and maze2d-large-v1 The goal of these tasks is to control a point robot to navigate to one of the target positions. In the medium-sized maze, target positions are $\{(1.0, 6.0), (6.0, 5.0), (6.0, 1.0)\}$, while in the large-sized maze, they are $\{(1.0, 10.0), (3.0, 8.0), (7.0, 10.0), (5.0,$

4.0), (7.0, 1.0)}. Expert demonstrations are selected from D4RL dataset¹. We use the 15 episodes for maze2d-medium-v1 and 30 episodes for maze2d-large-v1.

D Implementation Details

Policy gradient method We use PPO [26] to train policies and GAE(λ) to compute advantage in GAIL, DiffAIL, DRAIL and InfoGAIL. The corresponding hyperparameters for PPO are provided in Table 3. At each k -th iteration, we perform m -steps rollout in the environment. The corresponding hyperparameter settings for each algorithm are provided in Table 2.

Diffusion and DPAIL Both Diffusion and DPAIL utilize the same U-Net architecture with residual blocks consisting of temporal convolution and group normalization, following [17]². We use $N = 50$ diffusion steps in both Diffusion and DPAIL for all tasks. Additionally, we normalize the state values before feeding them into the network. For DPAIL, we clip the norm value of $\|\epsilon - \epsilon_{\theta^{\text{old}}}(\bar{x}^i, i)\|$ not to be larger than 0.2.

GAIL, DiffAIL, DRAIL and ASAFA For GAIL, DiffAIL, DRAIL, and ASAFA, we use a multi-layer perceptron (MLP) with two hidden layers of size [64, 64] for the Gaussian policy. We also normalize the state values before feeding them into the policy network. The discriminator in GAIL is an MLP with two hidden layers of size [100, 100]. The discriminator architectures of both DiffAIL and DRAIL are based on an MLP U-Net structure based on the official repository³, and $N = 50$ diffusion steps.

InfoGAIL For InfoGAIL, we use discrete latent variables, setting the number of latent variables to 8 for all tasks. We concatenate the one-hot encoding of the latent variable with the state and use the resulting vector as input to a Gaussian policy. We also normalize the state values before feeding them into the policy network. The discriminator network and class prediction network in InfoGAIL share an MLP with two hidden layers of size [100, 100] and output the corresponding values. For the coefficient of unsupervised regularization term, we perform a greedy search over the range [0.1, 0.2, 0.3, 0.5].

Form of the reward in GAIL, DiffAIL, DRAIL and InfoGAIL For Mujoco tasks, we use a commonly adopted reward function of the form $r(s, a) = -\log(1 - D(s, a))$, which acts as a survival bonus, encouraging agents to survive longer in the environment to accumulate more rewards. For Maze tasks, we use the reward function $r(s, a) = \log(D(s, a))$, which serves as a penalty signal. This is well-suited for goal-reaching tasks, as it incentivizes the agent to reach the goal as quickly as possible. In AntGoal-v3, we adopt the survival-style reward $r(s, a) = -\log(1 - D(s, a))$ and we find this to work well in practice.

Details of ASAFA ASAFA aims to match the trajectory distribution under a stationary policy $\pi(a|s)$. For π , the trajectory distribution $p_\pi(\tau)$ is decomposed as $p_\pi(\tau) = P(s_0) \prod_{t=0}^{T-1} \pi(a_t|s_t) P(s_{t+1}|s_t, a_t)$. To optimize Eq. (4) for trainable policy π_θ and generator policy π_G , ASAFA defines the discriminator in policy space as

$$D_{\pi_{\theta^{\text{old}}}, \pi_\theta}(\tau) = \sigma \left(\log \frac{p_{\pi_\theta}(\tau)}{p_{\pi_{\theta^{\text{old}}}(\tau)}} \right) = \sigma \left(\sum_t \log \pi_\theta(a_t|s_t) - \log \pi_{\theta^{\text{old}}}(a_t|s_t) \right) \quad (16)$$

where the transition probability $P(s_{t+1}|s_t, a_t)$ cancels out, leaving only to the ratio of policy terms. In practice, ASAFA segments trajectories into windows of length w , updates π_θ via a binary cross-entropy loss, and then sets $\pi_{\theta^{\text{old}}}$ as the updated π_θ to the next iteration. This procedure iteratively updates π_θ until convergence. We offer the ASAFA algorithm in Algorithm 4.

¹<https://github.com/Farama-Foundation/D4RL>

²<https://github.com/jannerm/diffuser>

³<https://github.com/NVlabs/DRAIL>

Algorithm 4 Adversarial Soft Advantage Fitting (ASAF)

Input: expert trajectories $\mathcal{D}_E = \{\tau_n\}_{n=1}^{N_E}$
 Randomly initialize π_{θ_0} and set $\pi_{\theta^{\text{old}}} \leftarrow \pi_{\theta_0}$
for $k = \{0 \dots K\}$ **do**
 Collect trajectories $\mathcal{D}_{\theta^{\text{old}}} = \{\bar{\tau}_n\}_{n=1}^{N_{\theta^{\text{old}}}}$ using $\pi_{\theta^{\text{old}}}$ by interacting with environment
 Update θ_{k+1} by optimizing the following loss:

$$\theta_{k+1} = \arg \max_{\theta} \mathbb{E}_{\tau \sim \mathcal{D}_E} [\log D_{\pi_{\theta^{\text{old}}}, \pi_{\theta}}(\tau)] + \mathbb{E}_{\bar{\tau} \sim \mathcal{D}_{\theta^{\text{old}}}} [\log (1 - D_{\pi_{\theta^{\text{old}}}, \pi_{\theta}}(\tau))],$$

 where $D_{\pi_{\theta}, \pi_{\theta^{\text{old}}}}(\tau)$ is defined in Eq. (16).

$$p_{\theta^{\text{old}}} \leftarrow p_{\theta_{k+1}}$$

end for

Table 2: Hyperparameters used for baselines across various environments.

Method	Hyperparameter	HalfCheetah-v3	Walker2d-v3	Ant-v3	AntGoal-v3	maze2d-medium-v1	maze2d-large-v1
Diffusion	lr	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
	horizon H	4	4	4	4	16	16
	# Epoch	1000	1000	1000	1000	1000	1000
GAIL	policy lr	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
	discriminator lr	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
	# rollout length m	50000	50000	50000	50000	10000	10000
	# Iteration K	200	200	10000	600	100	100
DiffAIL	policy lr	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
	discriminator lr	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
	# rollout length m	50000	50000	50000	50000	10000	10000
	# Iteration K	200	200	10000	600	100	100
DRAIL	policy lr	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
	discriminator lr	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
	# rollout length m	50000	50000	50000	50000	10000	10000
	# Iteration K	200	200	10000	600	100	100
InfoGAIL	policy lr	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
	discriminator lr	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
	coef MI	0.2	0.2	0.1	0.1	0.3	0.3
	# rollout length m	50000	50000	50000	50000	10000	10000
	# Iteration K	200	200	10000	600	100	100
ASAF	policy lr	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
	window w	64	64	64	64	64	64
	# rollout length m	50000	50000	50000	50000	10000	10000
	# Iteration K	200	200	400	400	100	100
DPAIL (Ours)	lr	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
	horizon H	4	4	4	4	16	16
	# rollout length m	10000	10000	10000	10000	5000	5000
	# Iteration K	200	200	200	200	200	200

Table 3: PPO training hyperparameters used for each task.

Hyperparameter	HalfCheetah-v3	Walker2d-v3	Ant-v3	AntGoal-v3	maze2d-medium-v1	maze2d-large-v1
clipping range ϵ	0.2	0.2	0.2	0.2	0.2	0.2
discount factor γ	0.99	0.99	0.99	0.99	0.995	0.995
gae parameter λ	0.97	0.97	0.97	0.97	0.97	0.97
# epoch per iteration	50	50	50	50	40	40

E Additional Experimental Results

We present the learned behaviors of baselines methods and DPAIL in Figures 6 and 7. The expert demonstration behaviors are visualized in Figure 5. To evaluate the multi-modal learning capability of imitation learning methods, we measure the entropy of the learned behaviors to quantify diversity. Additionally, to assess the similarity between the learned trajectories and expert demonstrations, we compute Maximum Mean Discrepancy (MMD) between their respective state-action distributions, using an RBF kernel with 20 bandwidths, as shown in Table 4. Since MMD quantifies the divergence between distributions, lower values indicate better recovery of all modes present in the expert distribution.

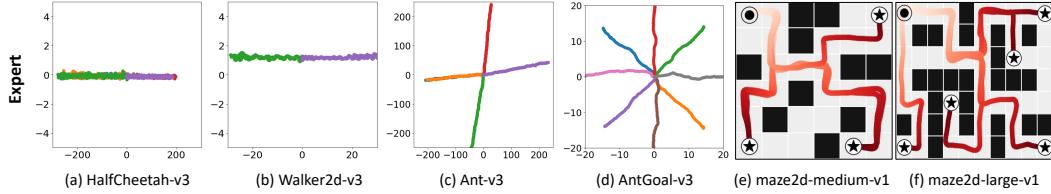


Figure 5: Expert demonstrations across 6 tasks.

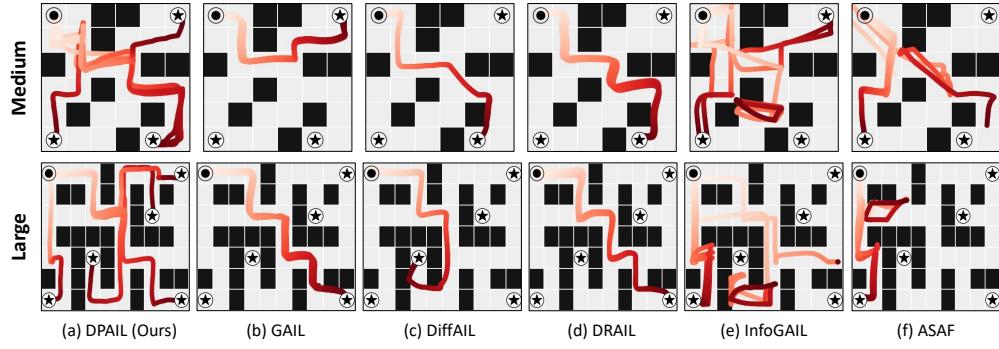


Figure 6: Learned behaviors of baseline methods and DPAIL (ours) in Maze2d tasks. The first row depicts maze2d-medium-v1, while the second row depicts maze2d-large-v1. Each graph illustrates 5 different trajectories generated by the same policy. The initial position is marked with circle, and the goal positions are marked with stars.

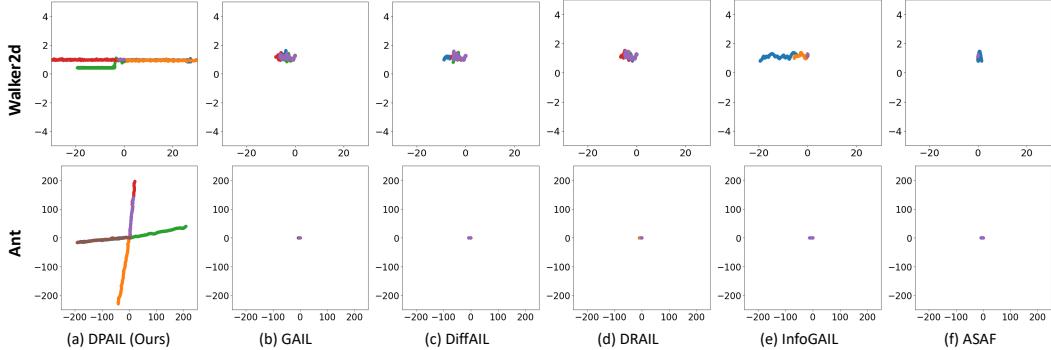


Figure 7: Learned behaviors of baseline methods and DPAIL (ours) in MuJoCo tasks. The first row shows Walker2d-v3, where the task is to move forward and backward ($\pm x$ -axis). The second row shows Ant-v3, where the task is to move forward, backward, left and right ($\pm x$ -axis, $\pm y$ -axis). Each plot illustrates ten different trajectories generated by the same policy.

E.1 Impact of the Number of Demonstrations and Modes

We provide additional experimental results on the impact of the number of demonstrations and modes in Ant-v3 (Table 5) and AntGoal-v3 (Table 6). In both tasks, increasing the number of modes generally degrades the performance of most algorithms. However, DPAIL exhibits greater robustness, benefiting from the expressiveness of diffusion models.

Table 4: MMD(\downarrow) between state-action distributions between expert demonstrations and learned behaviors. DPAIL has the lowest value on most tasks, indicating better recovery of expert distributions.

Environment	BC	Diffusion	GAIL	DiffAIL	DRAIL	InfoGAIL	ASAF	DPAIL
HalfCheetah-v3	0.029	0.027	0.038	0.038	0.045	0.039	0.031	0.025
Walker2d-v3	0.127	0.091	0.165	0.182	0.212	0.099	0.190	0.096
Ant-v3	0.334	0.018	0.281	0.341	0.335	0.282	0.311	0.012
AntGoal-v3	0.571	0.082	0.385	0.443	0.401	0.192	0.551	0.021
maze2d-medium-v1	4.9e-4	9.1e-5	4.8e-4	4.2e-4	4.5e-4	5.0e-4	5.5e-4	8.0e-5
maze2d-large-v1	5.1e-3	1.0e-4	3.0e-4	1.5e-4	5.0e-4	5.3e-4	5.9e-3	9.2e-5

Table 5: Normalized score (Score) and entropy (Ent) on varying the number of demonstrations and modes in Ant-v3.

# of modes	# of demos	metrics	BC	Diffusion	GAIL	DiffAIL	DRAIL	InfoGAIL	ASAF	DPAIL
1	3	Score	0.13 \pm 0.03	0.38 \pm 0.12	0.39 \pm 0.08	0.50 \pm 0.20	0.27 \pm 0.12	0.23 \pm 0.03	0.27 \pm 0.12	0.48 \pm 0.25
		Ent	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00
	5	Score	0.15 \pm 0.06	0.4 \pm 0.23	0.39 \pm 0.08	0.55 \pm 0.25	0.22 \pm 0.15	0.21 \pm 0.01	0.22 \pm 0.15	0.53 \pm 0.22
		Ent	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00
	10	Score	0.17 \pm 0.09	0.57 \pm 0.21	0.50 \pm 0.18	0.55 \pm 0.40	0.47 \pm 0.28	0.23 \pm 0.00	0.47 \pm 0.28	0.67 \pm 0.29
		Ent	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00
2	20	Score	0.10 \pm 0.09	0.74 \pm 0.08	0.51 \pm 0.12	0.69 \pm 0.14	0.45 \pm 0.24	0.25 \pm 0.07	0.45 \pm 0.24	0.72 \pm 0.05
		Ent	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00
	3	Score	0.10 \pm 0.06	0.40 \pm 0.22	0.17 \pm 0.19	0.14 \pm 0.29	0.28 \pm 0.10	0.12 \pm 0.01	0.10 \pm 0.12	0.47 \pm 0.10
		Ent	0.75 \pm 0.30	0.60 \pm 0.08	0.36 \pm 0.20	0.48 \pm 0.18	0.29 \pm 0.18	0.52 \pm 0.22	0.42 \pm 0.29	0.62 \pm 0.11
	5	Score	0.14 \pm 0.06	0.43 \pm 0.15	0.17 \pm 0.25	0.13 \pm 0.25	0.26 \pm 0.10	0.15 \pm 0.01	0.20 \pm 0.14	0.48 \pm 0.08
		Ent	0.88 \pm 0.09	0.49 \pm 0.24	0.34 \pm 0.18	0.46 \pm 0.26	0.31 \pm 0.18	0.53 \pm 0.26	0.46 \pm 0.32	0.60 \pm 0.13
3	10	Score	0.18 \pm 0.15	0.52 \pm 0.09	0.15 \pm 0.23	0.26 \pm 0.29	0.31 \pm 0.23	0.13 \pm 0.02	0.15 \pm 0.02	0.64 \pm 0.08
		Ent	0.71 \pm 0.41	0.59 \pm 0.09	0.18 \pm 0.15	0.52 \pm 0.30	0.19 \pm 0.15	0.65 \pm 0.15	0.39 \pm 0.25	0.61 \pm 0.04
	20	Score	0.15 \pm 0.03	0.59 \pm 0.09	0.16 \pm 0.02	0.32 \pm 0.25	0.28 \pm 0.11	0.12 \pm 0.01	0.12 \pm 0.09	0.63 \pm 0.18
		Ent	1.01 \pm 0.25	0.66 \pm 0.01	0.44 \pm 0.25	0.51 \pm 0.23	0.36 \pm 0.32	0.52 \pm 0.18	0.44 \pm 0.30	0.59 \pm 0.08
	3	Score	0.05 \pm 0.01	0.34 \pm 0.11	0.13 \pm 0.20	0.12 \pm 0.01	0.08 \pm 0.08	0.03 \pm 0.01	0.03 \pm 0.01	0.53 \pm 0.07
		Ent	0.93 \pm 0.32	0.85 \pm 0.11	0.76 \pm 0.17	0.82 \pm 0.19	0.98 \pm 0.10	0.95 \pm 0.08	0.81 \pm 0.12	1.01 \pm 0.16
4	5	Score	0.06 \pm 0.05	0.44 \pm 0.13	0.11 \pm 0.21	0.10 \pm 0.24	0.10 \pm 0.05	0.02 \pm 0.01	0.01 \pm 0.02	0.55 \pm 0.03
		Ent	0.90 \pm 0.46	0.81 \pm 0.16	0.73 \pm 0.41	0.68 \pm 0.17	0.57 \pm 0.30	0.93 \pm 0.12	0.79 \pm 0.10	0.62 \pm 0.18
	10	Score	0.06 \pm 0.01	0.43 \pm 0.17	0.12 \pm 0.11	0.13 \pm 0.13	0.07 \pm 0.05	0.02 \pm 0.01	0.01 \pm 0.01	0.55 \pm 0.13
		Ent	0.90 \pm 0.29	0.91 \pm 0.16	0.82 \pm 0.18	0.90 \pm 0.07	0.69 \pm 0.37	0.99 \pm 0.08	0.75 \pm 0.38	1.11 \pm 0.50
	20	Score	0.03 \pm 0.04	0.60 \pm 0.04	0.11 \pm 0.13	0.15 \pm 0.05	0.12 \pm 0.09	0.01 \pm 0.00	0.05 \pm 0.06	0.64 \pm 0.14
		Ent	1.00 \pm 0.24	0.88 \pm 0.06	0.83 \pm 0.14	0.96 \pm 0.12	0.98 \pm 0.09	1.06 \pm 0.03	0.65 \pm 0.48	0.91 \pm 0.14

Table 6: Normalized score (Score) and entropy (Ent) on varying the number of demonstrations and modes in AntGoal-v3.

# of modes	# of demos	metrics	BC	Diffusion	GAIL	DiffAIL	DRAIL	InfoGAIL	ASAF	DPAIL
1	3	Score	0.39 \pm 0.17	0.62 \pm 0.18	0.74 \pm 0.08	0.94 \pm 0.02	0.78 \pm 0.10	0.62 \pm 0.04	0.40 \pm 0.21	0.80 \pm 0.02
		Ent	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00
	5	Score	0.43 \pm 0.20	0.65 \pm 0.21	0.84 \pm 0.09	0.96 \pm 0.02	0.83 \pm 0.05	0.68 \pm 0.09	0.41 \pm 0.38	0.83 \pm 0.08
		Ent	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00
	10	Score	0.46 \pm 0.14	0.79 \pm 0.05	0.92 \pm 0.02	0.94 \pm 0.02	0.93 \pm 0.04	0.64 \pm 0.13	0.47 \pm 0.26	0.82 \pm 0.12
		Ent	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00
2	20	Score	0.52 \pm 0.20	0.84 \pm 0.04	0.86 \pm 0.05	0.94 \pm 0.01	0.80 \pm 0.07	0.65 \pm 0.00	0.53 \pm 0.16	0.88 \pm 0.01
		Ent	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00	0.00 \pm 0.00
	3	Score	0.10 \pm 0.03	0.51 \pm 0.08	0.68 \pm 0.22	0.81 \pm 0.04	0.72 \pm 0.07	0.45 \pm 0.06	0.02 \pm 0.01	0.69 \pm 0.10
		Ent	0.50 \pm 0.13	0.46 \pm 0.23	0.20 \pm 0.17	0.54 \pm 0.09	0.23 \pm 0.10	0.54 \pm 0.21	0.51 \pm 0.27	0.68 \pm 0.12
	5	Score	0.10 \pm 0.08	0.54 \pm 0.19	0.74 \pm 0.11	0.86 \pm 0.08	0.74 \pm 0.13	0.47 \pm 0.10	0.04 \pm 0.04	0.71 \pm 0.07
		Ent	0.56 \pm 0.12	0.42 \pm 0.33	0.15 \pm 0.11	0.64 \pm 0.05	0.20 \pm 0.09	0.64 \pm 0.17	0.53 \pm 0.31	0.71 \pm 0.17
4	10	Score	0.13 \pm 0.09	0.58 \pm 0.21	0.77 \pm 0.07	0.80 \pm 0.04	0.72 \pm 0.05	0.49 \pm 0.12	0.03 \pm 0.03	0.80 \pm 0.06
		Ent	0.68 \pm 0.10	0.42 \pm 0.24	0.17 \pm 0.17	0.53 \pm 0.14	0.15 \pm 0.13	0.68 \pm 0.08	0.65 \pm 0.25	0.52 \pm 0.18
	20	Score	0.15 \pm 0.09	0.83 \pm 0.09	0.75 \pm 0.11	0.86 \pm 0.07	0.76 \pm 0.13	0.49 \pm 0.07	0.16 \pm 0.15	0.87 \pm 0.04
		Ent	0.54 \pm 0.13	0.33 \pm 0.18	0.43 \pm 0.18	0.62 \pm 0.09	0.43 \pm 0.16	0.61 \pm 0.16	0.51 \pm 0.17	0.52 \pm 0.15
	3	Score	0.01 \pm 0.00	0.37 \pm 0.12	0.52 \pm 0.13	0.52 \pm 0.21	0.54 \pm 0.22	0.40 \pm 0.28	0.02 \pm 0.01	0.64 \pm 0.10
		Ent	0.94 \pm 0.05	0.99 \pm 0.13	1.02 \pm 0.28	1.02 \pm 0.09	1.04 \pm 0.20	1.19 \pm 0.16	0.92 \pm 0.28	1.14 \pm 0.26
8	5	Score	0.03 \pm 0.01	0.39 \pm 0.26	0.54 \pm 0.09	0.50 \pm 0.19	0.50 \pm 0.17	0.38 \pm 0.11	0.03 \pm 0.04	0.66 \pm 0.07
		Ent	0.98 \pm 0.20	1.56 \pm 0.48	1.78 \pm 0.17	1.82 \pm 0.13	1.81 \pm 0.13	1.79 \pm 0.08	1.65 \pm 0.23	1.76 \pm 0.41
	10	Score	0.04 \pm 0.04	0.22 \pm 0.07	0.58 \pm 0.05	0.35 \pm 0.16	0.41 \pm 0.15	0.48 \pm 0.07	0.01 \pm 0.00	0.67 \pm 0.03
		Ent	1.46 \pm 0.58	1.52 \pm 0.31	1.51 \pm 0.17	1.75 \pm 0.11	1.72 \pm 0.07	1.78 \pm 0.13	1.52 \pm 0.27	1.73 \pm 0.23
	20	Score	0.01 \pm 0.00	0.53 \pm 0.18	0.58 \pm 0.02	0.45 \pm 0.08	0.41 \pm 0.10	0.46 \pm 0.02	0.01 \pm 0.00	0.74 \pm 0.02
		Ent	1.51 \pm 0.24	1.18 \pm 0.41	1.30 \pm 0.14	1.75 \pm 0.20	1.75 \pm 0.23	1.79 \pm 0.12	1.46 \pm 0.16	1.78 \pm 0.44